
IBM LoadLeveler for AIX 5L and Linux

Using and Administering

Version 3 Release 3

SA22-7881-03

���

IBM LoadLeveler for AIX 5L and Linux

Using and Administering

Version 3 Release 3

SA22-7881-03

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 545.

Fourth Edition (April 2005)

This edition applies to version 3 release 3 of IBM LoadLeveler for AIX 5L (product number 5765-E69) and Linux

(product number 5724-I23), and to all subsequent releases and modifications until otherwise indicated in new

editions. This edition replaces SA22-7881-02. Significant changes or additions to the text and illustrations are

indicated by a vertical line (|) to the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you can send your comments to the address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you want a reply, be sure to include your name, address, and telephone or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

©Copyright 1986, 1987, 1988, 1989, 1990, 1991 by the Condor Design Team.

©Copyright International Business Machines Corporation 1986, 2005. All rights reserved. US Government Users

Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

|
|
|
|

Contents

Figures vii

Tables ix

About this book xi

Who should use this book xi

Conventions and terminology used in this book . . xi

Prerequisite and related information xii

Using LookAt to look up message explanations . . xiii

Accessibility information xiii

How to send your comments xiii

Summary of changes xv

Part 1. Overview of LoadLeveler

concepts and operation 1

Chapter 1. What is LoadLeveler? 3

LoadLeveler basics 4

LoadLeveler: A network job management and

scheduling system 4

Job definition 5

Machine definition 5

How LoadLeveler schedules jobs 6

How LoadLeveler daemons process jobs 7

The master daemon 8

The schedd daemon 9

The startd daemon 10

The negotiator daemon 12

The kbdd daemon 13

The gsmonitor daemon 13

The LoadLeveler job cycle 14

LoadLeveler job states 18

Consumable resources 20

Consumable resources and AIX Workload

Manager 21

Overview of reservations 22

Chapter 2. What operating systems are

supported by LoadLeveler? 25

AIX and Linux compatibility 25

Restrictions for LoadLeveler for Linux 26

Features not supported in Linux 26

Restrictions for LoadLeveler AIX and Linux

mixed clusters 27

Part 2. Configuring and managing

the LoadLeveler environment . . . 29

Chapter 3. Configuring the LoadLeveler

environment 31

Getting a quick start using the default configuration 32

Modifying a configuration file 33

Defining LoadLeveler administrators 34

Defining a LoadLeveler cluster 34

Choosing a scheduler 35

Setting negotiator characteristics and policies . . 36

Specifying alternate central managers 37

Defining network characteristics 38

Specifying file and directory locations 38

Configuring recording activity and log files . . . 40

Setting up file system monitoring 43

Defining LoadLeveler machine characteristics . . . 44

Defining job classes that a LoadLeveler machine

will accept 44

Specifying how many jobs a machine can run . . 45

Defining security mechanisms 45

Configuring LoadLeveler to use DCE security

services 46

Configuring LoadLeveler to use cluster security

services 52

Defining usage policies for consumable resources . . 56

Enabling support for bulk data transfer 56

Gathering job accounting data 57

Collecting job resource data on serial and parallel

jobs 57

Collecting job resource data based on machines 58

Collecting job resource data based on events . . 58

Collecting job resource information based on user

accounts 59

Collecting the accounting information and

storing it into files 59

Producing accounting reports 60

Correlating AIX and LoadLeveler accounting

records 60

64-bit support for accounting functions 61

Example: Setting up job accounting files 61

Managing job status through control expressions . . 62

How control expressions affect jobs 63

Tracking job processes 64

Querying multiple LoadLeveler clusters 65

Handling switch-table errors 65

Providing additional job-processing controls through

user exits 66

Controlling the central manager scheduling cycle 66

Handling DCE security credentials 67

Handling an AFS token 69

Filtering a job script 70

Writing prolog and epilog programs 70

Using your own mail program 75

Chapter 4. Defining LoadLeveler

resources to administer 77

Steps for modifying an administration file 77

Defining machines 78

Planning considerations for defining machines . 79

Machine stanza format and keyword summary 80

 iii

||

||

||

||
||

 | |

 | |

 | |

 |
 | |

 | |

 | |
 |
 | |

 | |

 | |
 |
 | |
 | |

 | |

 | |
 | |

Examples: Machine stanzas 80

Defining adapters 81

Configuring dynamic adapters 81

Adapter stanza format and keyword summary 81

Examples: Adapter stanzas 82

Defining classes 83

Using limit keywords 83

Allowing users to use a class 85

Class stanza format and keyword summary . . 85

Examples: Class stanzas 86

Defining users 87

User stanza format and keyword summary . . . 87

Examples: User stanzas 88

Defining groups 89

Group stanza format and keyword summary . . 89

Examples: Group stanzas 89

Chapter 5. Performing additional

administrator tasks 91

Setting up the environment for parallel jobs . . . 92

Scheduling considerations for parallel jobs . . . 92

Steps for reducing job launch overhead for

parallel jobs 92

Steps for allowing users to submit interactive

POE jobs 93

Setting up a class for parallel jobs 94

Setting up a parallel master node 95

Configuring LoadLeveler to support MPICH-GM

jobs 95

Using the backfill scheduler 96

Tips for using the backfill scheduler 97

Example: Backfill scheduling 97

Using the gang scheduler 97

Setting keywords for gang scheduling 98

Example: Configuration file for gang scheduling 99

Example: Administration file for gang

scheduling 100

Using an external scheduler 101

Replacing the default LoadLeveler scheduling

algorithm with an external scheduler 102

Customizing the configuration file to define an

external scheduler 103

Steps for getting information about the

LoadLeveler cluster, its machines, and jobs . . 104

Assigning resources and dispatching jobs . . . 108

Example: Changing scheduler types 111

Preempting and resuming jobs 112

Overview of preemption 112

Planning to preempt jobs 113

Steps for configuring a scheduler to preempt

jobs 115

Configuring LoadLeveler to support reservations 117

Steps for configuring reservations in a

LoadLeveler cluster 117

Collecting accounting data for reservations . . 122

Steps for integrating LoadLeveler with AIX

Workload Manager 123

Checkpointing jobs 125

Checkpoint keyword summary 125

Planning considerations for checkpointing jobs 126

Checkpoint and restart limitations 127

Naming checkpoint files and directories . . . 129

Removing old checkpoint files 130

Routing jobs to NQS machines 131

Setting up the NQS environment 132

Steps for designating machines to which jobs

will be routed 132

Steps for routing jobs to NQS machines . . . 132

Chapter 6. Using LoadLeveler’s GUI to

perform administrator tasks 135

Job-related administrative actions 135

Machine-related administrative actions 137

Part 3. Submitting and managing

LoadLeveler jobs 143

Chapter 7. Building and submitting

jobs 145

Building a job command file 145

Using multiple steps in a job command file . . 146

Examples: Job command files 147

Editing job command files 151

Defining resources for a job step 151

Using bulk data transfer 152

Preparing a job for checkpoint/restart 154

Preparing a job for preemption 156

Submitting a job command file 156

Submitting a job using a submit-only machine 157

Working with parallel jobs 157

Scheduler support for parallel jobs 157

Step for controlling whether LoadLeveler copies

environment variables to all executing nodes . . 158

Ensuring that parallel jobs in a cluster run on

the correct levels of PE and LoadLeveler

software 158

Task-assignment considerations 159

Submitting jobs that use striping 161

Running interactive POE jobs 165

Running MPICH and MPICH-GM jobs 165

Examples: Building parallel job command files 166

Obtaining status of parallel jobs 170

Obtaining allocated host names 170

Working with reservations 171

Understanding the reservation life cycle . . . 172

Creating new reservations 174

Submitting jobs to run under a reservation . . 175

Removing bound jobs from the reservation . . 177

Querying existing reservations 177

Modifying existing reservations 178

Canceling existing reservations 178

Steps for submitting a job to be routed to an NQS

machine 179

Chapter 8. Managing submitted jobs 181

Querying the status of a job 181

Working with machines 182

Displaying currently available resources 182

Setting and changing the priority of a job 183

iv LoadLeveler: Using and Administering

||

||
||

|
||

|
||
|
||

||
||
||

||
||

|
||
|
||
|
||
||
||
||
||
||
|
||
||
|
||
||
|
||

 |
 | |
 | |

 | |
 | |
 | |
 | |

 | |
 |
 | |
 |
 |
 | |

 | |

 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |

Example: How does a job’s priority affect

dispatching order? 183

Placing and releasing a hold on a job 184

Canceling a job 184

Checkpointing a job 184

Chapter 9. Example: Using commands

to build, submit, and manage jobs . . 187

Chapter 10. Using LoadLeveler’s GUI

to build, submit, and manage jobs . . 189

Building jobs 189

Editing the job command file 199

Submitting a job command file 200

Displaying and refreshing job status 200

Sorting the Jobs window 201

Changing the priority of jobs in a queue 202

Placing a job on hold 202

Releasing the hold on a job 202

Canceling a job 203

Modifying consumable resources and other job

attributes 203

Taking a checkpoint 203

Displaying and refreshing machine status 203

Sorting the Machines window 204

Finding the location of the central manager . . . 205

Finding the location of the public scheduling

machines 205

Finding the type of scheduler in use 205

Specifying which jobs appear in the Jobs window 206

Specifying which machines appear in Machines

window 206

Saving LoadLeveler messages in a file 207

Part 4. LoadLeveler interfaces

reference 209

Chapter 11. Configuration file

reference 211

Configuration file syntax 211

Numerical and alphabetical constants 211

Mathematical operators 212

64-bit support for configuration file keywords

and expressions 212

Configuration file keyword descriptions 212

User-defined keywords 254

LoadLeveler variables 256

Variables to use for setting dates 260

Variables to use for setting times 260

Chapter 12. Administration file

reference 263

Administration file structure and syntax 263

Stanza characteristics 264

Syntax for limit keywords 264

64-bit support for administration file keywords 265

Administration file keyword descriptions 267

Chapter 13. Job command file

reference 289

Job command file syntax 289

Serial job command file 289

Parallel job command file 290

Syntax for limit keywords 290

64-bit support for job command file keywords 291

Mapping NQS script options to LoadLeveler job

command file options 292

Job command file keyword descriptions 294

Job command file variables 324

Run-time environment variables 324

Example 1 326

Example 2 326

Chapter 14. Graphical user interface

(GUI) reference 327

Starting the GUI 327

Specifying GUI options 327

The LoadLeveler main window 327

Getting help using the GUI 329

Differences between LoadLeveler’s GUI and

other graphical user interfaces 329

GUI typographic conventions 329

64-bit support for the GUI 330

Customizing the GUI 330

Syntax of an Xloadl file 330

Modifying windows and buttons 330

Creating your own pull-down menus 331

Customizing fields on the Jobs window and the

Machines window 332

Modifying help panels 333

Chapter 15. Commands 335

llacctmrg - Collect machine history files 337

llbind - Bind job steps to a reservation 339

llcancel - Cancel a submitted job 341

llchres - Change attributes of a reservation . . . 343

llckpt - Checkpoint a running job step 347

llclass - Query class information 349

llctl - Control LoadLeveler daemons 353

lldbconvert - Job migration utility 358

lldcegrpmaint - LoadLeveler DCE group

maintenance utility 359

llextRPD - Extract data from an RSCT peer domain 362

llextSDR - Extract adapter information from the

SDR 365

llfavorjob - Reorder system queue by job 369

llfavoruser - Reorder system queue by user . . . 371

llhold - Hold or release a submitted job 372

llinit - Initialize machines in the LoadLeveler

cluster 374

llmkres - Make a reservation 376

llmodify - Change attributes of a submitted job

step 379

llpreempt - Preempt a submitted job step 382

llprio - Change the user priority of submitted job

steps 384

llq - Query job status 386

llqres - Query a reservation 406

Contents v

|
||

|
||

|
||
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||
|
||
||
||
|
||
||

||
||

||
||

 | |

 |
 | |

 | |

 | |

 | |

 | |

 | |

llrmres - Cancel a reservation 409

llrunscheduler - Run the central manager’s

scheduling algorithm 411

llstatus - Query machine status 412

llsubmit - Submit a job 423

llsummary - Return job resource information for

accounting 425

Chapter 16. Application programming

interfaces (APIs) 437

64-bit support for the LoadLeveler APIs 439

AIX 439

Linux 440

Accounting API 440

Account validation user exit 440

Report generation subroutine 441

Checkpointing API 442

ckpt subroutine 442

ll_init_ckpt 443

ll_ckpt 444

ll_set_ckpt_callbacks 446

ll_unset_ckpt_callbacks 447

Data Access API 448

Using the data access API 448

Understanding the LoadLeveler job object

model 448

ll_query subroutine 451

ll_set_request subroutine 451

ll_reset_request subroutine 455

ll_get_objs subroutine 455

ll_get_data subroutine 458

ll_next_obj subroutine 478

ll_free_objs subroutine 479

ll_deallocate subroutine 479

Examples of using the Data Access API . . . 480

Error Handling API 487

ll_error subroutine 487

Parallel Job API 488

Interaction between LoadLeveler and the

parallel API 488

ll_get_hostlist subroutine 489

ll_start_host subroutine 491

Examples 492

Query API 493

ll_get_jobs subroutine 493

ll_free_jobs subroutine 494

ll_get_nodes subroutine 495

ll_free_nodes subroutine 496

Reservation API 496

ll_make_reservation subroutine 496

ll_init_reservation_param subroutine 499

ll_change_reservation subroutine 500

ll_bind subroutine 503

ll_remove_reservation subroutine 505

Submit API 507

llsubmit subroutine 507

llfree_job_info subroutine 508

Monitoring programs 508

Workload Management API 509

ll_control subroutine 510

ll_modify subroutine 514

ll_preempt subroutine 517

ll_preempt_jobs subroutine 518

ll_run_scheduler subroutine 520

ll_start_job subroutine 521

ll_start_job_ext subroutine 522

ll_terminate_job subroutine 526

Appendix. Troubleshooting 529

Troubleshooting LoadLeveler 529

Frequently asked questions 529

Helpful hints 539

Getting help from IBM 543

Notices 545

Trademarks 547

Glossary 549

Index 553

vi LoadLeveler: Using and Administering

||
|
||

||
||

 | |
 | |
 | |
 | |
 | |
 | |

 | |
 | |

Figures

 1. Example of a LoadLeveler configuration . . . 3

 2. LoadLeveler job steps 5

 3. Job queues 7

 4. High-level job flow 14

 5. Job is submitted to LoadLeveler 15

 6. LoadLeveler authorizes the job 16

 7. LoadLeveler prepares to run the job 16

 8. LoadLeveler starts the job 17

 9. LoadLeveler completes the job 17

10. How control expressions affect jobs 64

11. Format of a machine stanza 80

12. Format of an adapter stanza 82

13. Format of a class stanza 86

14. Format of a user stanza 88

15. Format of a group stanza 89

16. Environment illustrating jobs being routed to

NQS machines. 131

17. Environment illustrating jobs being routed to

NQS machines. 133

18. Job command file with multiple steps 146

19. Job command file with multiple steps and

one executable 147

20. Job command file with varying input

statements 147

21. Using LoadLeveler variables in a job

command file 149

22. Job command file used as the executable 151

23. POE job command file – multiple tasks per

node 167

24. POE sample job command file – invoking

POE twice 167

25. MPICH job command file 168

26. MPICH-GM job command file 169

27. Using LOADL_PROCESSOR_LIST in a shell

script 171

28. Building a job command file 187

29. LoadLeveler build a job window 190

30. Format of administration file stanzas 263

31. Sample administration file stanzas 264

32. Serial job command file 289

33. Main window of the LoadLeveler GUI 328

34. Creating a new pull-down menu 332

35. llq -l output for a serial job step 392

36. llq -l -x output for a parallel,

non-checkpointing job step 394

37. Sample llstatus -R command output 415

38. Sample output from llstatus -l c271f2rp02 417

39. Output generated by llsummary -x -l

command 429

40. LoadLeveler job object model 450

41. Obtaining machine, job, and cluster

information with the Data Access API . . . 481

42. Extracting job accounting information from a

history file 485

43. When the primary central manager is

unavailable 536

44. Multiple central managers 536

 vii

 | |

 | |

viii LoadLeveler: Using and Administering

Tables

 1. Summary of typographic conventions xi

 2. Topics in the LoadLeveler overview 1

 3. Major topics in LoadLeveler ″Using and

Administering″ 1

 4. LoadLeveler daemons 8

 5. Job state descriptions and abbreviations 18

 6. Roadmap of tasks for LoadLeveler

administrators 29

 7. Roadmap of administrator tasks related to

using or modifying the LoadLeveler

configuration file 31

 8. Roadmap for defining LoadLeveler cluster

characteristics 34

 9. Log control statements 40

10. Roadmap of configuration tasks for securing

LoadLeveler operations 46

11. Roadmap of tasks for gathering job accounting

data 57

12. Roadmap of administrator tasks accomplished

through user exits 66

13. Roadmap of tasks for modifying the

LoadLeveler administration file 77

14. Types of limit keywords 83

15. Enforcing job step limits 84

16. Setting limits 85

17. Roadmap of additional administrator tasks 91

18. Roadmap of backfill scheduler tasks 96

19. Roadmap of tasks for using the gang scheduler 98

20. LoadLeveler keywords for gang scheduler

preemption 98

21. Roadmap of tasks for using an external

scheduler 101

22. Effect of LoadLeveler keywords under an

external scheduler 102

23. Roadmap of tasks for using preemption 112

24. Preemption methods for which LoadLeveler

automatically resumes preempted jobs . . . 114

25. Preemption methods for which administrator

or user intervention is required 115

26. Roadmap of reservation tasks for

administrators 117

27. Roadmap of tasks for checkpointing jobs 125

28. Deciding where to define the directory for

staging executables 127

29. Roadmap of administrator tasks for NQS 131

30. Roadmap of user tasks for building and

submitting jobs 145

31. Checkpoint configurations 154

32. Parallel keywords supported by the default,

Backfill, and Gang schedulers 157

33. Valid combinations of task assignment

keywords are listed in each column 159

34. node and total_tasks 160

35. Blocking 160

36. Unlimited blocking 161

37. Roadmap of tasks for reservation owners and

users 171

38. Reservation states, abbreviations, and notes 172

39. Instructions for submitting a job to run under

a reservation 176

40. Roadmap of user tasks for managing

submitted jobs 181

41. How LoadLeveler handles job priorities 183

42. User tasks available through the GUI 189

43. Notes on 64-bit support for administration

file keywords 266

44. Summary of possible values set for the

env_copy keyword in the administration file . 274

45. Sample user and group settings for the

max_reservations keyword 280

46. Notes on 64-bit support for job command file

keywords 291

47. Mapping of NQS options to LoadLeveler

equivalents 292

48. Mapping of LoadLeveler options to NQS

equivalents 293

49. Window identifiers in the Xloadl file 331

50. LoadLeveler command summary 335

51. LoadLeveler API summary 437

52. Specifications for ll_get_data subroutine 459

 ix

||
|
||

|
||
|
|
||
|
||

|
||
|
||
|
||
|
||

||
||
||

|
||

||
|
||
|
||
|
||

 | |
 |
 | |
 | |
 |
 | |

 |
 | |
 | |
 |
 | |
 |
 | |

 | |

 |
 | |
 |
 | |

 |
 | |
 |
 | |

 | |
 | |

x LoadLeveler: Using and Administering

About this book

IBM® LoadLeveler® for AIX 5L™ and Linux® provides various ways of scheduling

and managing applications for best performance and most efficient use of

resources. LoadLeveler manages both serial and parallel jobs over a cluster of

machines or servers, which may be desktop workstations, dedicated servers, or

parallel machines. This book describes how to configure and administer this

LoadLeveler cluster environment, and to submit and manage jobs that run on

machines in the cluster.

Who should use this book

This book is intended for two separate audiences:

v Personnel who are responsible for installing, configuring and managing the

LoadLeveler cluster environment. These people are called LoadLeveler

administrators. LoadLeveler administrative tasks include:

– Setting up configuration and administration files.

– Maintaining the LoadLeveler product.

– Setting up the distributed environment for allocating batch jobs.
v Users who submit and manage serial and parallel jobs to run in the LoadLeveler

cluster.

Both LoadLeveler administrators and general users should be experienced with the

UNIX® commands. Administrators also should be familiar with:

v Cluster system management techniques such as SMIT, as it is used in the AIX®

environment.

v Networking and NFS or AFS® protocols.

Conventions and terminology used in this book

Throughout the LoadLeveler product documentation:

v LoadLeveler for Linux on xSeries® and LoadLeveler for Linux on IBM Eserver

®

with AMD Opteron processors are referred to as LoadLeveler for Linux on

Multiplatform. LoadLeveler for Linux on Multiplatform includes:

– IBM Eserver 325

– IBM Eserver 326

– IBM Eserver xSeries

– IBM Eserver Cluster 1350

– IBM Eserver BladeCenter™ HS20
v Note that in this document, the IBM RS/6000® SP™ systems hardware platform

is referred to as the “SP.” References to RS/6000 SP or SP should be read to also

include currently supported IBM Eserver Cluster 1600 hardware.

Table 1 describes the typographic conventions used in this book.

 Table 1. Summary of typographic conventions

Typographic Usage

Bold v Bold words or characters represent system elements that you must use

literally, such as commands, flags, and path names.

v Bold words also indicate the first use of a term included in the glossary.

 xi

|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|

Table 1. Summary of typographic conventions (continued)

Typographic Usage

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for book titles and for general emphasis in text.

Constant

width

Examples and information that the system displays appear in constant

width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and

syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means

“or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on

the keyboard. For example, <Enter> refers to the key on your terminal or

workstation that is labeled with the word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more

times.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example,

<Ctrl-c> means that you hold down the control key while pressing <c>.

\ The continuation character is used in coding examples in this book for

formatting purposes.

Prerequisite and related information

The LoadLeveler publications are:

v Installation Guide, GI10-0763

v Using and Administering, SA22-7881

v Diagnosis and Messages Guide, GA22-7882

To access all LoadLeveler documentation, refer to the IBM Eserver Cluster

Information Center, which contains the most recent LoadLeveler documentation in

PDF and HTML formats. This Web site is located at:

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

A LoadLeveler Documentation Updates file also is maintained on this Web site.

The LoadLeveler Documentation Updates file contains updates to the LoadLeveler

documentation. These updates include documentation corrections and clarifications

that were discovered after the LoadLeveler books were published.

Both the current LoadLeveler books and earlier versions of the library are also

available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order

To easily locate a book in the IBM Publications Center, supply the book’s

publication number. The publication number for each of the LoadLeveler books is

listed after the book title in the preceding list.

xii LoadLeveler: Using and Administering

|

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX and Linux:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

Accessibility information

Accessibility information for IBM products is available online. Visit the IBM

Accessibility Center at:

http://www.ibm.com/able/

To request accessibility information, click Product accessibility information.

How to send your comments

Your feedback is important in helping us to produce accurate, high-quality

information. If you have any comments about this book or any other LoadLeveler

documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Include the book title and order number, and, if applicable, the specific location

of the information you have comments on (for example, a page number or a

table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

To contact the IBM cluster development organization, send your comments by

e-mail to: cluster@us.ibm.com

About this book xiii

|

|

|

|

xiv LoadLeveler: Using and Administering

Summary of changes

The following sections summarize changes to the LoadLeveler product and

LoadLeveler library for each new release or major service update for a given

product version. Within each book in the library, a vertical line to the left of text

and illustrations indicates technical changes or additions made to the previous

edition of the book.

Changes to LoadLeveler for this release include:

v New information:

– On the Linux platforms currently available for LoadLeveler for Linux 3.2, IBM

intends to provide the following functions:

- Increased job launch flexibility and processing options

- Backfill preemption, except for suspend method

- Reservation

- Additional control over scheduling including a new command and API to

start the scheduling process and the ability to set job system priority
This function is planned to be available on LoadLeveler for Linux in third

quarter 2005. All statements regarding IBM’s plans, directions, and intent are

subject to change or withdrawal without notice.

– LoadLeveler provides job launch enhancements with increased flexibility and

processing options:

- Administrators may define a number of LoadLeveler starter processes to be

ready and waiting to handle job requests. Having this pool of ready

processes reduces the amount of time LoadLeveler needs to prepare jobs to

run. For more information, see “Steps for reducing job launch overhead for

parallel jobs” on page 92.

- Both administrators and users have more control over how environment

variables are copied for a job. Reducing the number of environment

variables LoadLeveler has to copy reduces the amount of time LoadLeveler

needs to prepare jobs to run. For more information, see “Step for

controlling whether LoadLeveler copies environment variables to all

executing nodes” on page 158.
– LoadLeveler allows authorized users to make reservations, which specify a

time period during which specific node resources are reserved for exclusive

use by particular users or groups. Normally, jobs wait to be dispatched until

the resources they require become available. Through the use of reservations,

wait time can be reduced because the jobs have exclusive use of the node

resources as soon as the reservation period begins. A reservation also may be

used to run a workload that needs to start or finish at a particular time. For

more information, see “Overview of reservations” on page 22.

– The LoadLeveler backfill scheduler allows jobs to be preempted so that a

higher priority job step can run. Previously, this capability was available only

under the gang scheduler. With the backfill scheduler, administrators may

specify not only preemption rules for job classes, but also the method that

LoadLeveler uses to preempt jobs. For more information, see “Preempting

and resuming jobs” on page 112.

– LoadLeveler allows the staging of executables for checkpointable job steps.

When the job step is started, the executable is copied to a specified directory

on the node running the master task. For more information, see “Planning

considerations for checkpointing jobs” on page 126.

 xv

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

– LoadLeveler allows administrators to specify a fixed system priority for a job

step. The LoadLeveler central manager will not change this priority when it

recalculates job priorities. For more information, see “Setting negotiator

characteristics and policies” on page 36.

– LoadLeveler allows administrators to specify a system priority threshold such

that job steps can run only when their system priorities are higher than the

threshold. For more information, see “Controlling the central manager

scheduling cycle” on page 66.

– LoadLeveler allows administrators more control over the scheduling process.

Normally, the LoadLeveler central manager automatically runs a scheduling

algorithm at intervals specified in the configuration file. Now administrators

can configure the central manager so that it runs the scheduling algorithm

only when specifically instructed through the llrunscheduler command or

ll_run_scheduler subroutine. For more information, see “Controlling the

central manager scheduling cycle” on page 66.

– LoadLeveler allows administrators to set up file system monitoring for

inodes, in addition to the previous monitoring for space. File system

monitoring space thresholds are now specified in bytes rather than blocks,

and both space and inode thresholds accept metric prefixes such as K, M and

G. For more information, see “Setting up file system monitoring” on page 43.

– On AIX systems with device drivers and network adapters that support

remote direct-memory access (RDMA), communication protocols may provide

bulk transfer as a mechanism to optimize communication. LoadLeveler

supports bulk data transfer for jobs that use either the Internet or User Space

communication mode.

For more information about configuring and using bulk data transfer, see

“Using bulk data transfer” on page 152.

– On AIX systems, LoadLeveler adds a job key to both AIX and LoadLeveler

accounting records. This addition allows AIX and LoadLeveler accounting

records to be correlated. For more information, see “Correlating AIX and

LoadLeveler accounting records” on page 60.

– On AIX systems, LoadLeveler adds a configuration file keyword to support

the AIX Workload Manager (WLM) enforcement of an absolute memory limit

for a WLM class. For more information, see “Steps for integrating

LoadLeveler with AIX Workload Manager” on page 123.

– LoadLeveler Version 3 Release 3 runs on AIX 5.3 as well as AIX 5.2.
v Changed information:

– LoadLeveler Using and Administering has been reorganized to improve the

clarity and conciseness of administrator and general user tasks, and to

remove redundant information. The book now consists of the following major

sections:

- Part 1. Overview of LoadLeveler concepts and operation, which provides

background information about the advantages of using LoadLeveler, its

operational elements, its interfaces, and how it manages jobs.

- Part 2. Configuring and managing the LoadLeveler environment, which

describes additional LoadLeveler concepts and provides instructions for

configuring and administering LoadLeveler jobs and their run-time

environment. This section is intended for LoadLeveler administrators only.

- Part 3. Submitting and managing LoadLeveler jobs, which describes

additional LoadLeveler concepts and provides instructions for submitting

and managing jobs in the LoadLeveler run-time environment. This section

xvi LoadLeveler: Using and Administering

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

is intended primarily for LoadLeveler general users; however,

administrators also might have to refer to the topics in this section on

occasion.

- Part 4. LoadLeveler interfaces reference, which provides all of the details

you need to use LoadLeveler control files, commands, and application

programming interfaces.
v Deleted information:

– LoadLeveler no longer supports the Parallel Virtual Machine (PVM3) job type.

– The following interfaces are obsolete. Information about them has been

removed.

- Administration file keywords:

v max_smp_tasks

v pvm_root

- Job command file keywords: parallel_path

– Migration information no longer appears in this book. Refer to LoadLeveler for

AIX 5L and Linux: Installation Guide, GI10-0763, for a list of supported

migration paths and procedures for migrating your system.

Summary of changes xvii

|
|
|

|
|
|

|

|

|
|

|
|
|

|

|
|
|

xviii LoadLeveler: Using and Administering

Part 1. Overview of LoadLeveler concepts and operation

Setting up LoadLeveler involves defining machines, users, jobs, and how they

interact, in such a way that LoadLeveler is able to run jobs quickly and efficiently.

If you are unfamiliar with the LoadLeveler product, consider reading one or more

of the introductory topics listed in Table 2.

 Table 2. Topics in the LoadLeveler overview

To learn about: Read the following:

LoadLeveler interfaces, operations, and

the lifecycle of a job

Chapter 1, “What is LoadLeveler?,” on page 3

Specific products and features that are

required for or available through the

LoadLeveler environment

Chapter 2, “What operating systems are supported

by LoadLeveler?,” on page 25

Once you have a basic understanding of the LoadLeveler product and its

interfaces, you can find more details in the topics listed in Table 3.

 Table 3. Major topics in LoadLeveler ″Using and Administering″

To learn about: Read the following:

Performing administrator tasks Part 2, “Configuring and managing the

LoadLeveler environment,” on page 29

Performing general user tasks Part 3, “Submitting and managing LoadLeveler

jobs,” on page 143

Using LoadLeveler interfaces Part 4, “LoadLeveler interfaces reference,” on page

209

 1

|
|
|
|

||

||

|
|
|

|
|
|

|
|

|

|
|

||

||

||
|

||
|

||
|
|

2 LoadLeveler: Using and Administering

Chapter 1. What is LoadLeveler?

LoadLeveler is a job management system that allows users to run more jobs in less

time by matching the jobs’ processing needs with the available resources.

LoadLeveler schedules jobs, and provides functions for building, submitting, and

processing jobs quickly and efficiently in a dynamic environment.

Figure 1 shows the different environments to which LoadLeveler can schedule jobs.

Together, these environments comprise the LoadLeveler cluster. An environment can

include heterogeneous clusters, dedicated nodes, and the RS/6000 SP.

 In addition, LoadLeveler can schedule jobs written for NQS to run on machines

outside of the LoadLeveler cluster. As Figure 1 also illustrates, a LoadLeveler

cluster can include submit-only machines, which allow users to have access to a

limited number of LoadLeveler features.

Throughout this book, the terms workstation, machine, node, and operating system

instance (OSI) refer to the machines in your cluster. In LoadLeveler, an OSI is

treated as a single instance of an operating system image.

LoadLeveler

IBM SP
IBM
IBM SP
IBM

NFS
AFS
DCE

NFS
AFS
DCE

NQS

IBM RS
System/6000

IBM RS
System/6000

Linux on pSeries
and xSeries
Linux on pSeries
and xSeries

Submit-Only MachinesSubmit-Only Machines

Figure 1. Example of a LoadLeveler configuration

 3

|

LoadLeveler basics

LoadLeveler has various types of interfaces that enable users to create and submit

jobs and allow system administrators to configure the system and control running

jobs. These interfaces include:

v Control files that define the elements, characteristics, and policies of LoadLeveler

and the jobs it manages. These files are the configuration file, the administration

file, and job command file.

v The command line interface, which gives you access to basic job and

administrative functions.

v A graphical user interface (GUI), which provides system access similar to the

command line interface. Experienced users and administrators may find the

command line interface more efficient than the GUI for job and administrative

functions.

v An application programming interface (API), which allows application programs

written by users and administrators to interact with the LoadLeveler

environment.

The commands, GUI, and APIs permit different levels of access to administrators

and users. User access is typically restricted to submitting and managing

individual jobs, while administrative access allows setting up system

configurations, job scheduling, and accounting.

Using either the command line or the GUI, users create job command files that

instruct the system on how to process information. Each job command file consists

of keywords followed by the user defined association for that keyword. For

example, the keyword executable tells LoadLeveler that you are about to define

the name of a program you want to run. Therefore, executable = longjob tells

LoadLeveler to run the program called longjob.

After creating the job command file, you invoke LoadLeveler commands to

monitor and control the job as it moves through the system. LoadLeveler monitors

each job as it moves through the system using process control daemons. However,

the administrator maintains ultimate control over all LoadLeveler jobs by defining

job classes that control how and when LoadLeveler will run a job.

In addition to setting up job classes, the administrator can also control how jobs

move through the system by specifying the type of scheduler. LoadLeveler has

several different scheduler options that start jobs using specific algorithms to

balance job priority with available machine resources.

When LoadLeveler administrators are configuring clusters and when users are

planning jobs, they need to be aware of the machine resources available in the

cluster. These resources include items like the number of CPUs and the amount of

memory available for each job. Because resource availability will vary over time,

LoadLeveler defines them as consumable resources.

LoadLeveler: A network job management and scheduling system

A network job management and job scheduling system, such as LoadLeveler, is a

software program that schedules and manages jobs that you submit to one or more

machines under its control. LoadLeveler accepts jobs that users submit and reviews

the job requirements. LoadLeveler then examines the machines under its control to

determine which machines are best suited to run each job.

LoadLeveler basics

4 LoadLeveler: Using and Administering

|

|
|
|

|

Job definition

LoadLeveler schedules your jobs on one or more machines for processing. The

definition of a job, in this context, is a set of job steps. For each job step, you can

specify a different executable (the executable is the part of the job that gets

processed). You can use LoadLeveler to submit jobs which are made up of one or

more job steps, where each job step depends upon the completion status of a

previous job step. For example, Figure 2 illustrates a stream of job steps:

 Each of these job steps is defined in a single job command file. A job command

file specifies the name of the job, as well as the job steps that you want to submit,

and can contain other LoadLeveler statements.

LoadLeveler tries to execute each of your job steps on a machine that has enough

resources to support executing and checkpointing each step. If your job command

file has multiple job steps, the job steps will not necessarily run on the same

machine, unless you explicitly request that they do.

You can submit batch jobs to LoadLeveler for scheduling. Batch jobs run in the

background and generally do not require any input from the user. Batch jobs can

either be serial or parallel. A serial job runs on a single machine. A parallel job is a

program designed to execute as a number of individual, but related, processes on

one or more of your system’s nodes. When executed, these related processes can

communicate with each other (through message passing or shared memory) to

exchange data or synchronize their execution.

For parallel jobs, LoadLeveler interacts with Parallel Operating Environment (POE)

to allocate nodes, assign tasks to nodes, and launch tasks.

Machine definition

For LoadLeveler to schedule a job on a machine, the machine must be a valid

member of the LoadLeveler cluster. A cluster is the combination of all of the

different types of machines that use LoadLeveler.

To make a machine a member of the LoadLeveler cluster, the administrator has to

install the LoadLeveler software onto the machine and identify the central manager

(described in “Roles of machines” on page 6). Once a machine becomes a valid

member of the cluster, LoadLeveler can schedule jobs to it.

Figure 2. LoadLeveler job steps

LoadLeveler basics

Chapter 1. What is LoadLeveler? 5

|

Roles of machines

Each machine in the LoadLeveler cluster performs one or more roles in scheduling

jobs. These roles are described below:

v Scheduling Machine: When a job is submitted, it gets placed in a queue

managed by a scheduling machine. This machine contacts another machine that

serves as the central manager for the entire LoadLeveler cluster. (This role is

described below). This scheduling machine asks the central manager to find a

machine that can run the job, and also keeps persistent information about the

job. Some scheduling machines are known as public scheduling machines, meaning

that any LoadLeveler user can access them. These machines schedule jobs

submitted from submit-only machines, which are described below.

v Central Manager Machine: The role of the Central Manager is to examine the

job’s requirements and find one or more machines in the LoadLeveler cluster

that will run the job. Once it finds the machine(s), it notifies the scheduling

machine.

v Executing Machine: The machine that runs the job is known as the executing

machine.

v Submitting Machine: This type of machine is known as a submit-only machine.

It participates in the LoadLeveler cluster on a limited basis. Although the name

implies that users of these machines can only submit jobs, they can also query

and cancel jobs. Users of these machines also have their own Graphical User

Interface (GUI) that provides them with the submit-only subset of functions. The

submit-only machine feature allows workstations that are not part of the

LoadLeveler cluster to submit jobs to the cluster.

Keep in mind that one machine can assume multiple roles.

Machine availability

There may be times when some of the machines in the LoadLeveler cluster are not

available to process jobs; for instance, when the owners of the machines have

decided to make them unavailable. This ability of LoadLeveler to allow users to

restrict the use of their machines provides flexibility and control over the resources.

Machine owners can make their personal workstations available to other

LoadLeveler users in several ways. For example, you can specify that:

v The machine will always be available

v The machine will be available only between certain hours

v The machine will be available when the keyboard and mouse are not being used

interactively.

Owners can also specify that their personal workstations never be made available

to other LoadLeveler users.

How LoadLeveler schedules jobs

When a user submits a job, LoadLeveler examines the job command file to

determine what resources the job will need. LoadLeveler determines which

machine, or group of machines, is best suited to provide these resources, then

LoadLeveler dispatches the job to the appropriate machines. To aid this process,

LoadLeveler uses queues. A job queue is a list of jobs that are waiting to be

processed. When a user submits a job to LoadLeveler, the job is entered into an

internal database– which resides on one of the machines in the LoadLeveler

cluster– until it is ready to be dispatched to run on another machine, as shown in

Figure 3 on page 7.

LoadLeveler basics

6 LoadLeveler: Using and Administering

Once LoadLeveler examines a job to determine its required resources, the job is

dispatched to a machine to be processed. Arrows 2 and 3 indicate that the job can

be dispatched to either one machine, or– in the case of parallel jobs– to multiple

machines. Once the job reaches the executing machine, the job runs.

Jobs do not necessarily get dispatched to machines in the cluster on a first-come,

first-serve basis. Instead, LoadLeveler examines the requirements and

characteristics of the job and the availability of machines, and then determines the

best time for the job to be dispatched.

LoadLeveler also uses job classes to schedule jobs to run on machines. A job class

is a classification to which a job can belong. For example, short running jobs may

belong to a job class called short_jobs. Similarly, jobs that are only allowed to run

on the weekends may belong to a class called weekend. The system administrator

can define these job classes and select the users that are authorized to submit jobs

of these classes.

You can specify which types of jobs will run on a machine by specifying the types

of job classes the machine will support. LoadLeveler also examines a job’s priority

to determine when to schedule the job on a machine. A priority of a job is used to

determine its position among a list of all jobs waiting to be dispatched.

How LoadLeveler daemons process jobs

LoadLeveler has its own set of daemons that control the processes moving jobs

through the LoadLeveler cluster. The LoadLeveler daemons are programs that run

continuously and control the processes that move jobs through the LoadLeveler

cluster. A master daemon (LoadL_master) runs on all machines in the LoadLeveler

cluster and manages other daemons.

Table 4 on page 8 summarizes these daemons, which are described in further detail

in topics immediately following the table.

Figure 3. Job queues

LoadLeveler scheduling

Chapter 1. What is LoadLeveler? 7

|

Table 4. LoadLeveler daemons

Daemon Description

LoadL_master Referred to as the master daemon. Runs on all machines in

the LoadLeveler cluster and manages other daemons.

LoadL_schedd Referred to as the schedd daemon. Receives jobs from the

llsubmit command and manages them on machines

selected by the negotiator daemon (as defined by the

administrator).

LoadL_startd Referred to as the startd daemon. Monitors job and

machine resources on local machines and forwards

information to the negotiator daemon.

The startd daemon spawns the starter process

(LoadL_starter) which manages running jobs on the

executing machine.

LoadL_negotiator Referred to as the negotiator daemon. Monitors the status

of each job and machine in the cluster. Responds to queries

from llstatus and llq commands. Runs on the central

manager machine.

LoadL_kbdd Referred to as the keyboard daemon. Monitors keyboard

and mouse activity.

LoadL_GSmonitor Referred to as the gsmonitor daemon. Monitors for down

machines based on the heartbeat responses of the

MACHINE_UPDATE_INTERVAL time period.

The master daemon

The master daemon runs on every machine in the LoadLeveler cluster, except the

submit-only machines. The real and effective user ID of this daemon must be root.

The master daemon determines whether to start any other daemons by checking

the START_DAEMONS keyword in the global or local configuration file. If the

keyword is set to true, the daemons are started. If the keyword is set to false, the

master daemon terminates and generates a message.

The master daemon will not start on a Linux machine if DCE_ENABLEMENT is

TRUE, SEC_ENABLEMENT is set to DCE or CTSEC, SCHEDULER_TYPE is set

to GANG, or NQS_DIR is specified. If the master daemon does not start, no other

daemons will start.

On the machine designated as the central manager, the master runs the negotiator

daemon. The master also controls the central manager backup function. The

negotiator runs on either the primary or an alternate central manager. If a central

manager failure is detected, one of the alternate central managers becomes the

primary central manager by starting the negotiator.

The master daemon starts and if necessary, restarts all the LoadLeveler daemons

that the machine it resides on is configured to run. As part of its startup procedure,

this daemon executes the .llrc file (a dummy file is provided in the bin

subdirectory of the release directory). You can use this script to customize your

local configuration file, specifying what particular data is stored locally. This

daemon also runs the kbdd daemon, which monitors keyboard and mouse activity.

When the master daemon detects a failure on one of the daemons that it is

monitoring, it attempts to restart it. Because this daemon recognizes that certain

LoadLeveler daemons

8 LoadLeveler: Using and Administering

situations may prevent a daemon from running, it limits its restart attempts to the

number defined for the RESTARTS_PER_HOUR keyword in the configuration file.

If this limit is exceeded, the master daemon forces all daemons including itself to

exit.

When a daemon must be restarted, the master sends mail to the administrators

identified by the LOADL_ADMIN keyword in the configuration file. The mail

contains the name of the failing daemon, its termination status, and a section of the

daemon’s most recent log file. If the master aborts after exceeding

RESTARTS_PER_HOUR, it will also send that mail before exiting.

The master daemon may perform the following actions in response to an llctl

command:

v Kill all daemons and exit

v Kill all daemons and execute a new master

v Rerun the .llrc file, reread the configuration files, stop or start daemons as

appropriate for the new configuration files

v Send drain request to startd and schedd

v Send flush request to startd and send result to caller

v Send suspend request to startd and send result to caller

v Send resume request to startd and schedd, and send result to caller

The schedd daemon

The schedd daemon receives jobs sent by the llsubmit command and manages

those jobs to machines selected by the negotiator daemon. The schedd daemon is

started, restarted, signalled, and stopped by the master daemon.

The schedd daemon can be in any one of the following activity states:

Available This machine is available to schedule jobs.

Drained The schedd machine accepts no more jobs. There are no jobs in

starting or running state. Jobs in the Idle state are drained,

meaning they will not get dispatched.

Draining The schedd daemon is being drained by the administrator but

some jobs are still running. The state of the machine remains

Draining until all running jobs complete. At that time, the machine

status changes to Drained.

Down The daemon is not running on this machine. The schedd daemon

enters this state when it has not reported its status to the

negotiator. This can occur when the machine is actually down, or

because there is a network failure.

The schedd daemon performs the following functions:

v Assigns new job ids when requested by the job submission process (for example,

by the llsubmit command).

v Receives new jobs from the llsubmit command. A new job is received as a job

object for each job step. A job object is the data structure in memory containing

all the information about a job step. The schedd forwards the job object to the

negotiator daemon as soon as it is received from the submit command.

v Maintains on disk copies of jobs submitted locally (on this machine) that are

either waiting or running on a remote (different) machine. The central manager

can use this information to reconstruct the job information in the event of a

failure. This information is also used for accounting purposes.

LoadLeveler daemons

Chapter 1. What is LoadLeveler? 9

v Responds to directives sent by the administrator through the negotiator daemon.

The directives include:

– Run a job.

– Change the priority of a job.

– Remove a job.

– Hold or release a job.

– Send information about all jobs.
v Sends job events to the negotiator daemon when:

– schedd is restarting.

– A new series of job objects are arriving.

– A job is started.

– A job was rejected, completed, removed, or vacated. schedd determines the

status by examining the exit status returned by the startd.
v Communicates with the Parallel Operating Environment (POE) when you run an

interactive POE job.

v Requests that a remote startd daemon end a job.

v Receives accounting information from startd.

The startd daemon

The startd daemon monitors jobs and machine resources on the local machine and

forwards this information to the negotiator daemon. The startd also receives and

executes job requests originating from remote machines. The master daemon starts,

restarts, signals, and stops the startd daemon.

Checkpoint/restart is not supported in LoadLeveler for Linux. If a checkpointed

job is sent to a Linux node, the Linux node will reject the job.

The startd daemon can be in any one of the following states:

Busy The maximum number of jobs are running on this machine as

specified by the MAX_STARTERS configuration keyword.

Down The daemon is not running on this machine. The startd daemon

enters this state when it has not reported its status to the

negotiator. This can occur when the machine is actually down, or

because there is a network failure.

Drained The startd machine will not accept any new jobs. No jobs are

running when startd is in the drained state.

Draining The startd daemon is being drained by the administrator, but some

jobs are still running. The machine remains in the draining state

until all of the running jobs have completed, at which time the

machine status changes to drained. The startd daemon will not

accept any new jobs while in the draining state.

Flush Any running jobs have been vacated (terminated and returned to

the queue to be redispatched). The startd daemon will not accept

any new jobs.

Idle The machine is not running any jobs.

None LoadLeveler is running on this machine, but no jobs can run here.

Running The machine is running one or more jobs and is capable of running

more.

LoadLeveler daemons

10 LoadLeveler: Using and Administering

Suspend All LoadLeveler jobs running on this machine are stopped (cease

processing), but remain in virtual memory. The startd daemon will

not accept any new jobs.

The startd daemon performs these functions:

v Runs a time-out procedure that includes building a snapshot of the state of the

machine that includes static and dynamic data. This time-out procedure is run at

the following times:

– After a job completes.

– According to the definition of the POLLING_FREQUENCY keyword in the

configuration file.
v Records the following information in LoadLeveler variables and sends the

information to the negotiator.

– State (of the startd daemon)

– EnteredCurrentState

– Memory

– Disk

– KeyboardIdle

– Cpus

– LoadAvg

– Machine

– Adapter

– AvailableClasses
v Calculates the SUSPEND, RESUME, CONTINUE, and VACATE expressions

through which you can manage job status.

v Receives job requests from the schedd daemon to:

– Start a job

– Preempt or resume a job

– Vacate a job

– Cancel
When the schedd daemon tells the startd daemon to start a job, the startd

determines whether its own state permits a new job to run:

 If: Then this happens:

Yes, it can start a new

job

The startd forks a starter process.

No, it cannot start a

new job

The startd rejects the request for one of the following reasons:

v Jobs have been suspended, flushed, or drained

v The job limit set for the MAX_STARTERS keyword has been

reached

v There are not enough classes available for the designated job class

v Receives requests from the master (through the llctl command) to do one of the

following:

– Drain

– Flush

– Suspend

– Resume
v For each request, startd marks its own new state, forwards its new state to the

negotiator daemon, and then performs the appropriate action for any jobs that

are active.

v Receives notification of keyboard and mouse activity from the kbdd daemon

LoadLeveler daemons

Chapter 1. What is LoadLeveler? 11

|

|

|

v Periodically examines the process table for LoadLeveler jobs and accumulates

resources consumed by those jobs. This resource data is used to determine if a

job has exceeded its job limit and for recording in the history file.

v Send accounting information to schedd.

The starter process

The startd daemon spawns a starter process after the schedd daemon tells the

startd daemon to start a job. The starter process manages all the processes

associated with a job step. The starter process is responsible for running the job

and reporting status back to the startd daemon.

The starter process performs these functions:

v Processes the prolog and epilog programs as defined by the JOB_PROLOG and

JOB_EPILOG keywords in the configuration file. The job will not run if the

prolog program exits with a return code other than zero.

v Handles authentication. This includes:

– Authenticates AFS, if necessary

– Verifies that the submitting user is not root

– Verifies that the submitting user has access to the appropriate directories in

the local file system.
v Runs the job by forking a child process that runs with the user ID and all

groups of the submitting user. That child process creates a new process group of

which it is the process group leader, and executes the user’s program or a shell.

The starter process is responsible for detecting the termination of any process

that it forks. To ensure that all processes associated with a job are terminated

after the process forked by the starter terminates, process tracking must be

enabled. To configure LoadLeveler for process tracking, see “Tracking job

processes” on page 64.

v Responds to vacate and suspend orders from the startd.

The negotiator daemon

The negotiator daemon maintains status of each job and machine in the cluster

and responds to queries from the llstatus and llq commands. The negotiator

daemon runs on a single machine in the cluster (the central manager machine).

This daemon is started, restarted, signalled, and stopped by the master daemon.

In a mixed cluster, the negotiator daemon must run on an AIX node.

The negotiator daemon receives status messages from each schedd and startd

daemon running in the cluster. The negotiator daemon tracks:

v Which schedd daemons are running

v Which startd daemons are running, and the status of each startd machine.

If the negotiator does not receive an update from any machine within the time

period defined by the MACHINE_UPDATE_INTERVAL keyword, then the

negotiator assumes that the machine is down, and therefore the schedd and startd

daemons are also down.

The negotiator also maintains in its memory several queues and tables which

determine where the job should run.

The negotiator performs the following functions:

v Receives and records job status changes from the schedd daemon.

LoadLeveler daemons

12 LoadLeveler: Using and Administering

|

|
|
|
|
|

v Schedules jobs based on a variety of scheduling criteria and policy options. Once

a job is selected, the negotiator contacts the schedd that originally created the

job.

v Handles requests to:

– Set priorities

– Query about jobs

– Remove a job

– Hold or release a job

– Favor or unfavor a user or a job.
v Receives notification of schedd resets indicating that a schedd has restarted.

The kbdd daemon

The kbdd daemon monitors keyboard and mouse activity. The kbdd daemon is

spawned by the master daemon if the X_RUNS_HERE keyword in the

configuration file is set to true.

The kbdd daemon notifies the startd daemon when it detects keyboard or mouse

activity; however, kbdd is not interrupt driven. It sleeps for the number of seconds

defined by the POLLING_FREQUENCY keyword in the LoadLeveler

configuration file, and then determines if X events, in the form of mouse or

keyboard activity, have occurred. For more information on the configuration file,

see Chapter 4, “Defining LoadLeveler resources to administer,” on page 77.

The gsmonitor daemon

The gsmonitor daemon is not available in LoadLeveler for Linux.

The negotiator daemon monitors for down machines based on the heartbeat

responses of the MACHINE_UPDATE_INTERVAL time period. If the negotiator

has not received an update after two MACHINE_UPDATE_INTERVAL periods,

then it marks the machine as down, and notifies the schedd to remove any jobs

running on that machine. The gsmonitor daemon (LoadL_GSmonitor) allows this

cleanup to occur more reliably. The gsmonitor daemon uses the Group Services

Application Programming Interface (GSAPI) to monitor machine availability on

PSSP and peer domains and notify the negotiator quickly when a machine is no

longer reachable.

If the GSMONITOR_DOMAIN keyword was not specified in the LoadLeveler

configuration file then LoadLeveler will try to determine if the machine is running

in a peer (cluster) domain or a PSSP domain. If the gsmonitor daemon is running

in an active peer domain then it will use the RMC API to determine the node

numbers and names of machines running in the cluster, otherwise it will assume it

is running in a PSSP domain and attempt to use the SDR access routines to gather

information. If the administrator restricted where the gsmonitor daemon can run

by specifying the GSMONITOR_DOMAIN as either PSSP or PEER, then the

daemon will start only if it is in a valid domain corresponding to what was

specified in the configuration file.

If the administrator sets up a LoadLeveler administration file that contains OSIs

spanning several PSSP or peer domains then a gsmonitor daemon must be started

in each domain. A gsmonitor daemon can monitor only the OSIs contained in the

domain within which it is running. The administrator specifies which OSIs run the

gsmonitor daemon by specifying GSMONITOR_RUNS_HERE=TRUE in the local

configuration file for that OSI. The default for GSMONITOR_RUNS_HERE is

False.

LoadLeveler daemons

Chapter 1. What is LoadLeveler? 13

The gsmonitor daemon should be run on one or two nodes in each domain (PSSP,

peer, or both). By running LoadL_GSmonitor on more than one node in a domain

you will have a backup in case one of the nodes that the monitor is running on

goes down. LoadL_GSmonitor subscribes to the Group Services system-defined

host membership group, which is represented by the

HA_GS_HOST_MEMBERSHIP Group Services keyword. This group monitors

every configured node in the system partition (when running in a PSSP domain)

and every node in the active peer domain.

Notes:

1. The Group Services routines need to be run as root, so the LoadL_GSmonitor

executable must be owned by root and have the setuid permission bit enabled.

2. It will not cause a problem to run more than one LoadL_GSmonitor daemon

per SP System Partition, this will just cause the negotiator to be notified by

each running daemon.

3. For more information about the Group Services subsystem, see PSSP:

Administration Guide, SA22-7348 for PSSP domains or RSCT Administration

Guide, SA22-7889 for PEER domains.

4. For more information about GSAPI, see Group Services Programming Guide and

Reference, SA22-7355.

The LoadLeveler job cycle

Figure 4 illustrates the information flow through the LoadLeveler cluster:

 The managing machine in a LoadLeveler cluster is known as the central manager.

There are also machines that act as schedulers, and machines that serve as the

executing machines. The arrows in Figure 4 illustrate the following:

v Arrow 1 indicates that a job has been submitted to LoadLeveler.

v Arrow 2 indicates that the scheduling machine contacts the central manager to

inform it that a job has been submitted, and to find out if a machine exists that

matches the job requirements.

Figure 4. High-level job flow

LoadLeveler daemons

14 LoadLeveler: Using and Administering

v Arrow 3 indicates that the central manager checks to determine if a machine

exists that is capable of running the job. Once a machine is found, the central

manager informs the scheduling machine which machine is available.

v Arrow 4 indicates that the scheduling machine contacts the executing machine

and provides it with information regarding the job.

Figure 4 on page 14 is broken down into the following more detailed diagrams

illustrating how LoadLeveler processes a job.

1. Submit a LoadLeveler job:

Figure 5 illustrates that the schedd daemon runs on the scheduling machine.

This machine can also have the startd daemon running on it. The negotiator

daemon resides on the central manager machine. The arrows in Figure 5

illustrate the following:

v Arrow 1 indicates that a job has been submitted to the scheduling machine.

v Arrow 2 indicates that the schedd daemon, on the scheduling machine, stores

all of the relevant job information on local disk.

v Arrow 3 indicates that the schedd daemon sends job description information

to the negotiator daemon.
2. Permit to run:

Figure 5. Job is submitted to LoadLeveler

LoadLeveler job cycle

Chapter 1. What is LoadLeveler? 15

In Figure 6, arrow 4 indicates that the negotiator daemon authorizes the schedd

daemon to begin taking steps to run the job. This authorization is called a

permit to run. Once this is done, the job is considered Pending or Starting. (See

“LoadLeveler job states” on page 18 for more information.)

3. Prepare to run:

In Figure 7, arrow 5 illustrates that the schedd daemon contacts the startd

daemon on the executing machine and requests that it start the job. The

executing machine can either be a local machine (the machine from which the

job was submitted) or a remote machine (another machine in the cluster).

4. Initiate job:

Figure 6. LoadLeveler authorizes the job

Figure 7. LoadLeveler prepares to run the job

LoadLeveler job cycle

16 LoadLeveler: Using and Administering

The arrows in Figure 8 illustrate the following:

v The two arrows numbered 6 indicate that the startd daemon on the

executing machine, spawns a starter process and awaits more work.

v The two arrows numbered 7 indicate that the schedd daemon sends the

starter process the job information and the executable.

v Arrow 8 indicates that the schedd daemon notifies the negotiator daemon

that the job has been started and the negotiator daemon marks the job as

Running. (See “LoadLeveler job states” on page 18 for more information.)
The starter forks and executes the user’s job, and the starter parent waits for

the child to complete.

5. Complete job:

Figure 8. LoadLeveler starts the job

Figure 9. LoadLeveler completes the job

LoadLeveler job cycle

Chapter 1. What is LoadLeveler? 17

The arrows in Figure 9 on page 17 illustrate the following:

v The arrows numbered 9 indicate that when the job completes, the starter

process notifies the startd daemon, and the startd daemon notifies the schedd

daemon.

v Arrow 10 indicates that the schedd daemon examines the information it has

received and forwards it to the negotiator daemon.

LoadLeveler job states

As LoadLeveler processes a job, the job moves through various states, which are

listed in Table 5. Job states that include “Pending,” such as Complete Pending and

Vacate Pending, are intermediate, temporary states.

Some options on LoadLeveler interfaces are valid only for jobs in certain states. For

example, the llmodify command has options that apply only to jobs that are in the

Idle state, or in states that are similar to it. To determine which job states are

similar to the Idle state, use the “Similar to...” column in Table 5, which indicates

whether a particular job state is similar to the Idle or the Running state. A dash

(—) indicates that the state is not similar to either Idle or Running state.

 Table 5. Job state descriptions and abbreviations

Job state Similar to

Idle or

Running

state?

Abbreviation

in displays /

output

Description

Canceled — CA The job was canceled either by a user or

by an administrator.

Checkpointing Running CK Indicates that a checkpoint has been

initiated.

Completed — C The job has completed.

Complete

Pending

— CP The job is in the process of being

completed.

Deferred Idle D The job will not be assigned to a machine

until a specified date. This date may have

been specified by the user in the job

command file, or may have been

generated by the negotiator because a

parallel job did not accumulate enough

machines to run the job. Only the

negotiator places a job in the Deferred

state.

Idle Idle I The job is being considered to run on a

machine, though no machine has been

selected.

Not Queued Idle NQ The job is not being considered to run on

a machine. A job can enter this state

because the associated schedd is down,

the user or group associated with the job

is at its maximum maxqueued or maxidle

value, or because the job has a

dependency which cannot be determined.

For more information on these keywords,

see “Controlling the mix of idle and

running jobs” on page 540. (Only the

negotiator places a job in the NotQueued

state.)

LoadLeveler job cycle

18 LoadLeveler: Using and Administering

|

|
|
|
|
|
|

Table 5. Job state descriptions and abbreviations (continued)

Job state Similar to

Idle or

Running

state?

Abbreviation

in displays /

output

Description

Not Run — NR The job will never be run because a

dependency associated with the job was

found to be false.

Pending Running P The job is in the process of starting on one

or more machines. (The negotiator

indicates this state until the schedd

acknowledges that it has received the

request to start the job. Then the

negotiator changes the state of the job to

Starting. The schedd indicates the Pending

state until all startd machines have

acknowledged receipt of the start request.

The schedd then changes the state of the

job to Starting.)

Preempted Running E The job is preempted. This state applies

only when LoadLeveler uses the suspend

method to preempt the job.

Preempt

Pending

Running EP The job is in the process of being

preempted. This state applies only when

LoadLeveler uses the suspend method to

preempt the job.

Rejected Idle X The job is rejected.

Reject Pending Idle XP The job did not start. Possible reasons

why a job is rejected are: job requirements

were not met on the target machine, or

the user ID of the person running the job

is not valid on the target machine. After a

job leaves the Reject Pending state, it is

moved into one of the following states:

Idle, User Hold, or Removed.

Removed — RM The job was stopped by LoadLeveler.

Remove

Pending

— RP The job is in the process of being

removed, but not all associated machines

have acknowledged the removal of the

job.

Resume Pending Running MP The job is in the process of being

resumed.

Running Running R The job is running: the job was dispatched

and has started on the designated

machine.

Starting Running ST The job is starting: the job was dispatched,

was received by the target machine, and

LoadLeveler is setting up the environment

in which to run the job. For a parallel job,

LoadLeveler sets up the environment on

all required nodes. See the description of

the “Pending” state for more information

on when the negotiator or the schedd

daemon moves a job into the Starting

state.

Job states

Chapter 1. What is LoadLeveler? 19

|
|
|

|
|
|

Table 5. Job state descriptions and abbreviations (continued)

Job state Similar to

Idle or

Running

state?

Abbreviation

in displays /

output

Description

System Hold Idle S The job has been put in system hold.

Terminated — TX If the negotiator and schedd daemons

experience communication problems, they

may be temporarily unable to exchange

information concerning the status of jobs

in the system. During this period of time,

some of the jobs may actually complete

and therefore be removed from the

schedd’s list of active jobs. When

communication resumes between the two

daemons, the negotiator will move such

jobs to the Terminated state, where they

will remain for a set period of time

(specified by the

NEGOTIATOR_REMOVE_COMPLETED

keyword in the configuration file). When

this time has passed, the negotiator will

remove the jobs from its active list.

User & System

Hold

Idle HS The job has been put in both system hold

and user hold.

User Hold Idle H The job has been put in user hold.

Vacated Idle V The job started but did not complete. The

negotiator will reschedule the job

(provided the job is allowed to be

rescheduled). Possible reasons why a job

moves to the Vacated state are: the

machine where the job was running was

flushed, the VACATE expression in the

configuration file evaluated to True, or

LoadLeveler detected a condition

indicating the job needed to be vacated.

For more information on the VACATE

expression, see “Managing job status

through control expressions” on page 62.

Vacate Pending Idle VP The job is in the process of being vacated.

Consumable resources

Consumable resources are assets available on machines in your LoadLeveler

cluster. They are called ″resources″ because they model the commodities or services

available on machines (including CPUs, real memory, virtual memory, software

licenses, disk space). They are considered ″consumable″ because job steps use

specified amounts of these commodities when the step is running. Once the step

finishes, the resource becomes available for another job step.

Consumable resources which model the characteristics of a specific machine (such

as the number of CPUs or the number of specific software licenses available only

on that machine) are called machine resources. Consumable resources which model

resources that are available across the LoadLeveler cluster (such as floating

software licenses) are called floating resources. For example, consider a

Job states

20 LoadLeveler: Using and Administering

configuration with 10 licenses for a given program (which can be used on any

machine in the cluster). If these licenses are defined as floating resources, all 10 can

be used on one machine, or they can be spread across as many as 10 different

machines.

The LoadLeveler administrator can specify:

v Consumable resources to be considered by LoadLeveler’s scheduling algorithms

v Quantity of resources available on specific machines

v Quantity of floating resources available on machines in the cluster

v Consumable resources to be considered in determining the priority of executing

machines

v Default amount of resources consumed by a job step of a specified job class

v Whether CPU and real memory resources should be enforced using AIX WLM

v Whether all jobs submitted need to specify resources

Users submitting jobs can specify the resources consumed by each task of a job

step.

Notes:

1. When software licenses are used as a consumable resource, LoadLeveler does

not attempt to obtain software licenses or to verify that software licenses have

been obtained. However, by providing a user exit that can be invoked as a

submit filter, the LoadLeveler administrator can provide code to first obtain the

required license and then allow the job step to run. For more information on

filtering job scripts, see “Filtering a job script” on page 70.

2. LoadLeveler scheduling algorithms use the availability of requested

consumable resources to determine the machine or machines on which a job

will run. Consumable resources (except for CPU and real memory) are used

only for scheduling purposes and are not enforced. Instead, LoadLeveler’s

negotiator daemon keeps track of the consumable resources available by

reducing them by the amount requested when a job step is scheduled, and

increasing them when a consuming job step completes.

3. If a job is preempted, the job continues to use all consumable resources except

for ConsumableCpus and ConsumableMemory (real memory) which are made

available to other jobs.

Consumable resources and AIX Workload Manager

If the administrator has indicated that resources should be enforced, LoadLeveler

uses AIX Workload Manager (WLM) to give greater control over CPU and real

memory resource allocation. WLM monitors system resources and regulates their

allocation to processes running on AIX. These actions prevent jobs from interfering

with each other when they have conflicting resource requirements. WLM achieves

this control by creating different classes of service and allowing attributes to be

specified for those classes.

LoadLeveler dynamically generates WLM classes with specific resource

entitlements. A single WLM class is created for each job step and the process id of

that job step is assigned to that class. This is done for each node that a job step is

assigned to execute on. LoadLeveler then defines resource shares or limits for that

class depending on the LoadLeveler enforcement policy defined. These resource

shares or limits represent the job’s requested resource usage in relation to the

amount of resources available on the machine.

When the enforcement policy is shares, LoadLeveler assigns a share value to the

class based on the resources requested for the job step (one unit of resource equals

Consumable resources

Chapter 1. What is LoadLeveler? 21

one share). When the job step process is executing, AIX WLM dynamically

calculates a desired resource entitlement based on the WLM class share value of

the job step and the total number of shares requested by all active WLM classes. It

is important to note that AIX WLM will only enforce these target percentages

when the resource is under contention.

When the enforcement policy is limits (soft or hard), LoadLeveler assigns a

percentage value to the class based on the resources requested for the job step and

the total machine resources. This resource percentage is enforced regardless of any

other active WLM classes. A soft limit indicates the maximum amount of the

resource that can be made available when there is contention for the resources.

This maximum can be exceeded if no one else requires the resource. A hard limit

indicates the maximum amount of the resource that can be made available even if

there is no contention for the resources.

Note: A WLM class is active for the duration of a job step’s execution and is

deleted when the job step completes. There is a limit of 27 active WLM

classes per machine. Therefore, when resources are being enforced, only 27

job steps can be executing on one machine.

For more information on integrating LoadLeveler with AIX Workload Manager, see

“Steps for integrating LoadLeveler with AIX Workload Manager” on page 123.

Overview of reservations

Under the backfill scheduler only, LoadLeveler allows authorized users to make

reservations, which specify a time period during which specific node resources are

reserved for exclusive use by particular users or groups. This capability is known

in the computing industry as advance reservation. Normally, jobs wait to be

dispatched until the resources they require become available. Through the use of

reservations, wait time can be reduced because the jobs have exclusive use of the

node resources (CPUs, memory, disk drives, communication adapters, and so on)

as soon as the reservation period begins.

In addition to reducing wait time, reservations also are useful for:

v Running a workload that needs to start or finish at a particular time. The job

steps must be associated with, or bound to, the reservation before LoadLeveler

can run them during the reservation period.

v Setting aside a set of nodes for maintenance purposes. In this case, job steps are

not bound to the reservation.

Only bound job steps may run on the reserved nodes, which means that a bound

job step competes for reserved resources only with other job steps that are bound

to the same reservation.

The following sequence of events describes, in general terms, how you can set up

and use reservations in the LoadLeveler environment. It also describes how

LoadLeveler manages activities related to the use of reservations.

1. Configuring LoadLeveler to support reservations

An administrator uses specific keywords in the configuration and

administration files to define general reservation policies. These keywords

include:

v max_reservations, which defines both:

Consumable resources

22 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

– The users or groups that will be allowed to create reservations. To be

authorized to create reservations, LoadLeveler administrators also must

have the max_reservations keyword set in their own user or group

stanzas.

– How many reservations users may own.
v max_reservation_duration, which defines the maximum duration for

reservations.

v reservation_permitted, which defines the nodes that may be used for

reservations.

Administrators also may configure LoadLeveler to collect accounting data

about reservations when the reservations complete or are canceled.

2. Creating reservations

After LoadLeveler is configured for reservations, an administrator or

authorized user may create specific reservations, defining reservation attributes

that include:

v The start time and the duration of the reservation. The start and end times

for a reservation are based on the time-of-day (TOD) clock on the central

manager machine.

v The nodes to be reserved. Until the reservation period actually begins, the

selected nodes are available to run any jobs; when the reservation starts, only

jobs bound to the reservation may run on the reserved nodes.

v The users or groups that may use the reservation.

LoadLeveler assigns a unique ID to the reservation, and returns that ID to the

owner.

After the reservation is successfully created:

v Reservation owners may:

– Modify, query, and cancel their reservations.

– Allow other LoadLeveler users or groups to submit jobs to run during a

reservation period.

– Submit jobs to run during a reservation period.
v Users or groups that are allowed to use the reservation also may query

reservations, and submit jobs to run during a reservation period. To run jobs

during a reservation period, users must bind job steps to the reservation. You

may bind both batch and interactive POE job steps to a reservation.
3. Preparing for the start of a reservation

During the preparation time for a reservation, LoadLeveler:

v Preempts any jobs that are still running on the reserved nodes.

v Checks the condition of reserved nodes, and notifies the reservation owner

and LoadLeveler administrators by e-mail of any situations that might

require the reservation owner or an administrator to take corrective action.

Such conditions include:

– Reserved nodes that are down, suspended, no longer in the LoadLeveler

cluster, or otherwise unavailable for use.

– Non-preemptable job steps that cannot finish running before the

reservation start time.

During this time, reservation owners may modify, cancel, and add users or

groups to their reservations. Owners and users or groups that are allowed to

use the reservation may query the reservation or bind job steps to it.

4. Starting the reservation

When the reservation period begins, LoadLeveler dispatches job steps that are

bound to the reservation.

Overview of reservations

Chapter 1. What is LoadLeveler? 23

|
|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

After the reservation period begins, reservation owners may modify, cancel,

and add users or groups to their reservations. Owners and users or groups that

are allowed to use the reservation may query the reservation or bind job steps

to it.

During the reservation period, LoadLeveler ignores system preemption rules

for bound job steps; however, LoadLeveler administrators may use the

llpreempt command to manually preempt bound job steps.

When the reservation ends or is canceled:

v LoadLeveler unbinds all job steps from the reservation. At this point, the

unbound job steps compete with all other LoadLeveler jobs for available

resources.

v If accounting data is being collected for the reservation, LoadLeveler also

updates the reservation history file.

For more detailed information and instructions for setting up and using

reservations, see:

v “Configuring LoadLeveler to support reservations” on page 117.

v “Working with reservations” on page 171.

Overview of reservations

24 LoadLeveler: Using and Administering

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

Chapter 2. What operating systems are supported by

LoadLeveler?

LoadLeveler supports two operating systems:

v AIX 5L

IBM’s AIX 5L is an open UNIX operating environment that conforms to The

Open Group UNIX 98 Base Brand industry standard. It provides high levels of

integration, flexibility, and reliability and operates on IBM Eserver pSeries®, IBM

Eserver Cluster 1600, and IBM RS/6000 servers and workstations.

AIX 5L supports the concurrent operation of 32- and 64-bit applications, with

key internet technologies such as Java™ and XML parser for Java included as

part of the base operating system.

A strong affinity between AIX and Linux permits popular applications

developed on Linux to run on AIX 5L with a simple recompilation.

v Linux

LoadLeveler supports the following distributions of Linux:

– Red Hat® Enterprise Linux (RHEL) 3 and RHEL 4 on IA-32 xSeries servers

– RHEL 3 and RHEL 4 for IBM Eserver 325 and 326 servers with 64-bit AMD

Opteron processors

– RHEL 4 on IBM POWER™ servers

– SUSE LINUX Enterprise Server (SLES) 9 on IA-32 xSeries servers

– SLES 9 on POWER servers

– SLES 9 on IBM Eserver 325 and 326 servers with 64-bit AMD Opteron

processors

AIX and Linux compatibility

LoadLeveler 3.3 for Linux is compatible with LoadLeveler 3.3 for AIX. Its

command line interfaces, graphical user interfaces, and application programming

interfaces (APIs) are the same as they have been for AIX. The formats of the job

command file, configuration file, and administration file also remain the same.

System administrators can set up and maintain a LoadLeveler cluster consisting of

some machines running LoadLeveler for AIX and some machines running

LoadLeveler for Linux. This is called a mixed cluster. In this mixed cluster jobs can

be submitted from either AIX or Linux machines. Jobs submitted to a Linux job

queue can be dispatched to an AIX machine for execution, and jobs submitted to

an AIX job queue can be dispatched to a Linux machine for execution.

Although the LoadLeveler products for AIX and Linux are compatible, they do

have some differences in the level of support for specific features. For further

details, see the following topics:

v “Restrictions for LoadLeveler for Linux” on page 26.

v “Features not supported in Linux” on page 26.

v “Restrictions for LoadLeveler AIX and Linux mixed clusters” on page 27.

 25

|

|
|

|

|

|

|

|

|

|
|
|
|
|
|

Restrictions for LoadLeveler for Linux

LoadLeveler for Linux supports a subset of the features that are available in the

LoadLeveler for AIX product. The following features are available, but are subject

to restrictions:

v 32-bit applications using the LoadLeveler APIs

LoadLeveler for Linux supports only the 32-bit LoadLeveler API library

(libllapi.so) on the following platforms:

– RHEL 3 and RHEL 4 on IA-32 xSeries servers

– SLES 9 on IA-32 xSeries servers

Applications linked to the LoadLeveler APIs on these platforms must be 32-bit

applications.

v 64–bit applications using the LoadLeveler APIs

LoadLeveler for Linux supports only the 64-bit LoadLeveler API library

(libllapi.so) on the following platforms:

– RHEL 3 and RHEL 4 on Eserver 325 and 326 with 64-bit AMD Opteron

processors

– RHEL 4 on POWER servers

– SLES 9 on Eserver 325 and 326 with 64-bit AMD Opteron processors

– SLES 9 on POWER servers

Applications linked to the LoadLeveler APIs on these platforms must be 64-bit

applications.

v Support for AFS file systems

LoadLeveler for Linux support for authenticated access to AFS file systems is

limited to RHEL 3 on xSeries servers and IBM Eserver 325 and 326 with 64-bit

AMD Opteron processors. It is not available on systems running SLES 9 or

RHEL 4.

v Support for preempting jobs under the backfill scheduler

LoadLeveler for Linux support for backfill preemption is limited. In LoadLeveler

for AIX, you may use several methods for preempting jobs under the backfill

scheduler; LoadLeveler for Linux supports all of these methods except for one:

suspend. If you request preemption through the suspend method on

LoadLeveler for Linux, preemption will not occur.

Features not supported in Linux

LoadLeveler 3.3 for Linux supports a subset of the features that are available in the

LoadLeveler 3.3 for AIX product. The following features are not supported:

v Checkpoint/restart

LoadLeveler for AIX uses a number of features that are specific to the AIX

kernel to provide support for checkpoint/restart of user applications running

under LoadLeveler. Checkpoint/restart is not available in this release of

LoadLeveler for Linux.

v Process tracking

On AIX, the process tracking feature is implemented as a kernel extension. Using

this feature, LoadLeveler for AIX is able to ensure that when a job managed by

LoadLeveler has terminated no processes or threads associated with this job are

left behind and continue to consume or hold resources. Process tracking is not

supported in this release of LoadLeveler for Linux.

v Gang scheduler

Gang scheduling is not supported by LoadLeveler for Linux.

v AIX Workload management (WLM)

Supported operating systems

26 LoadLeveler: Using and Administering

|

|
|

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|
|

|

|
|
|
|
|

|
|

|

WLM can strictly control use of system resources. LoadLeveler for AIX uses

WLM to enforce the use of a number of consumable resources defined by

LoadLeveler (such as ConsumableCpus and ConsumableMemory). This

enforcement of consumable resources usage through WLM is not available in

this release of LoadLeveler for Linux.

v CtSec and DCE security

LoadLeveler for AIX can exploit CtSec (Cluster Security Services) or DCE

(Distributed Computing Environment) security functions. These functions

authenticate the identity of users and programs interacting with LoadLeveler.

These features are not available in this release of LoadLeveler for Linux.

v Parallel environment (PE) and Parallel operating environment (POE)

The Parallel Environment for AIX product supports the execution and

management of parallel applications. Its major components are:

1. The Parallel Operating Environment (POE) package for submitting and

managing jobs

2. A message passing library (MPI) for communication among the tasks that

make up a parallel program

3. Parallel Environment (PE) utilities

Support for PE and POE is not be available in this release of LoadLeveler for

Linux.

v Network queuing system (NQS)

LoadLeveler for AIX is compatible with Cosmic Network Queuing System

(NQS) version 2.0 and NQS systems that have similar interfaces. NQS scripts can

be submitted to LoadLeveler for execution. Alternatively, LoadLeveler for can be

used to route NQS jobs to an NQS cluster that is external to the LoadLeveler

cluster. NQS is not supported by this release of LoadLeveler for Linux.

v LoadL_GSmonitor daemon

The LoadL_GSmonitor daemon in the LoadLeveler for AIX product uses the

Group Services Application Programming Interface (GSAPI) to monitor machine

availability and notify the LoadLeveler Central Manager when a machine is no

longer reachable. This daemon is not available in the LoadLeveler for Linux

product.

v Task guide tool

v Dynamic adapter setup

LoadLeveler for AIX can be configured to dynamically determine adapter

characteristics, including those associated with the Switch Network Interface for

the IBM Eserver pSeries High Performance Switch. This feature is not supported

by LoadLeveler for Linux.

v System error log

Each LoadLeveler daemon has its own log file where information relevant to its

operation is recorded. In addition to this feature which exists on all platforms,

LoadLeveler for AIX also uses the errlog function to record critical LoadLeveler

events into the AIX system log. Support for an equivalent Linux function is not

available in this release.

Restrictions for LoadLeveler AIX and Linux mixed clusters

When operating a LoadLeveler cluster that contains AIX 5L and Linux machines,

the following restrictions apply:

v Nodes running LoadLeveler for AIX 3.3 must be at 3.3.0.1 or later.

Supported operating systems

Chapter 2. What operating systems are supported by LoadLeveler? 27

|

v All nodes in a mixed LoadLeveler cluster must run LoadLeveler version 3.2 or

later.

v The Central Manager LoadL_negotiator daemon must run on an AIX node.

v The Central Manager node must run a version of LoadLeveler equal to or higher

than any LoadLeveler version being run on a node in the cluster.

v DCE or CtSec security features cannot be used.

v NQS cannot be used.

v GANG scheduling cannot be used.

v AIX jobs that use checkpointing must be sent to AIX nodes for execution. This

can be done by either defining and specifying job checkpointing for job classes

that exist only on AIX nodes or by coding appropriate requirements expressions.

Checkpointing jobs that are sent to a Linux node will be rejected by the

LoadL_startd daemon running on the Linux node.

v POE jobs must be sent to AIX nodes only.

v WLM and Process tracking are supported in a mixed cluster. However,

enforcement of the use of consumable resources will occur through WLM on

AIX nodes only. Similarly, the functions associated with Process Tracking are

effective only on AIX nodes.

v For the backfill scheduler, LoadLeveler for Linux does not support preempting

jobs through the suspend method. In a mixed cluster, if you request preemption

through the suspend method, the specified jobs running under AIX will be

preempted, but those jobs running on Linux nodes will not be preempted.

Supported operating systems

28 LoadLeveler: Using and Administering

|
|
|
|

Part 2. Configuring and managing the LoadLeveler

environment

After installing LoadLeveler, you may customize it by modifying both the

configuration file and the administration file. The configuration file contains many

parameters that you can set or modify that will control how LoadLeveler operates.

The administration file optionally lists and defines the machines in the

LoadLeveler cluster and the characteristics of classes, users, and groups.

To easily manage LoadLeveler, you should have one global configuration file and

only one administration file, both centrally located on a machine in the

LoadLeveler cluster. Every other machine in the cluster must be able to read the

configuration and administration file that are located on the central machine.

You may have multiple local configuration files that specify information specific to

individual machines.

LoadLeveler does not prevent you from having multiple copies of administration

files, but you need to be sure to update all the copies whenever you make a

change to one. Having only one administration file prevents any confusion.

Table 6 identifies where you can find more information about using configuration

and administration files to modify the LoadLeveler environment.

 Table 6. Roadmap of tasks for LoadLeveler administrators

To learn about: Read the following:

Controlling how LoadLeveler operates

by customizing the global or local

configuration file

Chapter 3, “Configuring the LoadLeveler

environment,” on page 31

Controlling LoadLeveler resources by

customizing an administration file

Chapter 4, “Defining LoadLeveler resources to

administer,” on page 77

Additional ways to modify LoadLeveler

that require customization of both the

configuration and administration files

Chapter 5, “Performing additional administrator

tasks,” on page 91

Ways to control or monitor LoadLeveler

operations by using the LoadLeveler

commands, GUI, and APIs

v Chapter 15, “Commands,” on page 335

v Chapter 6, “Using LoadLeveler’s GUI to

perform administrator tasks,” on page 135

v Chapter 16, “Application programming

interfaces (APIs),” on page 437

 29

|
|

||

||

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

|
|
|

30 LoadLeveler: Using and Administering

Chapter 3. Configuring the LoadLeveler environment

One of your main tasks as system administrator is to configure LoadLeveler. To

configure LoadLeveler, you need to know what the configuration information is

and where it is located. Configuration information includes the following:

v The LoadLeveler user ID and group ID

v The configuration directory

v The global configuration file

Configuring LoadLeveler involves modifying the configuration files that specify

the terms under which LoadLeveler can use machines. There are two types of

configuration files:

v Global Configuration File: This file by default is called the LoadL_config file and it

contains configuration information common to all nodes in the LoadLeveler

cluster.

v Local Configuration File: This file is generally called LoadL_config.local (although

it is possible for you to rename it). This file contains specific configuration

information for an individual node. The LoadL_config.local file is in the same

format as LoadL_config and the information in this file overrides any

information specified in LoadL_config. It is an optional file that you use to

modify information on a local machine. Its full pathname is specified in the

LoadL_config file by using the LOCAL_CONFIG keyword. See “Specifying file

and directory locations” on page 38 for more information.

You can run your installation with default values set by LoadLeveler, or you can

change any or all of them. Table 7 lists topics that discuss how you may configure

the LoadLeveler environment by modifying the configuration file.

 Table 7. Roadmap of administrator tasks related to using or modifying the LoadLeveler

configuration file

To learn about: Read the following:

Using the default

configuration files shipped

with LoadLeveler

“Getting a quick start using the default configuration” on

page 32

Modifying the global and

local configuration files

“Modifying a configuration file” on page 33

Defining major elements of

the LoadLeveler configuration

v “Defining LoadLeveler administrators” on page 34

v “Defining a LoadLeveler cluster” on page 34

v “Defining LoadLeveler machine characteristics” on page

44

v “Defining security mechanisms” on page 45

v “Defining usage policies for consumable resources” on

page 56

Enabling optional

LoadLeveler functions

v “Enabling support for bulk data transfer” on page 56

v “Gathering job accounting data” on page 57

v “Managing job status through control expressions” on

page 62

v “Tracking job processes” on page 64

v “Querying multiple LoadLeveler clusters” on page 65

 31

|
|

||
|

||

|
|
|

|
|

|
|
|

|
|
|

|

|
|

|

|
|

|
|
|

|

|
|

|

|

Table 7. Roadmap of administrator tasks related to using or modifying the LoadLeveler

configuration file (continued)

To learn about: Read the following:

Modifying LoadLeveler

operations through user exits

“Providing additional job-processing controls through user

exits” on page 66

Getting a quick start using the default configuration

If you are very familiar with UNIX system administration and job scheduling,

follow the steps listed in this section to get LoadLeveler up and running on your

network quickly in a default configuration. This default configuration will merely

enable you to submit serial jobs; for a more complex setup, you will have to

consult the rest of this manual. This section also does not address how to configure

DCE or Cluster Security Services. For more information about configuring security

services for LoadLeveler, see “Defining security mechanisms” on page 45. For this

set up, it is recommended that you use loadl as the LoadLeveler user ID.

Afterward, you can fine tune your configuration for greater efficiency when you

become more familiar with the details of LoadLeveler.

LoadLeveler sets up the following default values for the configuration information:

v loadl is the LoadLeveler user ID and the LoadLeveler group ID. LoadLeveler

daemons run under this user ID to perform file I/O, and many LoadLeveler files

are owned by this user ID.

v The home directory of loadl is the configuration directory.

v LoadL_config is the name of the configuration file.

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Perform the following steps to use the default configuration files:

1. Ensure that the installation procedure has completed successfully and that the

configuration file, LoadL_config, exists in LoadLeveler’s home directory or in

the directory specified in /etc/LoadL.cfg (if this file exists).

2. Identify yourself as the LoadLeveler administrator in the LoadL_config file

using the LOADL_ADMIN keyword. The syntax of this keyword is:

LOADL_ADMIN = list of user names (required)

Where list of user names is a blank-delimited list of those individuals who

will have administrative authority.

Refer to “Defining LoadLeveler administrators” on page 34 for more

information.

3. Define a machine to act as the LoadLeveler central manager by coding one

machine stanza as follows in the administration file, which is called

LoadL_admin. (Replace machinename with the actual name of the machine.)

machinename: type = machine

central_manager = true

Do not specify more than one machine as the central manager. Also, if during

installation, you ran llinit with the -cm flag, the central manager is already

defined in the LoadL_admin file because the llinit command takes parameters

Customizing the configuration file

32 LoadLeveler: Using and Administering

|
|

||

|
|
|
|
|

|
|

|

you entered and updates the administration and configuration files. See

“Defining machines” on page 78 for more information.

4. Issue the following command for each machine to be included in the

LoadLeveler cluster. (Replace hostname with the actual name of the machine.)

llctl -h hostname start

Issue this command for the central manager machine first. See “llctl - Control

LoadLeveler daemons” on page 353 for more information.

You can also issue the following command to start LoadLeveler on all

machines, except submit-only machines, listed in the administration file. The

central manager machine is the first started, followed by other machines in the

order listed in the administration file.

llctl -g start

llctl uses rsh or remsh to start LoadLeveler on the target machine. Therefore,

the administrator using llctl must have rsh authority on the target machine.

LoadLeveler will fail to start if any value has been set for the MALLOCTYPE

environment variable.

Modifying a configuration file

By taking a look at the configuration files that come with LoadLeveler, you will

find that there are many parameters that you can set. In most cases, you will only

have to modify a few of these parameters. In some cases, though, depending upon

the LoadLeveler nodes, network connection, and hardware availability, you may

need to modify additional parameters.

All LoadLeveler commands, daemons, and processes read the administration and

configuration files at start up time. If you change the administration or

configuration files after LoadLeveler has already started, any LoadLeveler

command or process, such as the LoadL_starter process, will read the newer

version of the files while the running daemons will continue to use the data from

the older version. To ensure that all LoadLeveler commands, daemons, and

processes use the same configuration data, run the reconfiguration command on all

machines in the cluster each time the administration or configuration files are

changed.

To override the defaults, you must update the following keywords in the

/etc/LoadL.cfg file:

LoadLUserid

Specifies the LoadLeveler user ID.

LoadLGroupid

Specifies the LoadLeveler group ID.

LoadLConfig

Specifies the full path name of the configuration file.

Note that if you change the LoadLeveler user ID to something other than loadl,

you will have to make sure your configuration files are owned by this ID.

If Cluster Security (CtSec) services is enabled, make sure you update the unix.map

file if the LoadLUserid is specified as something other than loadl. Refer to “Steps

for enabling CtSec services” on page 53 for more details.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 33

|

You can also override the /etc/LoadL.cfg file. For an example of when you might

want to do this, see “Querying multiple LoadLeveler clusters” on page 65.

Before you modify a configuration file, you need to:

v Ensure that the installation procedure has completed successfully and that the

configuration file, LoadL_config, exists in LoadLeveler’s home directory or in

the directory specified in /etc/LoadL.cfg. For additional details about installation,

see LoadLeveler Installation Guide.

v Know how to correctly specify keywords in the configuration file. For

information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

v Identify yourself as the LoadLeveler administrator using the LOADL_ADMIN

keyword.

After you finish modifying the configuration file, notify LoadLeveler daemons by

issuing the llctl command with either the reconfig or recycle keyword. Otherwise,

LoadLeveler will not process the modifications you made to the configuration file.

Defining LoadLeveler administrators

Specify the LOADL_ADMIN keyword with a list of user names of those

individuals who will have administrative authority. These users are able to invoke

the administrator-only commands such as llctl, llfavorjob, and llfavoruser. These

administrators can also invoke the administrator-only GUI functions. For more

information, see Chapter 6, “Using LoadLeveler’s GUI to perform administrator

tasks,” on page 135.

LoadLeveler administrators on this list also receive mail describing problems that

are encountered by the master daemon. When DCE or CtSec are enabled, the

LOADL_ADMIN list is used only as a mailing list. For more information, see

“Defining security mechanisms” on page 45.

An administrator on a machine is granted administrative privileges on that

machine. It does not grant him administrative privileges on other machines. To be

an administrator on all machines in the LoadLeveler cluster, either specify your

user ID in the global configuration file with no entries in the local configuration

file, or specify your user ID in every local configuration file that exists in the

LoadLeveler cluster.

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Defining a LoadLeveler cluster

Table 8 lists the topics that discuss how you may define the characteristics of the

LoadLeveler cluster.

 Table 8. Roadmap for defining LoadLeveler cluster characteristics

To learn about: Read the following:

Defining characteristics of

specific LoadLeveler daemons

v “Choosing a scheduler” on page 35

v “Setting negotiator characteristics and policies” on page

36

v “Specifying alternate central managers” on page 37

Customizing the configuration file

34 LoadLeveler: Using and Administering

|

|

|

|

|
|

|
|

||

||

|
|
|

|
|

|

Table 8. Roadmap for defining LoadLeveler cluster characteristics (continued)

To learn about: Read the following:

Defining other cluster

characteristics

v “Defining network characteristics” on page 38

v “Specifying file and directory locations” on page 38

v “Configuring recording activity and log files” on page

40

v “Setting up file system monitoring” on page 43

Correctly specifying

configuration file keywords

Chapter 11, “Configuration file reference,” on page 211

Working with daemons and

machines in a LoadLeveler

cluster

v “llctl - Control LoadLeveler daemons” on page 353

v “llinit - Initialize machines in the LoadLeveler cluster”

on page 374

Choosing a scheduler

This section discusses the types of schedulers available, which you may specify

using the configuration file keyword SCHEDULER_TYPE. For information about

configuration file keyword syntax and other details, see Chapter 11, “Configuration

file reference,” on page 211.

LL_DEFAULT This scheduler runs both serial and parallel jobs, but is primarily

meant for serial jobs. It efficiently uses CPU time by scheduling

jobs on what otherwise would be idle nodes (and workstations). It

does not require that users set a wall clock limit. Also, this

scheduler starts, suspends, and resumes jobs based on workload.

The default scheduler uses a reservation method to schedule

parallel jobs. A possible drawback to the reservation method occurs

when LoadLeveler tries to schedule a job requiring a large number

of nodes. As LoadLeveler reserves nodes for the job, the reserved

nodes will be idle for a period of time. Also, if the job cannot

accumulate all the nodes it needs to run, the job may not get

dispatched.

 See “Scheduler support for parallel jobs” on page 157 for

information on which keywords associated with parallel jobs are

supported by the default scheduler.

BACKFILL This scheduler runs both serial and parallel jobs, but is primarily

meant for parallel jobs. The objective of backfill scheduling is to

maximize the use of resources to achieve the highest system

efficiency, while preventing potentially excessive delays in starting

jobs with large resource requirements. These large jobs can run

because the backfill scheduler does not allow jobs with smaller

resource requirements to continuously use up resource before the

larger jobs can accumulate enough resource to run.

 The backfill scheduler supports:

v The scheduling of multiple tasks per node.

v The scheduling of multiple user space tasks per adapter.

v The preemption of jobs.

v The use of reservations.

The above functions are not supported by the default LoadLeveler

scheduler.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 35

|

||

|
|
|

|

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|

For more information about the backfill scheduler, see “Using the

backfill scheduler” on page 96.

GANG

 For more information on setting up Gang scheduling, see “Using

the gang scheduler” on page 97.

API This keyword option allows you to enable an external scheduler,

such as the Extensible Argonne Scheduling sYstem (EASY). The

API option is intended for installations that want to create a

scheduling algorithm for parallel jobs based on site-specific

requirements.

 For more information about external schedulers, see “Using an

external scheduler” on page 101.

Setting negotiator characteristics and policies

You may set the following negotiator characteristics and policies. For information

about configuration file keyword syntax and other details, see Chapter 11,

“Configuration file reference,” on page 211.

v Prioritize the queue maintained by the negotiator

Each job step submitted to LoadLeveler is assigned a system priority number,

based on the evaluation of the SYSPRIO keyword expression in the

configuration file of the central manager. The LoadLeveler system priority

number is assigned when the central manager adds the new job step to the

queue of job steps eligible for dispatch. Once assigned, the system priority

number for a job step is not changed, except under the following circumstances:

– An administrator or user issues the llprio command to change the system

priority of the job step.

– The value set for the NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

keyword is not zero.

– An administrator uses the llmodify command with the -s option to alter the

system priority of a job step.

– A program with administrator credentials uses the ll_modify subroutine to

alter the system priority of a job step.

Job steps assigned higher SYSPRIO numbers are considered for dispatch before

job steps with lower numbers.

For related information, see the following topics:

– “Controlling the central manager scheduling cycle” on page 66.

– “Setting and changing the priority of a job” on page 183.

– “llmodify - Change attributes of a submitted job step” on page 379.

– “ll_modify subroutine” on page 514.
v Prioritize the order of executing machines maintained by the negotiator

Each executing machine is assigned a machine priority number, based on the

evaluation of the MACHPRIO keyword expression in the configuration file of

the central manager. The LoadLeveler machine priority number is updated every

time the central manager updates its machine data. Machines assigned higher

MACHPRIO numbers are considered to run jobs before machines with lower

numbers. For example, a machine with a MACHPRIO of 10 is considered to run

a job before a machine with a MACHPRIO of 5. Similarly, a machine with a

MACHPRIO of -2 would be considered to run a job before a machine with a

MACHPRIO of -3.

Note that the MACHPRIO keyword is valid only on the machine where the

central manager is running. Using this keyword in a local configuration file has

no effect.

Customizing the configuration file

36 LoadLeveler: Using and Administering

|

|
|
|

|
|
|
|

|
|
|
|

When you use a MACHPRIO expression that is based on load average, the

machine may be temporarily ordered later in the list immediately after a job is

scheduled to that machine. This temporary drop in priority happens because the

negotiator adds a compensating factor to the startd machine’s load average

every time the negotiator assigns a job. For more information, see “the

NEGOTIATOR_LOADAVG_INCREMENT keyword” on page 234.

v Specify additional negotiator policies

This section lists keywords that were not mentioned in the previous

configuration steps. Unless your installation has special requirements for any of

these keywords, you can use them with their default settings.

– NEGOTIATOR_INTERVAL

– NEGOTIATOR_CYCLE_DELAY

– NEGOTIATOR_CYCLE_TIME_LIMIT

– NEGOTIATOR_LOADAVG_INCREMENT

– NEGOTIATOR_PARALLEL_DEFER

– NEGOTIATOR_PARALLEL_HOLD

– NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

– NEGOTIATOR_REJECT_DEFER

– NEGOTIATOR_REMOVE_COMPLETED

– NEGOTIATOR_RESCAN_QUEUE

Specifying alternate central managers

In one of your machine stanzas specified in the administration file, you specified

that the machine would serve as the central manager. It is possible for some

problem to cause this central manager to become unusable such as network

communication or software or hardware failures. In such cases, the other machines

in the LoadLeveler cluster believe that the central manager machine is no longer

operating. To remedy this situation, you can assign one or more alternate central

managers in the machine stanza to take control.

The following machine stanza example defines the machine deep_blue as an

alternate central manager:

deep_blue: type=machine

central_manager = alt

If the primary central manager fails, the alternate central manager then becomes

the central manager. The alternate central manager is chosen based upon the order

in which its respective machine stanza appears in the administration file.

When an alternate becomes the central manager, jobs will not be lost, but it may

take a few minutes for all of the machines in the cluster to check in with the new

central manager. As a result, job status queries may be incorrect for a short time.

When you define alternate central managers, you should set the following

keywords in the configuration file:

v CENTRAL_MANAGER_HEARTBEAT_INTERVAL

v CENTRAL_MANAGER_TIMEOUT

In the following example, the alternate central manager will wait for 30 intervals,

where each interval is 45 seconds:

Set a 45 second interval

CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 45

Set the number of intervals to wait

CENTRAL_MANAGER_TIMEOUT = 30

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 37

|

|
|

For more information on central manager backup, refer to “What happens if the

central manager isn’t operating?” on page 535. For information about configuration

file keyword syntax and other details, see Chapter 11, “Configuration file

reference,” on page 211.

Defining network characteristics

A port number is an integer that specifies the port number to use to connect to the

specified daemon. You can define these port numbers in the configuration file or

the /etc/services file or you can accept the defaults. LoadLeveler first looks in the

configuration file for these port numbers. If the port number is in the configuration

file and is valid, this value is used. If it is an invalid value, the default value is

used.

If LoadLeveler does not find the value in the configuration file, it looks in the

/etc/services file. If the value is not found in this file, the default is used.

The configuration file keywords associated with port numbers are the following:

v CLIENT_TIMEOUT

v CM_COLLECTOR_PORT

v MASTER_DGRAM_PORT

v MASTER_STREAM_PORT

v NEGOTIATOR_STREAM_PORT

v SCHEDD_STATUS_PORT

v SCHEDD_STREAM_PORT

v STARTD_STREAM_PORT

The first field on each line in the example that follows represents the name of a

″service″. In most cases, these services are also the names of daemons because few

daemons need more than one udp and one tcp connection. There are two

exceptions: LoadL_negotiator_collector is the service name for a second stream port

that is used by the LoadL_negotiator daemon; LoadL_schedd_status is the service

name for a second stream port used by the LoadL_schedd daemon.

LoadL_master 9616/tcp # Master port number for stream port

LoadL_negotiator 9614/tcp # Negotiator port number

LoadL_negotiator_collector 9612/tcp # Second negotiator stream port

LoadL_schedd 9605/tcp # Schedd port number for stream port

LoadL_schedd_status 9606/tcp # Schedd stream port for job status data

LoadL_startd 9611/tcp # Startd port number for stream port

LoadL_master 9617/udp # Master port number for dgram port

LoadL_startd 9615/udp # Startd port number for dgram port

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Specifying file and directory locations

The configuration file provided with LoadLeveler specifies default locations for all

of the files and directories. You can modify their locations using the following

keywords. Keep in mind that the LoadLeveler installation process installs files in

these directories and these files may be periodically cleaned up. Therefore, you

should not keep any files that do not belong to LoadLeveler in these directories.

Managing distributed software systems is a primary concern for all system

administrators. Allowing users to share file systems to obtain a single,

network-wide image, is one way to make managing LoadLeveler easier.

Customizing the configuration file

38 LoadLeveler: Using and Administering

|
|
|

|
|

To specify the

location of the: Specify this keyword:

Administration

file

ADMIN_FILE

Local

configuration

file

LOCAL_CONFIG

Local directory The following subdirectories reside in the local directory. It is possible that

the local directory and LoadLeveler’s home directory are the same.

v COMM

v EXECUTE

v LOG

v SPOOL and HISTORY

Tip: To maximize performance, you should keep the log, spool, and

execute directories in a local file system. Also, to measure the performance

of your network, consider using one of the available products, such as

Toolbox/6000.

Release

directory

RELEASEDIR

The following subdirectories are created during installation and they

reside in the release directory. You can change their locations.

v BIN

v LIB

NQS directory NQS_DIR

NQS is not supported by LoadLeveler for Linux.

Core dump

directory

You may specify alternate directories to hold core dumps for the daemons

and starter process:

v MASTER_COREDUMP_DIR

v NEGOTIATOR_COREDUMP_DIR

v SCHEDD_COREDUMP_DIR

v STARTD_COREDUMP_DIR

v GSMONITOR_COREDUMP_DIR

v KBDD_COREDUMP_DIR

v STARTER_COREDUMP_DIR

When specifying core dump directories, be sure that the access

permissions are set so the LoadLeveler daemon or process can write to

the core dump directory. The permissions set for path names specified in

the keywords mentioned above must allow writing by both root and the

LoadLeveler ID. The permissions set for the path name specified for the

STARTER_COREDUMP_DIR keyword must allow writing by root, the

LoadLeveler ID, and any user who can submit LoadLeveler jobs.

The simplest way to be sure the access permissions are set correctly is to

set them the same as are set for the /tmp directory.

If a problem with access permissions prevents a LoadLeveler daemon or

process from writing to a core dump directory, then a message will be

written to the log, and the daemon or process will continue using the

default /tmp directory for core files.

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 39

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

Configuring recording activity and log files

The LoadLeveler daemons and processes keep log files according to the

specifications in the configuration file. A number of keywords are used to describe

where LoadLeveler maintains the logs and how much information is recorded in

each log. These keywords, shown in Table 9, are repeated in similar form to specify

the pathname of the log file, its maximum length, and the debug flags to be used.

“Controlling debugging output” on page 41 describes the events that can be

reported through logging controls.

“Saving log files” on page 42 describes the configuration keyword to use to save

logs for problem diagnosis.

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

 Table 9. Log control statements

Daemon/

Process

Log File (required)

(See note 1)

Max Length (required)

(See note 2)

Debug Control (required)

(See note 4)

Master MASTER_LOG = path MAX_MASTER_LOG = bytes MASTER_DEBUG = flags

Schedd SCHEDD_LOG =

path

MAX_SCHEDD_LOG = bytes SCHEDD_DEBUG = flags

Startd STARTD_LOG = path MAX_STARTD_LOG = bytes STARTD_DEBUG = flags

Starter STARTER_LOG =

path

MAX_STARTER_LOG = bytes STARTER_DEBUG = flags

Negotiator NEGOTIATOR_LOG

= path

MAX_NEGOTIATOR_LOG = bytes NEGOTIATOR_DEBUG = flags

Kbdd KBDD_LOG = path MAX_KBDD_LOG = bytes KBDD_DEBUG = flags

GSmonitor GSMONITOR_LOG

= path

MAX_GSMONITOR_LOG = bytes GSMONITOR_DEBUG = flags

Notes:

1. When coding the path for the log files, it is not necessary that all LoadLeveler

daemons keep their log files in the same directory, however, you will probably

find it a convenient arrangement.

2. There is a maximum length, in bytes, beyond which the various log files cannot

grow. Each file is allowed to grow to the specified length and is then saved to

an .old file. The .old files are overwritten each time the log is saved, thus the

maximum space devoted to logging for any one program will be twice the

maximum length of its log file. The default length is 64KB. To obtain records

over a longer period of time, that don’t get overwritten, you can use the

SAVELOGS keyword in the local or global configuration files. See “Saving log

files” on page 42 for more information on extended capturing of LoadLeveler

logs.

You can also specify that the log file be started anew with every invocation of

the daemon by setting the TRUNC statement to true as follows:

v TRUNC_MASTER_LOG_ON_OPEN = true|false

v TRUNC_STARTD_LOG_ON_OPEN = true|false

v TRUNC_SCHEDD_LOG_ON_OPEN = true|false

v TRUNC_KBDD_LOG_ON_OPEN = true|false

v TRUNC_STARTER_LOG_ON_OPEN = true|false

v TRUNC_NEGOTIATOR_LOG_ON_OPEN = true|false

Customizing the configuration file

40 LoadLeveler: Using and Administering

|

|
|

|
|

v TRUNC_GSMONITOR_LOG_ON_OPEN = true|false

3. LoadLeveler creates temporary log files used by the starter daemon. These files

are used for synchronization purposes. When a job starts, a StarterLog.pid file

is created. When the job ends, this file is appended to the StarterLog file.

4. Normally, only those who are installing or debugging LoadLeveler will need to

use the debug flags, described in “Controlling debugging output” The default

error logging, obtained by leaving the right side of the debug control statement

null, will be sufficient for most installations.

Controlling debugging output

You can control the level of debugging output logged by LoadLeveler programs.

The following flags are presented here for your information, though they are used

primarily by IBM personnel for debugging purposes:

D_ACCOUNT

Logs accounting information about processes. If used, it may slow down the

network.

D_ADAPTER

Logs messages related to adapters.

D_AFS

Logs information related to AFS credentials.

D_CKPT

Logs information related to checkpoint and restart

D_DAEMON

Logs information regarding basic daemon set up and operation, including

information on the communication between daemons.

D_DBX

Bypasses certain signal settings to permit debugging of the processes as they

execute in certain critical regions.

D_DCE

Logs information related to DCE credentials and Cluster Security (CtSec)

services identities. This flag is the same as the new D_SECURITY flag and is

provided for compatibility.

D_EXPR

Logs steps in parsing and evaluating control expressions.

D_FULLDEBUG

Logs details about most actions performed by each daemon but doesn’t log

as much activity as setting all the flags.

D_HIERARCHICAL

Used to enable messages relating to problems related to the transmission of

hierarchical messages. A hierarchical message is sent from an originating

node to lower ranked receiving nodes.

D_JOB

Logs job requirements and preferences when making decisions regarding

whether a particular job should run on a particular machine.

D_KERNEL

Activates diagnostics for errors involving the process tracking kernel

extension.

D_LOAD

Displays the load average on the startd machine.

D_LOCKING

Logs requests to acquire and release locks.

D_MACHINE

Logs machine control functions and variables when making decisions

regarding starting, suspending, resuming, and aborting remote jobs.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 41

D_NEGOTIATE

Displays the process of looking for a job to run in the negotiator. It only

pertains to this daemon.

D_NQS

Provides more information regarding the processing of NQS files.

D_PROC

Logs information about jobs being started remotely such as the number of

bytes fetched and stored for each job.

D_QUEUE

Logs changes to the job queue.

D_REFCOUNT

Logs activity associated with reference counting of internal LoadLeveler

objects.

D_RESERVATION

Logs reservation information in the negotiator and schedd daemon logs.

D_RESOURCE

Logs messages about the management and consumption of resources. These

messages are recorded in the negotiator log.

D_SCHEDD

Displays how the schedd works internally.

D_SECURITY

Logs information related to DCE credentials and Cluster Security (CtSec)

services identities. This flag replaces the D_DCE flag.

D_STANZAS

Displays internal information about the parsing of the administration file.

D_STARTD

Displays how the startd works internally.

D_STARTER

Displays how the starter works internally.

D_STREAM

Displays messages detailing socket I/O.

D_SWITCH

Logs entries related to switch activity and LoadLeveler Switch Table Object

data.

D_THREAD

Displays the ID of the thread producing the log message. The thread ID is

displayed immediately following the date and time. This flag is useful for

debugging threaded daemons.

D_XDR

Logs information regarding External Data Representation (XDR)

communication protocols.

For example:

SCHEDD_DEBUG = D_CKPT D_XDR

Causes the scheduler to log information about checkpointing user jobs and

exchange xdr messages with other LoadLeveler daemons. These flags will

primarily be of interest to LoadLeveler implementers and debuggers.

Saving log files

By default, LoadLeveler stores only the two most recent iterations of a daemon’s

log file (<daemon name>Log, and <daemon name>Log.old). Occasionally, for problem

diagnosing, users will need to capture LoadLeveler logs over an extended period.

Users can specify that all log files be saved to a particular directory by using the

SAVELOGS keyword in a local or global configuration file. Be aware that

LoadLeveler does not provide any way to manage and clean out all of those log

Customizing the configuration file

42 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|

files, so users must be sure to specify a directory in a file system with enough

space to accommodate them. This file system should be separate from the one used

for the LoadLeveler log, spool, and execute directories.

Each log file is represented by the name of the daemon that generated it, the exact

time the file was generated, and the name of the machine on which the daemon is

running. When you list the contents of the SAVELOGS directory, the list of log file

names looks like this:

NegotiatorLogNov02.16:10:39.123456.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:42.987654.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:46.564123.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:48.234345.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:51.123456.c163n10.ppd.pok.ibm.com

NegotiatorLogNov02.16:10:53.566987.c163n10.ppd.pok.ibm.com

StarterLogNov02.16:09:19.622387.c163n10.ppd.pok.ibm.com

StarterLogNov02.16:09:51.499823.c163n10.ppd.pok.ibm.com

StarterLogNov02.16:10:30.876546.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:09:05.543677.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:09:26.688901.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:09:47.443556.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:10:12.712680.c163n10.ppd.pok.ibm.com

SchedLogNov02.16:10:37.342156.c163n10.ppd.pok.ibm.com

StartLogNov02.16:09:05.697753.c163n10.ppd.pok.ibm.com

StartLogNov02.16:09:26.881234.c163n10.ppd.pok.ibm.com

StartLogNov02.16:09:47.231234.c163n10.ppd.pok.ibm.com

StartLogNov02.16:10:12.125556.c163n10.ppd.pok.ibm.com

StartLogNov02.16:10:37.961486.c163n10.ppd.pok.ibm.com

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Setting up file system monitoring

You can use the file system keywords to monitor the file system space or inodes

used by LoadLeveler for:

v Logs

v Saving executables

v Spool information

v History files

You can also use the file system keywords to take preventive action and avoid

problems caused by running out of file system space or inodes. This is done by

setting the frequency that LoadLeveler checks the file system free space or inodes

and by setting the upper and lower thresholds that initialize system responses to

the free space or inodes available. By setting a realistic span between the lower and

upper thresholds, you will avoid excessive system actions.

The file system monitoring keywords are:

v FS_INTERVAL

v FS_NOTIFY

v FS_SUSPEND

v FS_TERMINATE

v INODE_NOTIFY

v INODE_SUSPEND

v INODE_TERMINATE

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 43

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|
|
|

|
|

Defining LoadLeveler machine characteristics

You can use the following keywords to define the characteristics of machines in the

LoadLeveler cluster. For information about configuration file keyword syntax and

other details, see Chapter 11, “Configuration file reference,” on page 211.

v ARCH

v CLASS

v CUSTOM_METRIC

v CUSTOM_METRIC_COMMAND

v FEATURE

v GSMONITOR_RUNS_HERE

v MAX_STARTERS

v SCHEDD_RUNS_HERE

v SCHEDD_SUBMIT_AFFINITY

v STARTD_RUNS_HERE

v START_DAEMONS

v VM_IMAGE_ALGORITHM

v X_RUNS_HERE

Defining job classes that a LoadLeveler machine will accept

The following examples illustrate possible ways of defining job classes.

v Example 1

This example specifies multiple classes:

Class = No_Class(2)

or

Class = { "No_Class" "No_Class" }

The machine will only run jobs that have either defaulted to or explicitly

requested class No_Class. A maximum of two LoadLeveler jobs are permitted to

run simultaneously on the machine if the MAX_STARTERS keyword is not

specified. See “Specifying how many jobs a machine can run” on page 45 for

more information on MAX_STARTERS.

v Example 2

This example specifies multiple classes:

Class = No_Class(1) Small(1) Medium(1) Large(1)

or

Class = { "No_Class" "Small" "Medium" "Large" }

The machine will only run a maximum of four LoadLeveler jobs that have either

defaulted to, or explicitly requested No_Class, Small, Medium, or Large class. A

LoadLeveler job with class IO_bound, for example, would not be eligible to run

here.

v Example 3

This example specifies multiple classes:

Class = B(2) D(1)

or

Class = { "B" "B" "D" }

Customizing the configuration file

44 LoadLeveler: Using and Administering

|

|

The machine will run only LoadLeveler jobs that have explicitly requested class

B or D. Up to three LoadLeveler jobs may run simultaneously: two of class B

and one of class D. A LoadLeveler job with class No_Class, for example, would

not be eligible to run here.

Specifying how many jobs a machine can run

To specify how many jobs a machine can run, you need to take into consideration

both the MAX_STARTERS keyword and the Class statement, which described in

more detail in “Defining LoadLeveler machine characteristics” on page 44.

For example, if the configuration file contains these statements:

Class = A(1) B(2) C(1)

MAX_STARTERS = 2

then the machine can run a maximum of two LoadLeveler jobs simultaneously. The

possible combinations of LoadLeveler jobs are:

v A and B

v A and C

v B and B

v B and C

v Only A, or only B, or only C

If this keyword is specified together with a Class statement, the maximum number

of jobs that can be run is equal to the lower of the two numbers. For example, if:

MAX_STARTERS = 2

Class = class_a(1)

then the maximum number of job steps that can be run is one (the Class statement

above defines one class).

If you specify MAX_STARTERS keyword without specifying a Class statement, by

default one class still exists (called No_Class). Therefore, the maximum number of

jobs that can be run when you do not specify a Class statement is one.

Note: If the MAX_STARTERS keyword is not defined in either the global

configuration file or the local configuration file, the maximum number of

jobs that the machine can run is equal to the number of classes in the Class

statement.

Defining security mechanisms

LoadLeveler can be configured in one of two ways to control authentication and

authorization of LoadLeveler functions:

v DCE security services, which uses DCE as the underlying security mechanism.

v Cluster Security (CtSec) services, a subcomponent of Reliable Scalable Cluster

Technology (RSCT), which uses the host-based authentication (HBA) as an

underlying security mechanism.

LoadLeveler permits only one security service to be configured at a time. CtSec

services and DCE cannot both be configured as the security service for

LoadLeveler. You can skip this section if you do not plan to use these security

features or if you plan to use the DCE credential forwarding provided by the

llgetdce and llsetdce program pair. Refer to “Using the alternative program pair:

llgetdce and llsetdce” on page 68 for more information.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 45

LoadLeveler for Linux does not support DCE or CtSec security.

Table 10 lists the topics that explain LoadLeveler daemons and how you may

define their characteristics and modify their behavior.

 Table 10. Roadmap of configuration tasks for securing LoadLeveler operations

To learn about: Read the following:

Securing LoadLeveler

operations using DCE security

services

v “Configuring LoadLeveler to use DCE security services”

v “Steps for using SMIT and the lldcegrpmaint command

to configure DCE security” on page 47

v “Steps for manually configuring DCE security” on page

49

v “Usage notes” on page 51

v “Handling DCE security credentials” on page 67

v “lldcegrpmaint - LoadLeveler DCE group maintenance

utility” on page 359

Securing LoadLeveler

operations using cluster

security services

v “Configuring LoadLeveler to use cluster security

services” on page 52

v “Steps for enabling CtSec services” on page 53

v “Limiting which security mechanisms LoadLeveler can

use” on page 56

Correctly specifying

configuration file keywords

Chapter 11, “Configuration file reference,” on page 211

Configuring LoadLeveler to use DCE security services

When LoadLeveler is configured to exploit DCE security, it uses PSSP and DCE

security services to:

v Authenticate the identity of users and programs interacting with LoadLeveler.

v Authorize users and programs to use LoadLeveler services. It will prevent

unauthorized users and programs from misusing resources or disrupting

services.

v Delegate the DCE credentials of the user submitting a job to all processes

making up that job.

When LoadLeveler is configured to exploit DCE security, most of its interactions

with DCE are through the PSSP security services API. For this reason, it is

important that you configure PSSP security services before you configure

LoadLeveler for DCE. For more information on PSSP security services, please refer

to: RS/6000 SP Planning Volume 2, Control Workstation and Software Environment

(GA22-7281), Parallel System Support Programs for AIX Installation and Migration

Guide Version 3 Release 2 (GA22-7347), and Parallel System Support Programs for AIX

Administration Guide Version 3 Release 2 (SA22-7348).

DCE maintains a registry of all DCE principals which have been authorized to

login to the DCE cell. In order for LoadLeveler daemons to login to DCE, DCE

accounts must be set up, and DCE key files must be created for these daemons.

Each LoadLeveler daemon on each node is associated with a different DCE

principal. The DCE principal of the Schedd daemon running on node A is distinct

from the DCE principal of the Schedd daemon running on node B. Since it is

possible for up to seven LoadLeveler daemons to run on any particular node

(Master, Negotiator, Schedd, Startd, Kbdd, Starter, and GSmonitor), the number of

DCE principal accounts and key files that must be created could reach as high as

Customizing the configuration file

46 LoadLeveler: Using and Administering

|
|

||

||

|
|
|

|

|
|

|
|

|

|

|
|

|
|
|

|
|

|

|
|

|
|
|

|

|

7x(number of nodes). Since it is not always possible to know in advance on which

node a particular daemon will run, a conservative approach would be to create

accounts and key files for all seven daemons on all nodes in a given LoadLeveler

cluster. However, it is only necessary to create accounts and key files for DCE

principals which will actually be instantiated and run in the cluster.

These are the steps used for configuring LoadLeveler for DCE. IBM suggests that

you use SMIT and the lldcegrpmaint command to perform this task. The manual

steps are also described in “Steps for manually configuring DCE security” on page

49, and may be useful should you need to create a highly customized LoadLeveler

environment. Some of the names used in this section are the default names as

defined in the file /usr/lpp/ssp/config/spsec_defaults and can be overridden

with appropriate specifications in the file /spdata/sys1/spsec/spsec_overrides.

Also, the term ″LoadLeveler node″ is used to refer to a node on an SP system that

will be part of a LoadLeveler cluster.

Steps for using SMIT and the lldcegrpmaint command to

configure DCE security

Perform the following steps to use SMIT and the lldcegrpmaint command to

configure DCE security:

1. Login to the SP control workstation as root, then login to DCE as cell_admin.

2. Start the SMIT program. From SMIT’s main menu, select the RS/6000 SP

System Management option, then select the RS/6000 SP Security option in the

next menu.

3. Perform the appropriate steps associated with this menu to configure the

security features of this SP system. From LoadLeveler’s perspective, the

important actions are:

v Create dcehostnames

v Configure SP Trusted Services to use DCE Authentication

Before continuing to step 4, ensure that:

v DCE hostnames for LoadLeveler nodes are defined.

v A DCE group named spsec-services and a DCE organization named

spsec-services are created.

v The DCE principals of the LoadLeveler daemons on LoadLeveler nodes are

created.

v The DCE principals of the LoadLeveler daemons on LoadLeveler nodes are

added to the spsec-services group and the spsec-services organization.

v A DCE account is created for each DCE principal associated with the

LoadLeveler daemons on the SP system.

v A DCE key file is created for each LoadLeveler daemon on the LoadLeveler

nodes.

4. If the LoadLeveler cluster consists of nodes spanning several SP systems, then

you should repeat step 1 through step 3 for each SP system.

5. PSSP security services use certain fields in the SDR (System Data Repository) to

determine the current software configuration. Use the command ″splstdata -p″

to verify that the field ts_auth_methods is set to either dce or dce:compat. If

ts_auth_methods is set to dce:compat then either DCE or non-DCE

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 47

|

|
|
|
|

authentication is allowed. For some PSSP applications, this setting also implies

that if DCE authentication is activated but, DCE authentication cannot be

performed, then non-DCE authentication will be used. However, LoadLeveler

can not change authentication methods dynamically, and the dce:compat setting

simply indicates that LoadLeveler can be brought up in either DCE or non-DCE

authentication modes using the DCE_ENABLEMENT keyword.

6. Add these statements to the LoadLeveler global configuration file:

DCE_ENABLEMENT = TRUE

DCE_ADMIN_GROUP = LoadL-admin

DCE_SERVICES_GROUP = LoadL-services

DCE_ENABLEMENT must be set to TRUE to activate the DCE security

features of LoadLeveler. The LoadL-admin group should be populated with DCE

principals of users who are to be given LoadLeveler administrative privileges.

For more information on populating the LoadL-admin group, see step 9. The

LoadL-services group should be populated with the DCE principals of all the

LoadLeveler daemons that will be running in the current cluster. You can use

the lldcegrpmaint command to automate this process. For more information on

populating the LoadL-services group, see step 8. Note that these daemons are

already members of the spsec-services group. If there is more than one

DCE-enabled LoadLeveler cluster within the same DCE cell, then it is

important that the name assigned to DCE_SERVICES_GROUP for each cluster

be distinct; this will avoid any potential operational conflict.

7. Add DCE hostnames to the machine stanzas of the LoadLeveler administration

file. The machine stanza of each node defined in the LoadLeveler

administration file must contain a statement with this format:

dce_host_name = DCE hostname

Execute either ″SDRGetObjects Node dcehostname,″ or ″llextSDR″ to obtain a

listing of DCE hostnames of nodes on an SP system.

8. Execute the command:

lldcegrpmaint config_pathname admin_pathname

Where config_pathname is the pathname of the LoadLeveler global configuration

file and admin_pathname is the pathname of the LoadLeveler administration file.

The lldcegrpmaint command will:

v Create the LoadL-services and LoadL-admin DCE groups (if they do not already

exist).

v Add the DCE principals of all the LoadLeveler daemons in the LoadLeveler

cluster defined by the admin_pathname file to the LoadL-services group.

For more information about the lldcegrpmaint command, see “lldcegrpmaint -

LoadLeveler DCE group maintenance utility” on page 359.

9. Add the DCE principals of users who will have LoadLeveler administrative

authority for the cluster to the LoadL-admin group. For example, this command

adds loadl to the LoadL-admin group:

dcecp -c group add LoadL-admin -member loadl

Customizing the configuration file

48 LoadLeveler: Using and Administering

Steps for manually configuring DCE security

In this example, the LoadLeveler cluster consists of 3 nodes of an SP system which

belong to the same DCE cell. Their hostnames and DCE hostnames are the same:

c163n01.pok.ibm.com, c163n02.pok.ibm.com, and c163n03.pok.ibm.com. Assume

that the basic PSSP security setup steps have been performed, and that the DCE

group spsec-services and the DCE organization spsec-services have been created.

 1. Login to any node in the DCE cell as root and login to DCE as cell_admin.

 2. Create LoadLeveler’s product directory if it does not already exist. First, see if

the directory has already been created:

dcecp -c cdsli /.:/subsys

This command lists the contents of the /.:/subsys directory in DCE.

LoadLeveler’s product name within DCE is LoadL, so its product directory is

/.:/subsys/LoadL. If this directory already exists, then continue to the next

step. If it does not exist, issue to following command to create it:

dcecp -c directory create /.:/subsys/LoadL

 3. Create the DCE principal names for all of the LoadLeveler daemons in the

LoadLeveler cluster. PSSP security services expect the DCE principal name of

a LoadLeveler daemon to have the format:

product_name/dce_host_name/dce_daemon_name

Where:

product_name

Is the product name and should always be set to LoadL.

dce_host_name

Is the DCE hostname of the node on which the daemon will run.

dce_daemon_name

Is the DCE name of the daemon and is defined in the file

/usr/lpp/ssp/config/spsec_defaults. Go to the LoadLeveler section of this

file. You will find a SERVICE record similar to this for all the seven

daemons:

SERVICE:LoadL/Master:kw:root:system

The relevant portion of this record is Master; this is the DCE daemon

name of LoadL_master. The DCE daemon names of other daemons can be

identified in a similar manner.

For the c163n01.pok.ibm.com node, the following commands will create the

desired principal names:

dcecp -c principal create LoadL/c163n01.pok.ibm.com/Master

dcecp -c principal create LoadL/c163n01.pok.ibm.com/Negotiator

dcecp -c principal create LoadL/c163n01.pok.ibm.com/Schedd

dcecp -c principal create LoadL/c163n01.pok.ibm.com/Kbdd

dcecp -c principal create LoadL/c163n01.pok.ibm.com/Startd

dcecp -c principal create LoadL/c163n01.pok.ibm.com/Starter

dcecp -c principal create LoadL/c163n01.pok.ibm.com/GSmonitor

These commands must then be repeated for each node in the LoadLeveler

cluster, replacing the dce_host_name with the DCE hostname of each respective

node.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 49

|

 4. Add the principals defined in step 3 on page 49 to the PSSP security services’

services group. This group is named spsec-services. PSSP security services

require that any daemon using their APIs be members of this group. This

command will add the DCE principal of the Master daemon on node c163n01

to the spsec-services group.

dcecp -c group add spsec-services -member LoadL/c163n01.pok.ibm.com/Master

This operation must be repeated for all of the other LoadLeveler daemons on

c163n01, and the complete set of operations must be repeated for all of the

nodes in the LoadLeveler cluster.

 5. Add the principals defined in step 3 on page 49 to the spsec-services

organization. The following command will add the DCE principal of the

Master daemon on node c163n01 to the spsec-services organization.

dcecp -c organization add spsec-services -member LoadL/c163n01.pok.ibm.com/Master

This operation must be repeated for all of the other LoadLeveler daemons on

c163n01, and the complete set of operations must be repeated for all of the

nodes in the LoadLeveler cluster.

 6. Create a DCE account for each of the principals defined in step 3 on page 49.

This series of commands will create a DCE account for the Master daemon on

node c163n01:

dcecp <Enter>

dcecp> account create LoadL/c163n01.pok.ibm.com/Master \

 -group spsec-services -organization spsec-services \

 -password service-password -mypwd cell_admin’s-password

dcecp> quit

The service-password passed to DCE in this command can be any valid DCE

password. Please take note of it since you will need it when you create the

key file for this daemon in step 8 on page 51. The continuation character ″\″

is not supported by dcecp, but appears in the example merely for clarity. This

operation must be repeated for the other LoadLeveler daemons on c163n01,

and the complete set of operations must be repeated for all of the nodes in the

LoadLeveler cluster.

 7. Create directories to contain the key files for the principals defined in step 3

on page 49.

mkdir -p /spdata/sys1/keyfiles/LoadL/dce_host_name

You must login to the appropriate node to perform this operation. This

operation must be repeated for every node in the LoadLeveler cluster.

NOTE: The directory /spdata/sys1/keyfiles should already exist on each node

in the cluster which has been installed with a level of PSSP software that

supports DCE Security exploitation. If this directory does not exist, then the

node cannot support DCE Security and LoadLeveler in DCE mode will not

run on it. If this configuration seems to be in error, contact your system

administrator to determine which nodes in the cluster should support DCE

Security.

Customizing the configuration file

50 LoadLeveler: Using and Administering

8. Create a key file for each LoadLeveler daemon on the node on which it will

run. The key file contains security-related information specific to each

daemon. Use this series of commands:

 dcecp <Enter>

 dcecp> keytab create LoadL/c163n01.pok.ibm.com/Master \

 -storage /spdata/sys1/keyfiles/LoadL/c163n01.pok.ibm.com/Master \

 -data { LoadL/c163n01.pok.ibm.com/Master plain 1 service-password }

 dcecp> quit

You must login to node c163n01 to perform this operation. DCE must be able

to locate the key file locally, otherwise the daemon’s login to DCE on startup

will fail. The principal name passed to DCE in the preceding example is the

same principal name defined in step 3 on page 49. The AIX path passed with

the ″-storage″ flag should point to the same directory created in step 7 on

page 50. The principal name passed with the ″-data″ flag should match the

principal name used at the beginning of the command. The password used in

the service-password field must be the same as the service password defined

when this principal’s account was created in step 6 on page 50.

This operation must be repeated for all of the other LoadLeveler daemons on

node c163n01, and the complete set of operations must be repeated for all of

the nodes in the LoadLeveler cluster.

 9. Perform steps 5 on page 47, 6 on page 48, and 7 on page 48 of “Steps for

using SMIT and the lldcegrpmaint command to configure DCE security” on

page 47.

10. Create the DCE groups LoadL-admin, and LoadL-services. This command creates

the DCE group LoadL-admin:

dcecp -c group create LoadL-admin

11. Add the DCE principals of users who will have LoadLeveler administrative

authority for the cluster to the LoadL-admin group. This command adds loadl

to the LoadL-admin group:

dcecp -c group add LoadL-admin -member loadl

12. Add the principals defined in step 3 on page 49 to the LoadL-services group.

This command will add the DCE principal of the Master daemon on node

c163n01.pok.ibm.com to LoadL-services:

dcecp -c group add LoadL-services -member LoadL/c163n01.pok.ibm.com/Master

This operation must be repeated for all of the other LoadLeveler daemons on

node c163n01, and the complete set of operations must be repeated for all of

the nodes in the LoadLeveler cluster.

Usage notes

v If the DCE_ENABLEMENT keyword is set to TRUE, LoadLeveler uses the PSSP

security service API to perform mutual authentication of all appropriate

transactions in addition to using the pair of programs specified by

DCE_AUTHENTICATION_PAIR to obtain the opaque credentials object and to

authenticate to DCE before starting a job. The default pair of programs used by

LoadLeveler, lldelegate and llimpersonate support credentials forwarding. For

more information about the DCE_AUTHENTICATION_PAIR keyword, see

“Handling DCE security credentials” on page 67.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 51

If the DCE_ENABLEMENT keyword is not defined or set to FALSE, the limited

form of DCE authentication introduced in LoadLeveler 2.1 can still be activated

through the use of the DCE_AUTHENTICATION_PAIR keyword in conjunction

with the llgetdce and llsetdce programs or an installation defined functionally

equivalent pair of programs. If this level of DCE support meets your

requirements, then you can ignore the setup steps in this section.

v When DCE_ENABLEMENT is set to TRUE, LoadLeveler uses a different set of

criteria to determine who owns job steps, and who has administrator privileges.

– LoadLeveler considers you to be the owner of a job step if your DCE

principal matches the DCE principal associated with that job step.

– LoadLeveler administrators are usually defined to LoadLeveler through a list

of names associated with the LOADL_ADMIN keyword. However, when

DCE_ENABLEMENT is TRUE, this list is no longer used for this purpose.

Instead, users and processes whose DCE principals are members of the

LoadL-admin DCE group are given LoadLeveler administrative privileges.

Note: The LOADL_ADMIN keyword is also used to provide LoadLeveler with

a list of users who are to receive mail notification of problems encountered by

the LoadL_master daemon. This function is not affected by the

DCE_ENABLEMENT keyword.

v If DCE_ENABLEMENT is set to TRUE, you must login to DCE with the

dce_login command before attempting to execute any LoadLeveler command.

Also, if an AIX user’s user name is different from the user’s DCE principal

name, then the AIX user must have a .k5login file in the home directory

specifying which DCE principal may execute using the AIX account. For

example, if your DCE principal in the cell local_dce_cell is user1_dce, and your

AIX user name is user1, then you will have to add an entry such as

″user1_dce@local_dce_cell″ to the .k5login file in your home directory.

Configuring LoadLeveler to use cluster security services

Cluster security (CtSec) services allows a software component to authenticate and

authorize the identity of one of its peers or clients.

When configured to use CtSec services, LoadLeveler will:

v Authenticate the identity of users and programs interacting with LoadLeveler.

v Authorize users and programs to use LoadLeveler services. It prevents

unauthorized users and programs from misusing resources or disrupting

services.

To use CtSec services, all nodes running LoadLeveler must first be configured as

part of a cluster running Reliable Scalable Cluster Technology (RSCT). For details

on CtSec services administration, see IBM Reliable Scalable Cluster Technology for AIX

5L and Linux Administration Guide, SA22-7889.

CtSec services are designed to use multiple security mechanisms and each security

mechanism must be configured for LoadLeveler. At the present time, directions are

provided only for configuring the host-based authentication (HBA) security

mechanism for LoadLeveler’s use. If CtSec is configured to use additional security

mechanisms that are not configured for LoadLeveler’s use, then the LoadLeveler

configuration file keyword SEC_IMPOSED_MECHS must be specified. This

keyword is used to limit the security mechanisms that will be used by CtSec

services to only those that are configured for use by LoadLeveler.

Customizing the configuration file

52 LoadLeveler: Using and Administering

|
|

Authorization is based on user identity. When CtSec services are enabled for

LoadLeveler, user identity will differ depending on the authentication mechanism

in use. A user’s identity in UNIX host-based authentication is the user’s network

identity which is comprised of the user name and host name, such as

user_name@host.

LoadLeveler uses CtSec services to authorize owners of jobs, administrators and

LoadLeveler daemons to perform certain actions. CtSec services uses its own

identity mapping file to map the clients’ network identity to a local identity when

performing authorizations. A typical local identity is the user name without a

hostname. The local identities of the LoadLeveler administrators must be added as

members of the group specified by the keyword SEC_ADMIN_GROUP. The local

identity of the LoadLeveler user name must be added as the sole member of the

group specified by the keyword SEC_SERVICES_GROUP. The LoadLeveler

Services and Administrative groups, those identified by the keywords

SEC_SERVICES_GROUP and SEC_ADMIN_GROUP, must be the same across all

nodes in the LoadLeveler cluster. To ensure consistency in performing tasks which

require owner, administrative or daemon privileges across all nodes in the

LoadLeveler cluster, user network identities must be mapped identically across all

nodes in the LoadLeveler cluster. If this is not the case, LoadLeveler authorizations

may fail.

Steps for enabling CtSec services

To enable LoadLeveler to use CtSec services, perform the following steps:

1. Include, in the Trusted Host List, the host names of all hosts with which

communications may take place. If LoadLeveler tries to communicate with a

host not on the Trusted Host List the message: The host identified in the

credentials is not a trusted host on this system will occur. Additionally, the

system administrator should ensure that public keys are manually exchanged

between all hosts in the LoadLeveler cluster. Refer to IBM Reliable Scalable

Cluster Technology for AIX 5L and Linux Administration Guide, SA22-7889 for

information on setting up Trusted Host Lists and manually transferring public

keys.

2. Create user IDs. Each LoadLeveler administrator and the LoadLeveler user ID

need to be created, if they don’t already exist. You can do this through SMIT or

the mkuser command.

3. The unix.map file must contain the correct value for the service name ctloadl

which specifies the LoadLeveler user name. If you have configured

LoadLeveler to use loadl as the LoadLeveler user name, either by default or by

specifying loadl in the LoadLUserid keyword of the /etc/LoadL.cfg file, nothing

needs to be done. The default map file will contain the ctloadl service name

already assigned to loadl. If you have configured a different user name in the

LoadLUserid keyword of the /etc/LoadL.cfg file, you will need to make sure

that the /var/ct/cfg/unix.map file exists and that it assigns the same user name

to the ctloadl service name. If the /var/ct/cfg/unix.map file does not exist, create

one by copying the default map file /usr/sbin/rsct/cfg/unix.map. Do not modify

the default map file.

If the value of the LoadLUserid and the value associated with ctloadl are not

the same a security services error which indicates a UNIX identity mismatch

will occur.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 53

|
|

4. To map network identities to local identities, add entries to the global mapping

file of each machine in the LoadLeveler cluster. This file is located at:

/var/ct/cfg/ctsec_map.global. If this file doesn’t yet exist, you should copy the

default global mapping file to this location—don’t modify the default mapping

file. The default global mapping file, which is shared among all CtSec services

exploiters, is located at /usr/sbin/rsct/cfg/ctsec_map.global. See IBM Reliable

Scalable Cluster Technology for AIX 5L: Technical Reference, SA22-78900 for more

information on the mapping file.

When adding names to the global mapping file, enter more specific entries

ahead of the other, less specific entries. Remember that you must update the

global mapping file on each machine in the LoadLeveler cluster, and each

mapping file has to be updated with the security services identity of each

member of the administrator group, the services group, and the users.

Therefore, you would have entries like this:

unix:brad@mach1.pok.ibm.com=bradleyf

unix:brad@mach2.pok.ibm.com=bradleyf

unix:brad@mach3.pok.ibm.com=bradleyf

unix:marsha@mach2.pok.ibm.com=marshab

unix:marsha@mach3.pok.ibm.com=marshab

unix:loadl@mach1.pok.ibm.com=loadl

unix:loadl@mach2.pok.ibm.com=loadl

unix:loadl@mach3.pok.ibm.com=loadl

However, if you’re sure your LoadLeveler cluster is secure, you could specify

mapping for all machines this way:

unix:brad@*=bradleyf

unix:marsha@*=marshab

unix:loadl@*=loadl

This indicates that the UNIX network identity of the users brad, marsha and

loadl will map to their respective security services identities on every machine

in the cluster. Refer to IBM Reliable Scalable Cluster Technology for AIX 5L: RSCT

Technical Reference, SA22-7800 for a description of the syntax used in the

ctsec_map.global file.

5. Create UNIX groups. The LoadLeveler administrator group and services group

need to be created for every machine in the cluster and should contain the local

identities of members. This can be done either by using SMIT or the mkgroup

command.

For example, to create the group lladmin which lists the LoadLeveler

administrators:

mkgroup "users=sam,betty,loadl" lladmin

These groups must be created on each machine in the LoadLeveler cluster and

must contain the same entries.

To create the group llsvcs which lists the identity under which LoadLeveler

daemons run using the default id of loadl:

mkgroup users=loadl llsvcs

These groups must be created on each machine in the LoadLeveler cluster and

must contain the same entries.

6. Add or update these keywords in the LoadLeveler configuration file:

Customizing the configuration file

54 LoadLeveler: Using and Administering

SEC_ENABLEMENT=CTSEC

SEC_ADMIN_GROUP=name of lladmin group

SEC_SERVICES_GROUP=group name that contains identities of LoadLeveler daemons

The SEC_ENABLEMENT=CTSEC keyword indicates that CtSec services

mechanism should be used. SEC_ADMIN_GROUP points to the name of the

UNIX group which contains the local identities of the LoadLeveler

administrators. The SEC_SERVICES_GROUP keyword points to the name of

the UNIX group which contains the local identity of the LoadLeveler daemons.

All LoadLeveler daemons run as the LoadLeveler user ID. Refer to step 5 on

page 54 for discussion of the administrators and services groups.

7. Update the .rhosts file in each user’s home directory. This file is used to

identify which UNIX identities can run LoadLeveler jobs on the local host

machine. If the file does not exist in a user’s home directory, you must create it.

The .rhosts file must contain entries which specify all host and user

combinations allowed to submit jobs which will run as the local user, either

explicitly or through the use of wildcards.

Entries in the .rhosts file are specified this way:

HostNameField [UserNameField]

Refer to IBM AIX Files Reference, SC23-4168 for further details about the .rhosts

file format.

Tips for configuring LoadLeveler to use CtSec services: When using CtSec

services for LoadLeveler, each machine in the LoadLeveler cluster must be set up

properly. CtSec authenticates network identities based on trust established between

individual machines in a cluster, based on local host configurations. Because of this

it is possible for most of the cluster to run correctly but to have transactions from

certain machines experience authentication or authorization problems.

If unexpected authentication or authorization problems occur in a LoadLeveler

cluster with CtSec enabled, check that the steps in “Steps for enabling CtSec

services” on page 53 were correctly followed for each machine in the LoadLeveler

cluster.

If any machine in a LoadLeveler cluster is improperly configured to run CtSec you

may see that:

v Users cannot perform user tasks (such as cancel) for jobs they submitted.

Either the machine the job was submitted from or the machine the user

operation was submitted from (or both) do not contain mapping files for the

user that specify the same security services identity. The user should attempt the

operation from the same machine the job was submitted from and record the

results. If the user still cannot perform a user task on a job they submitted, then

they should contact the LoadLeveler administrator who should review the steps

in “Steps for enabling CtSec services” on page 53.

v LoadLeveler daemons fail to communicate.

When LoadLeveler daemons communicate they must first authenticate each

other. If the daemons cannot authenticate a message will be put in the daemon

log indicating an authentication failure. Ensure the Trusted Hosts List on all

LoadLeveler nodes contains the correct entries for all of the nodes in the

LoadLeveler cluster. Also, make sure that the LoadLeveler Services group on all

nodes of the LoadLeveler cluster contains the local identity for the LoadLeveler

user name. The ctsec_map.global must contain mapping rules to map the

LoadLeveler user name from every machine in the LoadLeveler cluster to the

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 55

local identity for the LoadLeveler user name. An example of what may happen

when daemons fail to communicate is that an Alternate Central Manager may

take over while the Primary Central Manager is still active. This can occur when

the Alternate Central Manager does not trust the Primary Central Manager.

Limiting which security mechanisms LoadLeveler can use

As more security mechanisms become available, they must be configured for

LoadLeveler’s use. If there are security mechanisms configured for CtSec that are

not configured for LoadLeveler’s use, then the LoadLeveler configuration file

keyword SEC_IMPOSED_MECHS must specify the mechanisms configured for

LoadLeveler.

Defining usage policies for consumable resources

The LoadLeveler scheduler can schedule jobs based on the availability of

consumable resources. You can use the following keywords to configure

consumable resources:

v ENFORCE_RESOURCE_MEMORY

v ENFORCE_RESOURCE_POLICY

v ENFORCE_RESOURCE_SUBMISSION

v ENFORCE_RESOURCE_USAGE

v FLOATING_RESOURCES

v RESOURCES

v SCHEDULE_BY_RESOURCES

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Enabling support for bulk data transfer

On AIX systems with device drivers and network adapters that support remote

direct-memory access (RDMA), LoadLeveler supports bulk data transfer for jobs

that use either the Internet or User Space communication protocol mode. For jobs

using the Internet protocol (IP jobs), LoadLeveler does not monitor or control the

use of bulk transfer. For User Space jobs that request bulk transfer, however,

LoadLeveler creates a consumable RDMA resource, and limits RDMA resources to

only four for a single machine.

You do not need to perform specific configuration or job-definition tasks to enable

bulk transfer for LoadLeveler jobs that use the IP network protocol. LoadLeveler

cannot affect whether IP communication uses bulk transfer; the implementation of

IP where the job runs determines whether bulk transfer is supported.

To enable User Space jobs to use bulk data transfer, however, you must update the

LoadLeveler configuration file to include the value RDMA in the

SCHEDULE_BY_RESOURCES list.

Example:

 SCHEDULE_BY_RESOURCES = RDMA others

For additional information about using bulk data transfer and job-definition

requirements, see “Using bulk data transfer” on page 152.

Customizing the configuration file

56 LoadLeveler: Using and Administering

|

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|
|

Gathering job accounting data

Your organization may have a policy of charging users or groups of users for the

amount of resources that their jobs consume. You can do this using LoadLeveler’s

accounting feature. Using this feature, you can produce accounting reports that

contain job resource information for completed serial and parallel jobs. You can

also view job resource information on jobs that are continuing to run.

The following keywords allow you to control accounting functions:

v ACCT

v ACCT_VALIDATION

v GLOBAL_HISTORY

v HISTORY_PERMISSION

v JOB_ACCT_Q_POLICY

v JOB_LIMIT_POLICY

For example, the following section of the configuration file specifies that the

accounting function is turned on. It also identifies the default module used to

perform account validation and the directory containing the global history files:

ACCT = A_ON A_VALIDATE

ACCT_VALIDATION = $(BIN)/llacctval

GLOBAL_HISTORY = $(SPOOL)

Table 11 lists the topics related to configuring, gathering and using job accounting

data.

 Table 11. Roadmap of tasks for gathering job accounting data

To learn about: Read the following:

Configuring LoadLeveler to

gather job accounting data

v “Collecting job resource data on serial and parallel jobs”

v “Collecting job resource data based on machines” on page

58

v “Collecting job resource data based on events” on page 58

v “Collecting job resource information based on user

accounts” on page 59

v “Collecting accounting data for reservations” on page 122

v “Collecting the accounting information and storing it into

files” on page 59

v “64-bit support for accounting functions” on page 61

v “Example: Setting up job accounting files” on page 61

Managing accounting data v “Producing accounting reports” on page 60

v “Correlating AIX and LoadLeveler accounting records” on

page 60

v “llacctmrg - Collect machine history files” on page 337

v “llsummary - Return job resource information for

accounting” on page 425

Correctly specifying

configuration file keywords

Chapter 11, “Configuration file reference,” on page 211

Collecting job resource data on serial and parallel jobs

Information on completed serial and parallel jobs is gathered using the UNIX wait3

system call. Information on non-completed serial and parallel jobs is gathered in a

platform-dependent manner by examining data from the UNIX process.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 57

|

|
|

||

||

|
|
|

|
|

|

|
|

|

|
|

|

|

||

|
|

|

|
|

|
|
|

|

|

Accounting information on a completed serial job is determined by accumulating

resources consumed by that job on the machines that ran the job. Similarly,

accounting information on completed parallel jobs is gathered by accumulating

resources used on all of the nodes that ran the job.

You can also view resource consumption information on serial and parallel jobs

that are still running by specifying the -x option of the llq command. To enable llq

-x, specify the following keywords in the configuration file:

v ACCT = A_ON A_DETAIL

v JOB_ACCT_Q_POLICY = number

LoadLeveler for Linux cannot collect complete accounting information for MPICH

and MPICH-GM jobs, so you should not rely on the accounting information for

those types of jobs. For these parallel jobs, LoadLeveler uses an mpirun script to

start MPICH tasks on various nodes, and to report completion of these tasks.

LoadLeveler can collect accounting data for this job only from the node on which

the mpirun script runs, not from the nodes on which mpirun executes MPICH

tasks. Therefore, the accounting data for MPICH tasks is incomplete.

Collecting job resource data based on machines

LoadLeveler can collect job resource usage information for every machine on

which a job may run. A job may run on more than one machine because it is a

parallel job or because the job is vacated from one machine and rescheduled to

another machine.

To enable recording of resources by machine, you need to specify ACCT = A_ON

A_DETAIL in the configuration file.

The machine’s speed is part of the data collected. With this information, an

installation can develop a charge back program which can charge more or less for

resources consumed by a job on different machines. For more information on a

machine’s speed, refer to the machine stanza information. See “Defining machines”

on page 78.

Collecting job resource data based on events

In addition to collecting job resource information based upon machines used, you

can gather this information based upon an event or time that you specify. For

example, you may want to collect accounting information at the end of every work

shift or at the end of every week or month. To collect accounting information on

all machines in this manner, use the llctl command with the capture parameter:

llctl -g capture eventname

eventname is any string of continuous characters (no white space is allowed) that

defines the event about which you are collecting accounting data. For example, if

you were collecting accounting data on the graveyard work shift, your command

could be:

llctl -g capture graveyard

This command allows you to obtain a snapshot of the resources consumed by

active jobs up to and including the moment when you issued the command. If you

want to capture this type of information on a regular basis, you can set up a

crontab entry to invoke this command regularly. For example:

sample crontab for accounting

shift crontab 94/8/5

#

Customizing the configuration file

58 LoadLeveler: Using and Administering

|
|
|
|
|
|
|

Set up three shifts, first, second, and graveyard shift.

Crontab entries indicate the end of shift.

#M H d m day command

00 08 * * * /u/loadl/bin/llctl -g capture graveyard

00 16 * * * /u/loadl/bin/llctl -g capture first

00 00 * * * /u/loadl/bin/llctl -g capture second

For more information on the llctl command, refer to “llctl - Control LoadLeveler

daemons” on page 353. For more information on the collection of accounting

records, see “llq - Query job status” on page 386.

Collecting job resource information based on user accounts

If your installation is interested in keeping track of resources used on an account

basis, you can require all users to specify an account number in their job command

files. They can specify this account number with the account_no keyword which is

explained in detail in “Job command file keyword descriptions” on page 294.

Interactive POE jobs can specify an account number using the

LOADL_ACCOUNT_NO environment variable.

LoadLeveler validates this account number by comparing it against a list of

account numbers specified for the user in the user stanza in the administration file.

Account validation is under the control of the ACCT keyword in the configuration

file. The routine that performs the validation is called llacctval. You can supply

your own validation routine by specifying the ACCT_VALIDATION keyword in

the configuration file. The following are passed as character string arguments to

the validation routine:

v User name

v User’s login group name

v Account number specified on the Job

v Blank separated list of account numbers obtained from the user’s stanza in the

administration file.

The account validation routine must exit with a return code of zero if the

validation succeeds. If it fails, the return code is a nonzero number.

Collecting the accounting information and storing it into files

LoadLeveler stores the accounting information that it collects in a file called history

in the spool directory of the machine that initially scheduled this job, the schedd

machine. Data on parallel jobs are also stored in the history files.

Resource information collected on the LoadLeveler job is constrained by the

capabilities of the wait3 system call. Information for processes which fork child

processes will include data for those child processes as long as the parent process

waits for the child process to terminate. Complete data may not be collected for

jobs which are not composed of simple parent/child processes. For example, if you

have a LoadLeveler job which invokes an rsh command to execute a function on

another machine, the resources consumed on the other machine will not be

collected as part of the LoadLeveler accounting data.

LoadLeveler accounting uses the following types of files:

v The local history file which is local to each schedd machine is where job

resource information is first recorded. These files are usually named history and

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 59

are located in the spool directory of each schedd machine, but you may specify

an alternate name with the HISTORY keyword in either the global or local

configuration file.

v The global history file is a combination of the history files from some or all of

the machines in the LoadLeveler cluster merged together. The command

llacctmrg is used to collect files together into a global file. As the files are

collected from each machine, the local history file for that machine is reset to

contain no data. The file is named globalhist.YYYYMMDDHHmm. You may

specify the directory in which to place the file when you invoke the llacctmrg

command or you can specify the directory with the GLOBAL_HISTORY

keyword in the configuration file. The default value set up in the sample

configuration file is the local spool directory.

Producing accounting reports

You can produce three types of reports using either the local or global history file.

These reports are called the short, long, and extended versions. As their names

imply, the short version of the report is a brief listing of the resources used by

LoadLeveler jobs. The long version provides more comprehensive detail with

summarized resource usage, and the extended version of the report provides the

comprehensive detail with detailed resource usage.

If you do not specify a report type, you will receive the default short version. The

short report displays the number of jobs along with the total CPU usage according

to user, class, group, and account number. The extended version of the report

displays all of the data collected for every job.

v For examples of the short and extended versions of the report, see “llsummary -

Return job resource information for accounting” on page 425.

v For information on the accounting APIs, refer to Chapter 16, “Application

programming interfaces (APIs),” on page 437.

Correlating AIX and LoadLeveler accounting records

For jobs running on AIX systems, you can use a job accounting key to correlate

AIX accounting records with LoadLeveler accounting records. The job accounting

key uniquely identifies each job step. LoadLeveler derives this key from the job

key and the date and time at which the job entered the queue (see the QDate

variable description on page 259). The key is associated with the starter process for

the job step and any of its child processes.

For checkpointed jobs, LoadLeveler does not change the job accounting key,

regardless of how it restarts the job step. Jobs restarted from a checkpoint file or

through a new job step retain the job accounting key for the original job step.

To access the job accounting key for a job step, you can use the following

interfaces:

v The llsummary command, requesting the long version of the report. For details

about using this command, see “llsummary - Return job resource information for

accounting” on page 425.

v The GetHistory subroutine. For details about using this subroutine, see “Report

generation subroutine” on page 441.

v The ll_get_data subroutine, through the LL_StepAcctKey specification. For

details about using this subroutine, see “ll_get_data subroutine” on page 458.

For information about AIX accounting records, see the system accounting topic in

AIX 5L System Management Guide: Operating System and Devices.

Customizing the configuration file

60 LoadLeveler: Using and Administering

|

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

64-bit support for accounting functions

LoadLeveler 64-bit support for accounting functions includes:

v Statistics of jobs such as usage, limits, consumable resources, and other 64-bit

integer data are preserved in the history file as rusage64, rlimit64 structures and

as data items of type int64_t.

v The LL_job_step structure defined in llapi.h allows access to the 64-bit data

items either as data of type int64_t or as data of type int32_t. In the latter case,

the returned values may be truncated.

v The llsummary command displays 64-bit information where appropriate.

v The data access API supports both 64-bit and 32-bit access to accounting and

usage information in a history file. Please refer to the code fragment on page 484

for an example of how to use the ll_get_data subroutine to access information

stored in a LoadLeveler history file.

Example: Setting up job accounting files

The following sample procedure walks you through the process of collecting

account data. You can perform all of the steps or just the ones that apply to your

situation.

1. Edit the configuration file according to the following table:

 Edit this keyword: To:

ACCT Turn accounting and account validation on and off and specify

detailed accounting.

ACCT_VALIDATION Specify the account validation routine.

GLOBAL_HISTORY Specify a directory in which to place the global history files.

2. Specify account numbers and set up account validation by performing the

following steps:

a. Specify a list of account numbers a user may use when submitting jobs, by

using the account keyword in the user stanza in the administration file.

b. Instruct users to associate an account number with their job, by using the

account_no keyword in the job command file.

Alternative: You may use the LoadLeveler GUI to associate account

numbers with jobs:

Select File → Build a Job from the main window.

 � The Build a Job window appears.

Type The account number in the account_no field on the Build a Job

window.

Press OK

 � The window closes and you return to the main window.
c. Specify the ACCT_VALIDATION keyword in the configuration file that

identifies the module that will be called to perform account validation. The

default module is called llacctval. You can replace this module with your

installation’s own accounting routine by specifying a new module with this

keyword.

3. Specify machines and their weights by using the speed keyword in a machine’s

machine stanza in the administration file.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 61

|

|
|

|

Also, if you have in your cluster machines of differing speeds and you want

LoadLeveler accounting information to be normalized for these differences,

specify cpu_speed_scale=true in each machine’s respective machine stanza.

For example, suppose you have a cluster of two machines, called A and B,

where Machine B is three times as fast as Machine A. Machine A has

speed=1.0, and Machine B has speed=3.0. Suppose a job runs for 12 CPU

seconds on Machine A. The same job runs for 4 CPU seconds on Machine B.

When you specify cpu_speed_scale=true, the accounting information collected

on Machine B for that job shows the normalized value of 12 CPU seconds

rather than the actual 4 CPU seconds.

4. Merge multiple files collected from each machine into one file, using the

llacctmrg command.

Alternative: You may use the LoadLeveler GUI to merge the files:

Select A machine from the Machines window

Select Admin → Collect Account Data... from the Machines window.

 � A window appears prompting you to enter a directory name where

the file will be placed. If no directory is specified, the directory

specified with the GLOBAL_HISTORY keyword in the global

configuration file is the default directory.

Press OK

 � The window closes and you return to the main window.

5. Report job information on all the jobs in the history file, using the llsummary

command.

Alternative: You may use the LoadLeveler GUI to report job information:

Select Admin → Create Account Report... from the Machines window.

 Note: If you want to receive an extended accounting report, select the

extended cascading button.

 � A window appears prompting you to enter the following information:

v A short, long, or extended version of the output. The short version is

the default version.

v Start and end date ranges for the report. If no date is specified, the

default is to report all of the data in the report.

v The name of the input data file.

v The name of the output data file.

Press OK

 � The window closes and you return to the main window. The report

appears in the Messages window if no output data file was specified.

Managing job status through control expressions

You can control running jobs by using five control functions as Boolean expressions

in the configuration file. These functions are useful primarily for serial jobs. You

define the expressions, using normal C conventions, with the following functions:

v START

v SUSPEND

Customizing the configuration file

62 LoadLeveler: Using and Administering

|

|

v CONTINUE

v VACATE

v KILL

The expressions are evaluated for each job running on a machine using both the

job and machine attributes. Some jobs running on a machine may be suspended

while others are allowed to continue.

The START expression is evaluated twice; once to see if the machine can accept

jobs to run and second to see if the specific job can be run on the machine. The

other expressions are evaluated after the jobs have been dispatched and in some

cases, already running.

When evaluating the START expression to determine if the machine can accept

jobs, Class != "Z" evaluates to true only if Z is not in the class definition. This

means that if two different classes are defined on a machine, Class != "Z" (where Z

is one of the defined classes) always evaluates to false when specified in the

START expression and, therefore, the machine will not be considered to start jobs.

Typically, machine load average, keyboard activity, time intervals, and job class are

used within these various expressions to dynamically control job execution.

For additional information about:

v Time-related variables that you may use for this keyword, see “Variables to use

for setting times” on page 260.

v Coding these control expressions in the configuration file, see Chapter 11,

“Configuration file reference,” on page 211.

How control expressions affect jobs

After LoadLeveler selects a job for execution, the job can be in any of several

states. Figure 10 on page 64 shows how the control expressions can affect the state

a job is in. The rectangles represent job or daemon states, and the diamonds

represent the control expressions.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 63

|

|
|

|
|

Criteria used to determine when a LoadLeveler job will enter Start, Suspend,

Continue, Vacate, and Kill states are defined in the LoadLeveler configuration files

and may be different for each machine in the cluster. They may be modified to

meet local requirements.

Tracking job processes

When a job terminates, its orphaned processes may continue to consume or hold

resources, thereby degrading system performance, or causing jobs to hang or fail.

Process tracking allows LoadLeveler to cancel any processes (throughout the entire

cluster), left behind when a job terminates. Using process tracking is optional.

LoadLeveler for Linux does not support process tracking.

There are two keywords used in specifying process tracking:

PROCESS_TRACKING

To activate process tracking, set PROCESS_TRACKING=TRUE in the

LoadLeveler global configuration file. By default, PROCESS_TRACKING is

set to FALSE.

PROCESS_TRACKING_EXTENSION

This keyword specifies the path to the kernel extension binary LoadL_pt_ke in

the local or global configuration file. If the

PROCESS_TRACKING_EXTENSION keyword is not supplied, then

LoadLeveler will search the default directory $HOME/bin.

Figure 10. How control expressions affect jobs

Customizing the configuration file

64 LoadLeveler: Using and Administering

|

The process tracking kernel extension is not unloaded when the startd daemon

terminates. Therefore if a mismatch in the version of the loaded kernel extension

and the installed kernel extension is found when the startd starts up the daemon

will exit. In this case a reboot of the node is needed to unload the currently loaded

kernel extension. If you install a new version of LoadLeveler which contains a new

version of the kernel extension you may need to reboot the node.

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Querying multiple LoadLeveler clusters

This section applies only to those installations having more than one LoadLeveler

cluster.

You can query, submit, or cancel jobs in multiple LoadLeveler clusters by setting

up a master configuration file for each cluster and using the LOADL_CONFIG

environment variable to specify the name of the master configuration file that the

LoadLeveler commands must use. The master configuration file must be located in

the /etc directory and the file name must have a format of base_name.cfg where

base_name is a user defined identifier for the cluster.

The default name for the master configuration file is /etc/LoadL.cfg. The format for

the LOADL_CONFIG environment variable is

LOADL_CONFIG=/etc/base_name.cfg or LOADL_CONFIG=base_name. When you

use the form LOADL_CONFIG=base_name, the prefix /etc and suffix .cfg are

appended to the base_name.

The following example explains how you can set up a machine to query multiple

clusters:

You can configure /etc/LoadL.cfg to point to the configuration files for the ″default″

cluster, and you can configure /etc/othercluster.cfg to point to the configuration

files of another cluster which the user can select.

For example, you can enter the following query command:

$ llq

The above command uses the configuration from /etc/LoadL.cfg and queries job

information from the ″default″ cluster.

To send a query to the cluster defined in the configuration file of

/etc/othercluster.cfg, enter:

$ env LOADL_CONFIG=othercluster llq

Note that the machine from which you issue the llq command is considered as a

submit-only machine by the other cluster.

Handling switch-table errors

You may use the following configuration file keywords to control how LoadLeveler

responds to switch-table errors:

v ACTION_ON_SWITCH_TABLE_ERROR

v DRAIN_ON_SWITCH_TABLE_ERROR

v RESUME_ON_SWITCH_TABLE_ERROR_CLEAR

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 65

|

|
|

For information about configuration file keyword syntax and other details, see

Chapter 11, “Configuration file reference,” on page 211.

Providing additional job-processing controls through user exits

LoadLeveler allows administrators to further configure the environment through

user exits. Table 12 lists these additional job-processing controls.

 Table 12. Roadmap of administrator tasks accomplished through user exits

To learn about: Read the following:

Writing a program to control when jobs

are scheduled to run

“Controlling the central manager scheduling

cycle”

Writing a pair of programs to override

the default LoadLeveler DCE

authentication method

“Handling DCE security credentials” on page 67

Writing a program to refresh an AFS

token when a job starts

“Handling an AFS token” on page 69

Writing a program to check or modify

job requests when they are submitted

“Filtering a job script” on page 70

Writing programs to run before and

after job requests

“Writing prolog and epilog programs” on page 70

Overriding the LoadLeveler default

mail notification method

“Using your own mail program” on page 75

Correctly specifying configuration file

keywords

Chapter 11, “Configuration file reference,” on page

211

Controlling the central manager scheduling cycle

To determine when to run the LoadLeveler scheduling algorithm, the central

manager uses the values set in the configuration file for the

NEGOTIATOR_INTERVAL and the NEGOTIATOR_CYCLE_DELAY keywords.

When the NEGOTIATOR_INTERVAL is set to zero, the central manager will not

run the scheduling algorithm until instructed to do so by an authorized process.

This setting enables your program to control the central manager’s scheduling

activity through one of the following:

v The llrunscheduler command.

v The ll_run_scheduler subroutine.

Both the command and the subroutine instruct the central manager to run the

scheduling algorithm.

You might choose to use this setting if, for example, you want to write a program

that directly controls the assignment of the system priority for all LoadLeveler jobs.

In this particular case, you would complete the following steps to control system

priority assignment and the scheduling cycle:

1. Decide the following:

v Which system priority value to assign to jobs from specific sources or with

specific resource requirements.

v How often the central manager should run the scheduling algorithm. Your

program has to be designed to issue the ll_run_scheduler subroutine at

regular intervals; otherwise, LoadLeveler will not attempt to schedule any

job steps.

You also need to understand how changing the system priority affects the job

queue. After you successfully use the ll_modify subroutine or the llmodify

Customizing the configuration file

66 LoadLeveler: Using and Administering

|

|
|

||

||

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

command to change system priority values, LoadLeveler will not readjust the

values for those job steps when the negotiator recalculates priorities at regular

intervals set through the

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword. Also, you

can change the system priority for jobs only when those jobs are in the Idle

state or a state similar to it. To determine which job states are similar to the

Idle state or to the Running state, see Table 5 on page 18.

2. Code a program to use LoadLeveler APIs to perform the following functions:

a. Use the Data Access APIs to obtain data about all jobs.

b. Determine whether jobs have been added or removed.

c. Use the ll_modify subroutine to set the system priority for the LoadLeveler

jobs. The values you set through this subroutine will not be readjusted

when the negotiator recalculates job step priorities.

d. Use the ll_run_scheduler subroutine to instruct the central manager to run

the scheduling algorithm.

e. Set a timer for the scheduling interval, to repeat the scheduling instruction

at regular intervals. This step is required to replace the effect of setting the

configuration keyword NEGOTIATOR_CYCLE_DELAY, which LoadLeveler

ignores when NEGOTIATOR_INTERVAL is set to zero.
3. In the configuration file, set values for the following keywords:

v Set the NEGOTIATOR_INTERVAL keyword to zero to stop the central

manager from automatically recalculating system priorities for jobs.

v (Optional) Set the SYSPRIO_THRESHOLD_TO_IGNORE_STEP keyword to

specify a threshold value. If the system priority assigned to a job step is less

than this threshold value, the job will remain idle.
4. Issue the llctl command with either the reconfig or recycle keyword.

Otherwise, LoadLeveler will not process the modifications you made to the

configuration file.

5. (Optional) To make sure that the central manager’s automatic scheduling

activity has been disabled (by setting the NEGOTIATOR_INTERVAL keyword

to zero), use the llstatus command.

6. Run your program under a user ID with administrator authority.

Once this procedure is complete, you might want to use one or more of the

following commands to make sure that jobs are scheduled according to the correct

system priority. The value of q_sysprio in command output indicates the system

priority for the job step.

v Use the command llq -s to detect whether a job step is idle because its system

priority is below the value set for the

SYSPRIO_THRESHOLD_TO_IGNORE_STEP keyword.

v Use the command llq -l to display the previous system priority for a job step.

v When unusual circumstances require you to change system priorities manually:

1. Use the command llmodify -s to set the system priority for LoadLeveler jobs.

The values you set through this command will not be readjusted when the

negotiator recalculates job step priorities.

2. Use the llrunscheduler command to instruct the central manager to run the

scheduling algorithm.

Handling DCE security credentials

You can write a pair of programs to override the default LoadLeveler DCE

authentication method. To enable the programs, use the

DCE_AUTHENTICATION_PAIR keyword in your configuration file. You may

choose from one of the following pairs provided with LoadLeveler:

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 67

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|
|

|

|

|
|
|

|
|

v If you specify DCE_ENABLEMENT=TRUE, LoadLeveler uses the default

program pair:

DCE_AUTHENTICATION_PAIR = $(BIN)/lldelegate, $(BIN)/llimpersonate

v As an alternative, you can also specify the program pair:

DCE_AUTHENTICATION_PAIR = $(BIN)/llgetdce, $(BIN)/llsetdce

If DCE_ENABLEMENT=FALSE is specified, DCE credential forwarding will not

take place by default in this case.

Specifying the DCE_AUTHENTICATION_PAIR keyword enables LoadLeveler

support for forwarding DCE credentials to LoadLeveler jobs. You may override the

default function provided by LoadLeveler to establish DCE credentials by

substituting your own programs.

Using the default program pair: lldelegate and llimpersonate

The program pair, lldelegate and llimpersonate, forwards DCE credentials using a

technique referred to as credential forwarding. This technique is implemented

using DCE API calls to forward the user’s credentials from the lldelegate process.

The submit process invokes the lldelegate process (through the llsubmit command

or the submit API) to the llimpersonate process invoked by the LoadLeveler

starter process running on the machines which will execute the user’s program.

This method of credential forwarding depends on the user obtaining a forwardable

credential prior to invoking llsubmit or a program using the submit API (such as

POE). The user can obtain forwardable credentials by specifying the -f flag when

invoking either dce_login or kinit.

Specification of the lldelegate/llimpersonate pair requires that LoadLeveler use SP

Security Services, and the ssp.clients SP Authenticated Clients Commands fileset of

the PSSP install image. You must also configure LoadLeveler to exploit DCE

security.

Using the alternative program pair: llgetdce and llsetdce

The program pair, llgetdce and llsetdce, forwards DCE credentials by copying

credential cache files from the submitting machine to the executing machines.

While this technique may require less overhead, it has been known to produce

credentials on the executing machines which are not fully capable of being

forwarded by rsh commands. This is the only pair of programs offered in earlier

releases of LoadLeveler.

Forwarding DCE credentials

An example of a credentials object is a character string containing the DCE

principle name and a password. program1 writes the following to standard output:

v The length of the handle to follow

v The handle

If program1 encounters errors, it writes error messages to standard error.

program2 receives the following as standard input:

v The length of the handle to follow

v The same handle written by program1

program2 writes the following to standard output:

v The length of the login context to follow

Customizing the configuration file

68 LoadLeveler: Using and Administering

|

|

v An exportable DCE login context, which is the idl_byte array produced from the

sec_login_export_context DCE API call. For more information, see the DCE

Security Services API chapter in the Distributed Computing Environment for

AIX Application Development Reference.

v A character string suitable for assigning to the KRB5CCNAME environment

variable This string represents the location of the credentials cache established in

order for program2 to export the DCE login context.

If program2 encounters errors, it writes error messages to standard error. The parent

process, the LoadLeveler starter process, writes those messages to the starter log.

For examples of programs that enable DCE security credentials, see the

samples/lldce subdirectory in the release directory.

Handling an AFS token

You can write a program, run by the scheduler, to refresh an AFS token when a job

is started. To invoke the program, use the AFS_GETNEWTOKEN keyword in

your configuration file.

Before running the program, LoadLeveler sets up standard input and standard

output as pipes between the program and LoadLeveler. LoadLeveler also sets up

the following environment variables:

LOADL_STEP_OWNER

The owner (UNIX user name) of the job

LOADL_STEP_COMMAND

The name of the command the user’s job step invokes.

LOADL_STEP_CLASS

The class this job step will run.

LOADL_STEP_ID

The step identifier, generated by LoadLeveler.

LOADL_JOB_CPU_LIMIT

The number of CPU seconds the job is limited to.

LOADL_WALL_LIMIT

The number of wall clock seconds the job is limited to.

LoadLeveler writes the following current AFS credentials, in order, over the

standard input pipe:

v The ktc_principal structure indicating the service.

v The ktc_principal structure indicating the client.

v The ktc_token structure containing the credentials.

The ktc_principal structure is defined in the AFS header file afs_rxkad.h. The

ktc_token structure is defined in the AFS header file afs_auth.h.

LoadLeveler expects to read these same structures in the same order from the

standard output pipe, except these should be refreshed credentials produced by the

user exit.

The user exit can modify the passed credentials (to extend their lifetime) and pass

them back, or it can obtain new credentials. LoadLeveler takes whatever is

returned and uses it to authenticate the user prior to starting the user’s job.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 69

Filtering a job script

You can write a program to filter a job script when the job is submitted. This

program can, for example, modify defaults or perform site specific verification of

parameters. To invoke the program, specify the SUBMIT_FILTER keyword in your

configuration file.

LoadLeveler sets the following environment variables when the program is

invoked:

LOADL_ACTIVE

LoadLeveler version

LOADL_STEP_COMMAND

Job command file name

LOADL_STEP_ID

The job identifier, generated by LoadLeveler

LOADL_STEP_OWNER

The owner (UNIX user name) of the job

For details about specific keyword syntax and use in the configuration file, see

Chapter 11, “Configuration file reference,” on page 211.

Writing prolog and epilog programs

An administrator can write prolog and epilog user exits that can run before and

after a LoadLeveler job runs, respectively.

Prolog and epilog programs fall into two types:

v Those that run as the LoadLeveler user ID.

v Those that run in a user’s environment.

Depending on the type of processing you want to perform before or after a job

runs, specify one or more of the following configuration file keywords, in any

combination:

v To run a prolog or epilog program under the LoadLeveler user ID, specify

JOB_PROLOG or JOB_EPILOG, respectively.

v To run a prolog or epilog program under the user’s environment, specify

JOB_USER_PROLOG or JOB_USER_EPILOG, respectively.

You do not have to provide a prolog/epilog pair of programs. You may, for

example, use only a prolog program that runs under the LoadLeveler user ID.

For details about specific keyword syntax and use in the configuration file, see

Chapter 11, “Configuration file reference,” on page 211.

A user environment prolog or epilog runs with AFS authentication, DCE

authentication, or both (if either is installed and enabled). For security reasons, you

must code these programs on the machines where the job runs and on the machine

that schedules the job. If you do not define a value for these keywords, the user

environment prolog and epilog settings on the executing machine are ignored.

The user environment prolog and epilog can set environment variables for the job

by sending information to standard output in the following format:

env id = value

Where:

id Is the name of the environment variable

value Is the value (setting) of the environment variable

Customizing the configuration file

70 LoadLeveler: Using and Administering

|

|
|

|
|
|
|
|
|
|

|
|

|
|

For example, the user environment prolog below sets the environment variable

STAGE_HOST for the job:

#!/bin/sh

echo env STAGE_HOST=shd22

Coding conventions for prolog programs

The prolog program is invoked by the starter process. Once the starter process

invokes the prolog program, the program obtains information about the job from

environment variables.

Syntax:

prolog_program

Where prolog_program is the name of the prolog program as defined in the

JOB_PROLOG keyword.

No arguments are passed to the program, but several environment variables are

set. For more information on these environment variables, see “Run-time

environment variables” on page 324.

The real and effective user ID of the prolog process is the LoadLeveler user ID. If

the prolog program requires root authority, the administrator must write a secure

C or Perl program to perform the desired actions. You should not use shell scripts

with set uid permissions, since these scripts may make your system susceptible to

security problems.

Return code values:

0 The job will begin.

If the prolog program is ended with a signal, the job does not begin and a message

is written to the starter log.

Sample prolog programs:

v Sample of a prolog program for korn shell

#!/bin/ksh

Set up environment

set -a

. /etc/environment

. /.profile

export PATH="$PATH:/loctools/lladmin/bin"

export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_STEP_ID.prolog"

Do set up based upon job step class

case $LOADL_STEP_CLASS in

 # A OSL job is about to run, make sure the osl filesystem is

 # mounted. If status is negative then filesystem cannot be

 # mounted and the job step should not run.

 "OSL")

 mount_osl_files >> $LOG

 if [status = 0]

 then EXIT_CODE=1

 else

 EXIT_CODE=0

 fi

 ;;

A simulation job is about to run, simulation data has to

be made available to the job. The status from copy script must

be zero or job step cannot run.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 71

|

"sim")

 copy_sim_data >> $LOG

if [status = 0]

 then EXIT_CODE=0

 else

 EXIT_CODE=1

 fi

 ;;

All other job will require free space in /tmp, make sure

enough space is available.

*)

 check_tmp >> $LOG

 EXIT_CODE=$?

 ;;

esac

The job step will run only if EXIT_CODE == 0

exit $EXIT_CODE

v Sample of a prolog program for C shell

#!/bin/csh

Set up environment

source /u/loadl/.login

setenv PATH "${PATH}:/loctools/lladmin/bin"

setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_STEP_ID}.prolog"

Do set up based upon job step class

switch ($LOADL_STEP_CLASS)

 # A OSL job is about to run, make sure the osl filesystem is

 # mounted. If status is negative then filesystem cannot be

 # mounted and the job step should not run.

 case "OSL":

 mount_osl_files >> $LOG

 if ($status < 0) then

 set EXIT_CODE = 1

 else

 set EXIT_CODE = 0

 endif

 breaksw

A simulation job is about to run, simulation data has to

be made available to the job. The status from copy script must

be zero or job step cannot run.

case "sim":

 copy_sim_data >> $LOG

 if ($status == 0) then

 set EXIT_CODE = 0

 else

 set EXIT_CODE = 1

 endif

 breaksw

All other job will require free space in /tmp, make sure

enough space is available.

default:

 check_tmp >> $LOG

 set EXIT_CODE = $status

 breaksw

endsw

The job step will run only if EXIT_CODE == 0

exit $EXIT_CODE

Coding conventions for epilog programs

The installation defined epilog program is invoked after a job step has completed.

The purpose of the epilog program is to perform any required clean up such as

Customizing the configuration file

72 LoadLeveler: Using and Administering

|

unmounting file systems, removing files, and copying results. The exit status of

both the prolog program and the job step is set in environment variables.

Syntax:

epilog_program

Where epilog_program is the name of the epilog program as defined in the

JOB_EPILOG keyword.

No arguments are passed to the program but several environment variables are set.

These environment variables are described in “Run-time environment variables” on

page 324. In addition, the following environment variables are set for the epilog

programs:

LOADL_PROLOG_EXIT_CODE

The exit code from the prolog program. This environment variable is set

only if a prolog program is configured to run.

LOADL_USER_PROLOG_EXIT_CODE

The exit code from the user prolog program. This environment variable is

set only if a user prolog program is configured to run.

LOADL_JOB_STEP_EXIT_CODE

The exit code from the job step.

Note: To interpret the exit status of the prolog program and the job step, convert

the string to an integer and use the macros found in the sys/wait.h file.

These macros include:

v WEXITSTATUS: gives you the exit code

v WTERMSIG: gives you the signal that terminated the program

v WIFEXITED: tells you if the program exited

v WIFSIGNALED: tells you if the program was terminated by a signal

The exit codes returned by the WEXITSTATUS macro are the valid codes.

However, if you look at the raw numbers in sys/wait.h, the exit code may

appear to be 256 times the expected return code. The numbers in sys/wait.h

are the wait3 system calls.

Sample epilog programs:

v Sample of an epilog program for korn shell

#!/bin/ksh

Set up environment

set -a

. /etc/environment

. /.profile

export PATH="$PATH:/loctools/lladmin/bin"

export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_STEP_ID.epilog"

if [[-z $LOADL_PROLOG_EXIT_CODE]]

then

echo "Prolog did not run" >> $LOG

else

echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG

fi

if [[-z $LOADL_USER_PROLOG_EXIT_CODE]]

 then

 echo "User environment prolog did not run" >> $LOG

 else

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 73

echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG

fi

if [[-z $LOADL_JOB_STEP_EXIT_CODE]]

 then

 echo "Job step did not run" >> $LOG

 else

 echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG

fi

Do clean up based upon job step class

case $LOADL_STEP_CLASS in

 # A OSL job just ran, unmount the filesystem.

 "OSL")

 umount_osl_files >> $LOG

 ;;

 # A simulation job just ran, remove input files.

 # Copy results if simulation was successful (second argument

 # contains exit status from job step).

 "sim")

 rm_sim_data >> $LOG

 if [$2 = 0]

 then copy_sim_results >> $LOG

 fi

 ;;

Clean up /tmp

*)

 clean_tmp >> $LOG

 ;;

esac

v Sample of an epilog program for C shell

#!/bin/csh

Set up environment

source /u/loadl/.login

setenv PATH "${PATH}:/loctools/lladmin/bin"

setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_STEP_ID}.prolog"

if (${?LOADL_PROLOG_EXIT_CODE}) then

echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG

else

echo "Prolog did not run" >> $LOG

endif

if (${?LOADL_USER_PROLOG_EXIT_CODE}) then

 echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG

 else

 echo "User environment prolog did not run" >> $LOG

endif

if (${?LOADL_JOB_STEP_EXIT_CODE}) then

 echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG

 else

 echo "Job step did not run" >> $LOG

endif

Do clean up based upon job step class

switch ($LOADL_STEP_CLASS)

 # A OSL job just ran, unmount the filesystem.

 case "OSL":

 umount_osl_files >> $LOG

 breaksw

Customizing the configuration file

74 LoadLeveler: Using and Administering

A simulation job just ran, remove input files.

Copy results if simulation was successful (second argument

contains exit status from job step).

case "sim":

 rm_sim_data >> $LOG

 if ($argv{2} == 0) then

 copy_sim_results >> $LOG

 endif

 breaksw

Clean up /tmp

default:

 clean_tmp >> $LOG

 breaksw

endsw

Using your own mail program

You can write a program to override the LoadLeveler default mail notification

method. You can use this program, for example, to display your own messages to

users when a job completes, or to automate tasks such as sending error messages

to a network manager.

The syntax for the program is the same as it is for standard UNIX mail programs;

the command is called with the following arguments:

v -s to indicate a subject.

v A pointer to a string containing the subject.

v A pointer to a string containing a list of mail recipients.

The mail message is taken from standard input.

To enable this program to replace the default mail notification method, use the

MAIL keyword in the configuration file. For details about specific keyword syntax

and use in the configuration file, see Chapter 11, “Configuration file reference,” on

page 211.

Customizing the configuration file

Chapter 3. Configuring the LoadLeveler environment 75

|
|
|
|

|
|
|
|

76 LoadLeveler: Using and Administering

Chapter 4. Defining LoadLeveler resources to administer

After installing LoadLeveler, you may customize it by modifying the

administration file. The administration file optionally lists and defines the

machines in the LoadLeveler cluster and the characteristics of classes, users, and

groups.

LoadLeveler does not prevent you from having multiple copies of administration

files, but you need to be sure to update all the copies whenever you make a

change to one. Having only one administration file prevents any confusion.

Table 13 lists the LoadLeveler resources you may define by modifying the

administration file.

 Table 13. Roadmap of tasks for modifying the LoadLeveler administration file

To learn about: Read the following:

Modifying the administration

file

“Steps for modifying an administration file”

Defining LoadLeveler

resources to administer

v “Defining machines” on page 78

v “Defining adapters” on page 81

v “Defining classes” on page 83

v “Defining users” on page 87

v “Defining groups” on page 89

Correctly specifying

administration file keywords

Chapter 12, “Administration file reference,” on page 263

Steps for modifying an administration file

All LoadLeveler commands, daemons, and processes read the administration and

configuration files at start up time. If you change the administration or

configuration files after LoadLeveler has already started, any LoadLeveler

command or process, such as the LoadL_starter process, will read the newer

version of the files while the running daemons will continue to use the data from

the older version. To ensure that all LoadLeveler commands, daemons, and

processes use the same configuration data, run the reconfiguration command on all

machines in the cluster each time the administration or configuration files are

changed.

Before you begin: You need to:

v Ensure that the installation procedure has completed successfully and that the

administration file, LoadL_admin, exists in LoadLeveler’s home directory. For

additional details about installation, see LoadLeveler Installation Guide.

v Know how to correctly specify keywords in the administration file. For

information about administration file keyword syntax and other details, see

Chapter 12, “Administration file reference,” on page 263.

v (Optional) Know how to correctly issue the llextRPD or llextSDR commands, if

you choose to use them. For information about these commands, see “llextRPD -

Extract data from an RSCT peer domain” on page 362 or “llextSDR - Extract

adapter information from the SDR” on page 365, respectively.

 77

|
|

||

||

|
|
|

|
|
|

|

|

|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

Perform the following steps to modify the administration file, LoadL_admin:

1. Identify yourself as a LoadLeveler administrator using the LOADL_ADMIN

keyword.

2. In the administration file, provide the following stanza types:

v One machine stanza to define the central manager for the LoadLeveler

cluster. You also may create machine stanzas for other machines in the

LoadLeveler cluster.

You may use the llextSDR or llextRPD commands to automatically create

machine stanzas.

v (Optional) An adapter stanza for each type of network adapter that you want

LoadLeveler jobs to be able to request.

You may use the llextSDR or llextRPD commands to automatically create

adapter stanzas.

3. (Optional) Specify one or more of the following stanza types:

v A class stanza for each set of LoadLeveler jobs that have similar

characteristics or resource requirements.

v A user stanza for specific users, if their requirements do not match those

characteristics defined in the default user stanza.

v A group stanza for each set of LoadLeveler users that have similar

characteristics or resource requirements.

4. (Optional) You may specify values for additional administration file keywords,

which are listed and described in “Administration file keyword descriptions”

on page 267.

5. Notify LoadLeveler daemons by issuing the llctl command with either the

reconfig or recycle keyword. Otherwise, LoadLeveler will not process the

modifications you made to the administration file.

Defining machines

The information in a machine stanza defines the characteristics of that machine.

You do not have to specify a machine stanza for every machine in the LoadLeveler

cluster, but you must have one machine stanza for the machine that will serve as

the central manager.

If you do not specify a machine stanza for a machine in the cluster, the machine

and the central manager still communicate and jobs are scheduled on the machine

but the machine is assigned the default values specified in the default machine

stanza. If there is no default stanza, the machine is assigned default values set by

LoadLeveler.

Any machine name used in the stanza must be a name which can be resolved to

an IP address. This name is referred to as an interface name because the name can

be used for a program to interface with the machine. Generally, interface names

match the machine name, but they do not have to.

By default, LoadLeveler will append the DNS domain name to the end of any

machine name without a domain name appended before resolving its address. If

Customizing the administration file

78 LoadLeveler: Using and Administering

|

|
|

|

|

|
|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|

|
|
|

|

|
|
|

|

you specify a machine name without a domain name appended to it and you do

not want LoadLeveler to append the DNS domain name to it, specify the name

using a trailing period. You may have a need to specify machine names in this way

if you are running a cluster with more than one nameserving technique. For

example, if you are using a DNS nameserver and running NIS, you may have

some machine names which are resolved by NIS which you do not want

LoadLeveler to append DNS names to. In situations such as this, you also want to

specify name_server keyword in your machine stanzas.

Under the following conditions, you must have a machine stanza for the machine

in question:

v If you set the MACHINE_AUTHENTICATE keyword to true in the

configuration file, then you must create a machine stanza for each node that

LoadLeveler includes in the cluster.

v If the machine’s hostname (the name of the machine returned by the UNIX

hostname command) does not match an interface name. In this case, you must

specify the interface name as the machine stanza name and specify the

machine’s hostname using the alias keyword.

v If the machine’s hostname does match an interface name but not the correct

interface name.

For information on automatically creating machine stanzas, see “llextSDR - Extract

adapter information from the SDR” on page 365 or “llextRPD - Extract data from

an RSCT peer domain” on page 362.

Planning considerations for defining machines

Before customizing the administration file, consider the following:

v Node availability

Some workstation owners might agree to accept LoadLeveler jobs only when

they are not using the workstation themselves. Using LoadLeveler keywords,

these workstations can be configured to be available at designated times only.

v Common name space

To run jobs on any machine in the LoadLeveler cluster, a user needs the same

uid (the user ID number for a user) and gid (the group ID number for a group)

on every machine in the cluster.

For example, if there are two machines in your LoadLeveler cluster, machine_1

and machine_2, user john must have the same user ID and login group ID in the

/etc/passwd file on both machines. If user john has user ID 1234 and login group

ID 100 on machine_1, then user john must have the same user ID and login

group ID in /etc/passwd on machine_2. (LoadLeveler requires a job to run with

the same group ID and user ID of the person who submitted the job.)

If you do not have a user ID on one machine, your jobs will not run on that

machine. Also, many commands, such as llq, will not work correctly if a user

does not have a user ID on the central manager machine.

However, there are cases where you may choose to not give a user a login ID on

a particular machine. For example, a user does not need an ID on every

submit-only machine; the user only needs to be able to submit jobs from at least

one such machine. Also, you may choose to restrict a user’s access to a schedd

machine that is not a public scheduler; again, the user only needs access to at

least one schedd machine.

v Resource handling

Customizing the administration file

Chapter 4. Defining LoadLeveler resources to administer 79

|

|

Some nodes in the LoadLeveler cluster might have special software installed that

users might need to run their jobs successfully. You should configure

LoadLeveler to distinguish those nodes from other nodes using, for example,

machine features.

Machine stanza format and keyword summary

Machine stanzas take the following format. Default values for keywords appear in

bold:

Examples: Machine stanzas

v Example 1

In this example, the machine is being defined as the central manager.

machine_a: type = machine

central_manager = true # central manager runs here

v Example 2

This example sets up a submit-only node. Note that the submit-only keyword in

the example is set to true, while the schedd_host keyword is set to false. You

must also ensure that you set the schedd_host to true on at least one other node

in the cluster.

machine_b: type = machine

central_manager = false # not the central manager

schedd_host = false # not a scheduling machine

submit_only = true # submit only machine

alias = machineb # interface name

v Example 3

In the following example, machine_c is the central manager and has an alias

associated with it:

machine_c: type = machine

central_manager = true # central manager runs here

schedd_host = true # defines a public scheduler

alias = brianne

label: type = machine

adapter_stanzas = stanza_list

alias = machine_name

central_manager = true | false | alt

cpu_speed_scale = true | false

dce_host_name = dce hostname

machine_mode = batch | interactive | general

master_node_exclusive = true | false

max_jobs_scheduled = number

name_server = list

pool_list = pool_numbers

reservation_permitted = true | false

resources = name(count) name(count) ... name(count)

schedd_fenced = true | false

schedd_host = true | false

spacct_excluse_enable = true | false

speed = number

submit_only = true | false

Figure 11. Format of a machine stanza

Customizing the administration file

80 LoadLeveler: Using and Administering

|

Defining adapters

An adapter stanza identifies network adapters that are available on the machines

in the LoadLeveler cluster. If you want LoadLeveler jobs to be able to request

specific adapters, you must either specify adapter stanzas or configure dynamic

adapters in the administration file.

Note the following when using an adapter stanza:

v An adapter stanza is required for each adapter stanza name you specify on the

adapter_stanzas keyword of the machine stanza.

v The adapter_name, interface_address, and interface_name keywords are

required. For an SP switch adapter, the switch_node_number keyword is also

required.

v For a High Performance Switch (HPS), the logical_id and network_id keywords

are required.

For more information about dynamic adapters, see “Configuring dynamic

adapters.”

For information on creating adapter stanzas, see “llextSDR - Extract adapter

information from the SDR” on page 365 for PSSP domains or “llextRPD - Extract

data from an RSCT peer domain” on page 362 for peer domains.

Configuring dynamic adapters

LoadLeveler for Linux does not support dynamic adapter configurations.

LoadLeveler can dynamically determine the adapters in any OSI that has RSCT

installed. This is true for an OSI that is in either a PEER domain or a PSSP domain.

LoadLeveler must be told on an OSI basis if it is to handle dynamic adapter

configuration changes for that OSI. The specification of whether to use dynamic or

static adapter configuration for an OSI is done through the presence or absence of

the machine stanza’s adapter_stanzas keyword.

If a machine stanza in the administration file contains an adapter_stanzas

statement then this is taken as a directive by the LoadLeveler administrator to use

only those specified adapters. For this OSI, LoadLeveler will not perform any

dynamic adapter configuration or processing. If an adapter change occurs in this

OSI then the administrator will have to make the corresponding change in the

administration file and then stop and restart or reconfigure the LoadLeveler startd

daemon to pick up the adapter changes. If an OSI (machine stanza) in the

administration file does not contain the adapter_stanzas keyword then this is taken

as a directive by the LoadLeveler administrator for LoadLeveler to dynamically

configure the adapters for that OSI. For that OSI, LoadLeveler will determine what

adapters are present at startup via calls to the RMCAPI. If an adapter change

occurs during execution in the OSI then LoadLeveler will automatically detect and

handle the change without requiring a restart or reconfiguration.

Adapter stanza format and keyword summary

An adapter stanza has the following format:

Customizing the administration file

Chapter 4. Defining LoadLeveler resources to administer 81

|
|

|

|

Examples: Adapter stanzas

v Example 1: Specifying an SP Switch adapter

In the following example, the adapter stanza called “sp01sw.ibm.com” specifies

an SP switch adapter. Note that sp01sw.ibm.com is also specified on the

adapter_stanzas keyword of the machine stanza for the “yugo” machine.

 yugo: type=machine

 adapter_stanzas = sp01sw.ibm.com

 ...

sp01sw.ibm.com: type = adapter

 adapter_name = css0

 interface_address = 12.148.44.218

 interface_name = sp01sw.ibm.com

 network_type = switch

 switch_node_number = 7

 css_type = SP_Switch_MX2_Adapter

v Example 2: Specifying an HPS adapter

In the following example, the adapter stanza called

“c121s0n10.ppd.pok.ibm.com” specifies an HPS adapter. Note that

c121s0n10.ppd.pok.ibm.com is also specified on the adapter_stanzas keyword of

the machine stanza for the “yugo” machine.

 yugo: type=machine

 adapter_stanzas = c121s0n10.ppd.pok.ibm.com

 ...

c121s0n10.ppd.pok.ibm.com: type = adapter

 adapter_name = sn0

 network_type = switch

 interface_address = 192.168.0.10

 interface_name = c121s0n10.ppd.pok.ibm.com

 multilink_address = 10.10.10.10

 logical_id = 2

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni0

 network_id = 1

c121f2rp02.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.66.74

 interface_name = c121f2rp02.ppd.pok.ibm.com

 device_driver_name = ent0

label: type = adapter

adapter_name = name

adapter_type = type

css_type = type

device_driver_name = name

interface_address = IP_address

interface_name = name

logical_id = id

multilink_address = ip_address

multilink_list = adapter_name <, adapter_name>*

network_id = id

network_type = type

switch_node_number = integer

Figure 12. Format of an adapter stanza

Customizing the administration file

82 LoadLeveler: Using and Administering

Defining classes

The information in a class stanza defines characteristics for that class. These

characteristics can include the quantities of consumable resources that may be used

by a class per machine or cluster.

Using limit keywords

A limit is the amount of a resource that a job step or a process is allowed to use.

(A process is a dispatchable unit of work.) A job step may be made up of several

processes.

Limits include both a hard limit and a soft limit. When a hard limit is exceeded,

the job is usually terminated. When a soft limit is exceeded, the job is usually

given a chance to perform some recovery actions. Limits are enforced either per

process or per job step, depending on the type of limit. For parallel jobs steps,

which consist of multiple tasks running on multiple machines, limits are enforced

on a per task basis.

The class stanza includes the following limit keywords, which allow you to control

the amount of resources used by a job step or a job process.

 Table 14. Types of limit keywords

Limit How the limit is enforced

ckpt_time_limit Per job step

core_limit Per process

cpu_limit Per process

data_limit Per process

file_limit Per process

job_cpu_limit Per job step

rss_limit Per process

stack_limit Per process

wall_clock_limit Per job step

For example, a common limit is the cpu_limit, which limits the amount of CPU

time a single process can use. If you set cpu_limit to five hours and you have a job

step that forks five processes, each process can use up to five hours of CPU time,

for a total of 25 CPU hours. Another limit that controls the amount of CPU used is

job_cpu_limit. For a serial job step, if you impose a job_cpu_limit of five hours,

the entire job step (made up of all five processes) cannot consume more than five

CPU hours. For information on using this keyword with parallel jobs, see 306.

You can specify limits in either the class stanza of the administration file or in the

job command file. The lower of these two limits will be used to run the job even if

the system limit for the user is lower. For more information, see:

v “Enforcing limits” on page 84

v “Administration file keyword descriptions” on page 267 or “Job command file

keyword descriptions” on page 294

Customizing the administration file

Chapter 4. Defining LoadLeveler resources to administer 83

|
|
|

|

Enforcing limits

LoadLeveler depends on the underlying operating system to enforce process limits.

Users should verify that a process limit such as rss_limit is enforced by the

operating system, otherwise setting it in LoadLeveler will have no effect.

Exceeding job step limits: When a hard limit is exceeded LoadLeveler sends a

non-trappable signal (except in the case of a parallel job) to the process group that

LoadLeveler created for the job step. When a soft limit is exceeded, LoadLeveler

sends a trappable signal to the process group. Any job application that intends to

trap a signal sent by LoadLeveler must ensure that all processes in the process

group set up the appropriate signal handler.

All processes in the job step normally receive the signal. The exception to this rule

is when a child process creates its own process group. That action isolates the

child’s process, and its children, from any signals that LoadLeveler sends. Any

child process creating its own process group is still known to process tracking. So,

if process tracking is enabled, all the child processes are terminated when the main

process terminates.

Table 15 summarizes the actions that the LoadL_starter daemon takes when a job

step limit is exceeded.

 Table 15. Enforcing job step limits

Type of Job When a Soft Limit is Exceeded When a Hard Limit is Exceeded

Serial SIGXCPU or SIGKILL issued SIGKILL issued

Parallel SIGXCPU issued to both the user

program and to the parallel

daemon

SIGTERM issued

On systems that do not support SIGXCPU, LoadLeveler does not distinguish

between hard and soft limits. When a soft limit is reached on these platforms,

LoadLeveler issues a SIGKILL.

Enforcing per process limits: For per process limits, what happens when your job

reaches and exceeds either the soft limit or the hard limit depends on the operating

system you are using.

When a job forks a process that exceeds a per process limit, such as the CPU limit,

the operating system (not LoadLeveler) terminates the process by issuing a

SIGXCPU. As a result, you will not see an entry in the LoadLeveler logs indicating

that the process exceeded the limit. The job will complete with a 0 return code.

LoadLeveler can only report the status of any processes it has started.

If you need more specific information, refer to your operating system

documentation.

How LoadLeveler uses hard limits: See Table 16 on page 85 for more information

on specifying limits.

Customizing the administration file

84 LoadLeveler: Using and Administering

|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

Table 16. Setting limits

If the hard limit is: Then LoadLeveler does the following:

Set in both the class stanza and the

job command file

Smaller of the two limits is taken into consideration. If

the smaller limit is the job limit, the job limit is then

compared with the user limit set on the machine that

runs the job. The smaller of these two values is used.

If the limit used is the class limit, the class limit is

used without being compared to the machine limit.

Not set in either the class stanza or

the job command file

User per process limit set on the machine that runs

the job is used.

Set in the job command file and is

less than its respective job soft limit

The job is not submitted.

Set in the class stanza and is less

than its respective class stanza soft

limit

Soft limit is adjusted downward to equal the hard

limit.

Specified in the job command file Hard limit must be greater than or equal to the

specified soft limit and less than or equal to the limit

set by the administrator in the class stanza of the

administration file.

Note: If the per process limit is not defined in the

administration file and the hard limit defined by the

user in the job command file is greater than the limit

on the executing machine, then the hard limit is set to

the machine limit.

Allowing users to use a class

In a class stanza, you may define a list of users or a list of groups to identify those

who may use the class. To do so, use the include_users or include_groups

keyword, respectively, or you may use both keywords. If you specify both

keywords, a particular user must satisfy both the include_users and the

include_groups restrictions for the class. This requirement means that a particular

user must be defined not only in a User stanza in the administration file, but also

in one of the following ways:

v The user’s name must appear in the include_users keyword in a Group stanza

whose name corresponds to a name in the include_groups keyword of the Class

stanza.

v The user’s name must appear in the include_groups keyword of the Class

stanza. For information about specifying a user name in a group list, see the

include_groups keyword description in “Administration file keyword

descriptions” on page 267.

Class stanza format and keyword summary

Class stanzas are optional. Class stanzas take the following format. Default values

for keywords appear in bold.

Customizing the administration file

Chapter 4. Defining LoadLeveler resources to administer 85

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

Examples: Class stanzas

v Example 1: Creating a class that excludes certain users

class_a: type=class # class that excludes users

priority=10 # ClassSysprio

exclude_users=green judy # Excluded users

v Example 2: Creating a class for small-size jobs

small: type=class # class for small jobs

priority=80 # ClassSysprio (max=100)

cpu_limit=00:02:00 # 2 minute limit

data_limit=30mb # max 30 MB data segment

default_resources=ConsumbableVirtualMemory(10mb) # resources consumed by each

ConsumableCpus(1) resA(3) floatinglicenseX(1) # task of a small job step if

 # resources are not explicitly

 # specified in the job command file

ckpt_time_limit=3:00,2:00 # 3 minute hardlimit,

 # 2 minute softlimit

core_limit=10mb # max 10 MB core file

file_limit=50mb # max file size 50 MB

stack_limit=10mb # max stack size 10 MB

rss_limit=35mb # max resident set size 35 MB

include_users = bob sally # authorized users

v Example 3: Creating a class for medium-size jobs

medium: type=class # class for medium jobs

priority=70 # ClassSysprio

cpu_limit=00:10:00 # 10 minute run time limit

data_limit=80mb,60mb # max 80 MB data segment

 # soft limit 60 MB data segment

label: type = class

admin= list

ckpt_dir = directory

ckpt_time_limit = hardlimit,softlimit

class_comment = "string"

core_limit = hardlimit,softlimit

cpu_limit = hardlimit,softlimit

data_limit = hardlimit,softlimit

default_resources = name(count) name(count)...name(count)

env_copy = all | master

exclude_groups = list

exclude_users = listfile_limit = hardlimit,softlimit

include_groups = list

include_users = list

job_cpu_limit = hardlimit,softlimit

master_node_requirement = true | false

max_node = number

max_processors = number

max_protocol_instances = number

max_total_tasks = number

maxjobs = number

nice = value

NQS_class = true | false

NQS_submit = name

NQS_query = queue names

priority = number

rss_limit = hardlimit,softlimit

stack_limit = hardlimit,softlimit

total_tasks = number

wall_clock_limit = hardlimit,softlimit

Figure 13. Format of a class stanza

Customizing the administration file

86 LoadLeveler: Using and Administering

|

ckpt_time_limit=5:00,4:30 # 5 minute hardlimit,

 # 4 minute 30 second softlimit to checkpoint

core_limit=30mb # max 30 MB core file

file_limit=80mb # max file size 80 MB

stack_limit=30mb # max stack size 30 MB

rss_limit=100mb # max resident set size 100 MB

job_cpu_limit=1800,1200 # hard limit is 30 minutes,

 # soft limit is 20 minutes

v Example 4: Creating a class for large-size jobs

large: type=class # class for large jobs

priority=60 # ClassSysprio

cpu_limit=00:10:00 # 10 minute run time limit

data_limit=120mb # max 120 MB data segment

default_resources=ConsumableVirtualMemory(40mb) # resources consumed

ConsumableCpus(2) resA(8) floatinglicenseX(1) resB(1) # by each task of

 # a large job step if resources are not

 # explicitly specified in the job command file

ckpt_time_limit=7:00,5:00 # 7 minute hardlimit,

 # 5 minute softlimit to checkpoint

core_limit=30mb # max 30 MB core file

file_limit=120mb # max file size 120 MB

stack_limit=unlimited # unlimited stack size

rss_limit=150mb # max resident set size 150 MB

job_cpu_limit = 3600,2700 # hard limit 60 minutes

 # soft limit 45 minutes

wall_clock_limit=12:00:00,11:59:55 # hard limit is 12 hours

v Example 5: Creating a class to route jobs to NQS machines

nqs: type=class # class for NQS jobs

NQS_class=true

NQS_submit=pipe_queue # NQS pipe queue name

NQS_query=one two three # list of queue names

You can use the class names in control expressions in both the global and local

configuration file.

v Example 6: Creating a class for master node machines

sp-6hr-sp: type=class # class for master node machines

priority=50 # ClassSysprio (max=100)

ckpt_time_limit=25:00,20:00 # 25 minute hardlimit,

 # 20 minute softlimit to checkpoint

cpu_limit = 06:00:00 # 6 hour limit

job_cpu_limit = 06:00:00 # hard limit is 6 hours

core_limit = lmb # max 1MB core file

master_node_requirement = true # master node definition

v Example 7: Creating a class for MPICH-GM jobs

MPICHGM: type=class # class for MPICH-GM jobs

default_resources = gmports(1) # one gmports resource is consumed by each

 # task, if resources are not explicitly

 # specified in the job command file

Defining users

The information specified in a user stanza defines the characteristics of that user.

You can have one user stanza for each user but this is not necessary. If an

individual user does not have their own user stanza, that user uses the defaults

defined in the default user stanza.

User stanza format and keyword summary

User stanzas take the following format:

Customizing the administration file

Chapter 4. Defining LoadLeveler resources to administer 87

Examples: User stanzas

v Example 1

In this example, user fred is being provided with a user stanza. His jobs will

have a user priority of 100. If he does not specify a job class in his job command

file, the default job class class_a will be used. In addition, he can have a

maximum of 15 jobs running at the same time.

Define user stanzas

fred: type = user

priority = 100

default_class = class_a

maxjobs = 15

v Example 2

This example explains how a default interactive class for a parallel job is set by

presenting a series of user stanzas and class stanzas. This example assumes that

users do not specify the LOADL_INTERACTIVE_CLASS environment variable.

default: type =user

 default_interactive_class = red

 default_class = blue

carol: type = user

 default_class = single double

 default_interactive_class = ijobs

steve: type = user

 default_class = single double

ijobs: type = class

 wall_clock_limit = 08:00:00

red: type = class

 wall_clock_limit = 30:00

If the user Carol submits an interactive job, the job is assigned to the default

interactive class called ijobs. The job is assigned a wall clock limit of 8 hours. If

the user Steve submits an interactive job, the job is assigned to the red class

from the default user stanza. The job is assigned a wall clock limit of 30

minutes.

v Example 3

label: type = user

account = list

default_class = list

default_group = group name

default_interactive_class = class name

env_copy = all | master

max_node = number

max_processors = number

max_reservation_duration = number

max_reservations = number

max_total_tasks = number

maxidle = number

maxjobs = number

maxqueued = number

priority = number

total_tasks = number

Figure 14. Format of a user stanza

Customizing the administration file

88 LoadLeveler: Using and Administering

|

|
|

In this example, Jane’s jobs have a user priority of 50, and if she does not specify

a job class in her job command file the default job class small_jobs is used. This

user stanza does not specify the maximum number of jobs that Jane can run at

the same time so this value defaults to the value defined in the default stanza.

Also, suppose Jane is a member of the primary UNIX group “staff.” Jobs

submitted by Jane will use the default LoadLeveler group “staff.” Lastly, Jane

can use three different account numbers.

Define user stanzas

jane: type = user

priority = 50

default_class = small_jobs

default_group = Unix_Group

account = dept10 user3 user4

Defining groups

LoadLeveler groups are another way of granting control to the system

administrator. Although a LoadLeveler group is independent from a UNIX group,

you can configure a LoadLeveler group to have the same users as a UNIX group

by using the include_users keyword.

Group stanza format and keyword summary

The information specified in a group stanza defines the characteristics of that

group. Group stanzas are optional and take the following format:

Examples: Group stanzas

v Example 1

In this example, the group name is department_a. The jobs issued by users

belonging to this group will have a priority of 80. There are three members in

this group.

Define group stanzas

department_a: type = group

priority = 80

include_users = susann holly fran

v Example 2

In this example, the group called great_lakes has five members and these user’s

jobs have a priority of 100:

label: type = group

admin = list

env_copy = all | master

exclude_users = list

include_users = list

max_node = number

max_processors = number

max_reservation_duration = number

max_reservations = number

max_total_tasks = number

maxidle = number

maxjobs = number

maxqueued = number

priority = number

total_tasks = number

Figure 15. Format of a group stanza

Customizing the administration file

Chapter 4. Defining LoadLeveler resources to administer 89

|

|
|

Define group stanzas

great_lakes: type = group

priority = 100

include_users = huron ontario michigan erie superior

Customizing the administration file

90 LoadLeveler: Using and Administering

Chapter 5. Performing additional administrator tasks

Table 17 lists additional ways to modify the LoadLeveler environment that either

require an administrator to customize both the configuration and administration

files, or require the use of the LoadLeveler commands or APIs.

 Table 17. Roadmap of additional administrator tasks

To learn about: Read the following:

Setting up the environment for

parallel jobs

“Setting up the environment for parallel jobs” on page

92

Configuring and using alternative

schedulers

v “Using the backfill scheduler” on page 96

v “Using the gang scheduler” on page 97

v “Using an external scheduler” on page 101

v “Example: Changing scheduler types” on page 111

Using additional features available

with an alternative scheduler

v “Preempting and resuming jobs” on page 112

v “Configuring LoadLeveler to support reservations”

on page 117

Working with AIX’s workload

balancing component

“Steps for integrating LoadLeveler with AIX Workload

Manager” on page 123

Enabling LoadLeveler’s

checkpoint/restart function

“Checkpointing jobs” on page 125

Setting up the environment for

NQS jobs

“Routing jobs to NQS machines” on page 131

Correctly specifying configuration

and administration file keywords

v Chapter 11, “Configuration file reference,” on page

211

v Chapter 12, “Administration file reference,” on page

263

Managing LoadLeveler operations

v Querying status v “llclass - Query class information” on page 349

v “llq - Query job status” on page 386

v “llqres - Query a reservation” on page 406

v “llstatus - Query machine status” on page 412

v Changing attributes of submitted

jobs

v “llfavorjob - Reorder system queue by job” on page

369

v “llfavoruser - Reorder system queue by user” on

page 371

v “llmodify - Change attributes of a submitted job

step” on page 379

v “llprio - Change the user priority of submitted job

steps” on page 384

v Changing the state of submitted

jobs

v “llcancel - Cancel a submitted job” on page 341

v “llhold - Hold or release a submitted job” on page

372

 91

|

|

|
|
|

||

||

|
|
|
|

|
|
|

|

|

|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

||

||

|

|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

Setting up the environment for parallel jobs

This chapter describes administration tasks that apply to parallel jobs. For

information on submitting parallel jobs, see “Working with parallel jobs” on page

157.

Scheduling considerations for parallel jobs

For parallel jobs, LoadLeveler supports gang scheduling and backfill scheduling

for efficient use of system resources. These schedulers run both serial and parallel

jobs, but they are meant primarily for installations running parallel jobs.

Gang and backfill scheduling also support:

v Multiple tasks per node

v Multiple user space tasks per adapter

v Preemption

Specify the LoadLeveler scheduler using the SCHEDULER_TYPE keyword. For

more information on this keyword and supported scheduler types, see “Choosing a

scheduler” on page 35.

Steps for reducing job launch overhead for parallel jobs

Administrators may define a number of LoadLeveler starter processes to be ready

and waiting to handle job requests. Having this pool of ready processes reduces

the amount of time LoadLeveler needs to prepare jobs to run. You also may control

how environment variables are copied for a job. Reducing the number of

environment variables that LoadLeveler has to copy reduces the amount of time

LoadLeveler needs to prepare jobs to run.

Before you begin: You need to know:

v How many jobs might be starting at the same time. This estimate determines

how many starter processes to have LoadLeveler start in advance, to be ready

and waiting for job requests.

v The type of parallel jobs that typically are used. If IBM Parallel Environment

(PE) is used for parallel jobs, PE copies the user’s environment to all executing

nodes. In this case, you may configure LoadLeveler to avoid redundantly

copying the same environment variables.

v How to correctly specify configuration keywords. For details about specific

keyword syntax and use:

– In the administration file, see Chapter 12, “Administration file reference,” on

page 263.

– In the configuration file, see Chapter 11, “Configuration file reference,” on

page 211.

Perform the following steps to configure LoadLeveler to reduce job launch

overhead for parallel jobs.

1. In the local or global configuration file, specify the number of starter processes

for LoadLeveler to automatically start before job requests are submitted. Use

the PRESTARTED_STARTERS keyword to set this value.

Tip: The default value of 1 should be sufficient for most installations.

2. If typical parallel jobs use a facility such as Parallel Environment, which copies

user environment variables to all executing nodes, set the env_copy keyword in

Setting up the environment for parallel jobs

92 LoadLeveler: Using and Administering

|

|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

|

|
|

the class, user, or group stanzas to specify that LoadLeveler only copy user

environment variables to the master node by default.

Rules:

v Users also may set this keyword in the job command file. If the env_copy

keyword is set in the job command file, that setting overrides any setting in

the administration file. For more information, see “Step for controlling

whether LoadLeveler copies environment variables to all executing nodes”

on page 158.

v If the env_copy keyword is set in more than one stanza in the administration

file, LoadLeveler determines the setting to use by examining all values set in

the applicable stanzas. See Table 44 on page 274 to determine what value

LoadLeveler will use.

3. Notify LoadLeveler daemons by issuing the llctl command with either the

reconfig or recycle keyword. Otherwise, LoadLeveler will not process the

modifications you made to the configuration and administration files.

When you are done with this procedure, you can use the POE stderr and

LoadLeveler logs to trace actions during job launch.

Steps for allowing users to submit interactive POE jobs

Perform the following steps to set up your system so that users can submit

interactive POE jobs to LoadLeveler.

1. Make sure that you have installed LoadLeveler and defined LoadLeveler

administrators. See “Defining LoadLeveler administrators” on page 34 for

information on defining LoadLeveler administrators.

2. If running user space jobs, LoadLeveler must be configured to use switch

adapters. A way to do this is to run the llextSDR or llextRPD command to

extract node and adapter information from the SDR or from the RSCT peer

domain. See “llextSDR - Extract adapter information from the SDR” on page

365 and “llextRPD - Extract data from an RSCT peer domain” on page 362 for

additional information on the commands.

3. In the configuration file, define your scheduler to be the LoadLeveler backfill or

gang scheduler by specifying SCHEDULER_TYPE = BACKFILL or

SCHEDULER_TYPE = GANG. See “Choosing a scheduler” on page 35 for

more information.

4. In the administration file, specify batch, interactive, or general use for nodes.

You can use the machine_mode keyword in the machine stanza to specify the

type of jobs that can run on a node; you must specify either interactive or

general if you are going to run interactive jobs.

5. In the administration file, configure optional functions, including:

v Setting up pools: you can organize nodes into pools by using the pool_list

keyword in the machine stanza. See “Defining machines” on page 78 for

more information.

Setting up the environment for parallel jobs

Chapter 5. Performing additional administrator tasks 93

|
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|

|

|
|

|

|

|

|

|
|

|

v Enabling SP exclusive use accounting: you can specify that the accounting

function on an SP system be informed that a job step has exclusive use of a

machine by specifying spacct_exclusive_enable = true in the machine stanza

(as shown in the previous example).

See “Defining machines” on page 78 for more information on these

keywords.

6. Consider setting up a class stanza for your interactive POE jobs. See “Setting

up a class for parallel jobs” for more information. Define this class to be your

default class for interactive jobs by specifying this class name on the

default_interactive_class keyword. See “Defining users” on page 87 for more

information.

Setting up a class for parallel jobs

To define the characteristics of parallel jobs run by your installation you should set

up a class stanza in the administration file and define a class (in the Class

statement in the configuration file) for each task you want to run on a node.

Suppose your installation plans to submit long-running parallel jobs, and you want

to define the following characteristics:

v Only certain users can submit these jobs

v Jobs have a 30 hour run time limit

v A job can request a maximum of 60 nodes and 120 total tasks

v Jobs will have a relatively low run priority

The following is a sample class stanza for long-running parallel jobs which takes

into account the above characteristics:

 long_parallel: type=class

 wall_clock_limit = 1800

 include_users = jack queen king ace

 priority = 50

 total_tasks = 120

 max_node = 60

 maxjobs = 2

Note the following about this class stanza:

v The wall_clock_limit keyword sets a wall clock limit of 1800 seconds (30 hours)

for jobs in this class

v The include_users keyword allows four users to submit jobs in this class

v The priority keyword sets a relative priority of 50 for jobs in this class

v The total_tasks keyword specifies that a user can request up to 120 total tasks

for a job in this class

v The max_node keyword specifies that a user can request up to 60 nodes for a

job in this class

v The maxjobs keyword specifies that a maximum of two jobs in this class can run

simultaneously

Suppose users need to submit job command files containing the following

statements:

 node = 30

 tasks_per_node = 4

Setting up the environment for parallel jobs

94 LoadLeveler: Using and Administering

In your LoadL_config file, you must code the Class statement such that at least 30

nodes have four or more long_parallel classes defined. That is, the configuration

file for each of these nodes must include the following statement:

 Class = { "long_parallel" "long_parallel" "long_parallel" "long_parallel" }

or

Class = long_parallel(4)

For more information, see “Defining LoadLeveler machine characteristics” on page

44.

Setting up a parallel master node

LoadLeveler allows you to define a parallel master node that LoadLeveler will use

as the first node for a job submitted to a particular class. To set up a parallel

master node, code the following keywords in the node’s class and machine stanzas

in the administration file:

MACHINE STANZA: (optional)

mach1: type = machine

master_node_exclusive = true

CLASS STANZA: (optional)

pmv3: type = class

master_node_requirement = true

Specifying master_node_requirement = true forces all parallel jobs in this class to

use–as their first node–a machine with the master_node_exclusive = true setting.

For more information on these keywords, see “Defining machines” on page 78 and

“Defining classes” on page 83.

Configuring LoadLeveler to support MPICH-GM jobs

LoadLeveler does not manage the GM ports on the Myrinet switch. For

LoadLeveler to keep track of the GM ports they must be identified as LoadLeveler

consumable resources.

Perform the following steps to use consumable resources to manage GM ports:

1. Pick a name for the GM port resource.

Example: As an example, this procedure assumes the name is gmports, but you

may use another name.

Tip: Users who submit MPICH-GM jobs need to know the name that you

define for the GM port resource.

2. In the LoadLeveler configuration file, specify the GM port resource name on

the SCHEDULE_BY_RESOURCES keyword.

Example:

SCHEDULE_BY_RESOURCES = gmports

Tip: If the SCHEDULE_BY_RESOURCES keyword already is specified in the

configuration file, you can just add the GM port resource name to other values

already listed.

3. In the administration file, specify how many GM ports are available on each

machine. Use the resources keyword to specify the GM port resource name and

the number of GM ports.

Setting up the environment for parallel jobs

Chapter 5. Performing additional administrator tasks 95

|

|

|
|

|
|

|

|
|

|

|

|
|
|

|

|
|
|

Example:

resources=gmports(n)

Tips:

v The resources keyword also must appear in the job command file for an

MPICH-GM job.

Example:

resources=gmports(1)

v To determine the value of n use either the number specified in the GM

documentation or the number of GM ports you have successfully used.

Certain system configurations may not support all available GM ports, so

you might need to specify a lower value for the gmports resource than what

is actually available.

4. Issue the llctl command with either the reconfig or recycle keyword.

Otherwise, LoadLeveler will not process the modifications you made to the

configuration and administration files.

For information about submitting MPICH-GM jobs, see “Running MPICH and

MPICH-GM jobs” on page 165.

Using the backfill scheduler

The backfill scheduler runs both serial and parallel jobs, but primarily is meant for

parallel jobs. Backfilling is the capability to schedule a job that either is short in

duration, or requires a small number of nodes, before a higher priority job. The

backfill algorithm reserves resources for only the highest priority job; all other jobs

are backfill candidates. When you are using the backfill scheduler, backfill jobs

might delay the start of a job that has a higher priority, but will not delay the start

of the highest priority job.

The backfill scheduler:

v Tries to fill idle resources available between the current time and the projected

start time of the highest priority job.

v Determines which jobs are potential backfill candidates by:

– Checking potential backfill jobs in priority order.

– Comparing the wall_clock_limit of the potential backfill job to the projected

start time of the highest priority job. If the potential backfill job will end

before the highest priority job’s projected start time, then the backfill job is

eligible to run if sufficient resources are available.
v Supports the preemption of jobs. When you configure the backfill scheduler to

enable preemption, you may select the default method of preemption.

 Table 18. Roadmap of backfill scheduler tasks

Subtask Associated instructions (see . . .)

Configuring the backfill

scheduler

v “Choosing a scheduler” on page 35

v “Tips for using the backfill scheduler” on page 97

v “Example: Backfill scheduling” on page 97

Using additional LoadLeveler

features available under the

backfill scheduler

v “Preempting and resuming jobs” on page 112

v “Configuring LoadLeveler to support reservations” on

page 117

Setting up the environment for parallel jobs

96 LoadLeveler: Using and Administering

|

|

|

|
|

|

|

|
|
|
|
|

|

|
|
|

|

|
|

|

|
|
|
|
|
|
|

|
|

|

|
|

||

||

|
|
|

|

|

|
|
|

|

|
|

Table 18. Roadmap of backfill scheduler tasks (continued)

Subtask Associated instructions (see . . .)

Use the backfill scheduler to

dispatch and manage jobs

v “Scheduler support for parallel jobs” on page 157

v “llclass - Query class information” on page 349

v “llmodify - Change attributes of a submitted job step” on

page 379

v “llpreempt - Preempt a submitted job step” on page 382

v “llq - Query job status” on page 386

v “llsubmit - Submit a job” on page 423

v “Data Access API” on page 448

v “Error Handling API” on page 487

v “ll_modify subroutine” on page 514

v “ll_preempt subroutine” on page 517

Tips for using the backfill scheduler

Note the following when using the backfill scheduler:

v To use this scheduler, either users must set a wall-clock limit in their job

command file or the administrator must define a wall-clock limit value for the

class to which a job is assigned. Jobs with the wall_clock_limit of unlimited

cannot be used to backfill because they may not finish in time.

v You should use only the default settings for the START expression and the other

job control functions described in “Managing job status through control

expressions” on page 62. If you do not use these default settings, jobs will still

run but the scheduler will not be as efficient. For example, the scheduler will not

be able to guarantee a time at which the highest priority job will run.

v You should configure any multiprocessor (SMP) nodes such that the number of

jobs that can run on a node (determined by the MAX_STARTERS keyword) is

always less than or equal to the number of processors on the node.

v Due to the characteristics of the backfill algorithm, in some cases this scheduler

may not honor the MACHPRIO statement. For more information on

MACHPRIO, see “Setting negotiator characteristics and policies” on page 36.

Example: Backfill scheduling

On a rack with 10 nodes, 8 of the nodes are being used by Job A. Job B has the

highest priority in the queue, and requires 10 nodes. Job C has the next highest

priority in the queue, and requires only two nodes. Job B has to wait for Job A to

finish so that it can use the freed nodes. Because Job A is only using 8 of the 10

nodes, the backfill scheduler can schedule Job C (which only needs the two

available nodes) to run as long as it finishes before Job A finishes (and Job B

starts). To determine whether or not Job C has time to run, the backfill scheduler

uses Job C’s wall_clock_limit value to determine whether or not it will finish

before Job A ends. If Job C has a wall_clock_limit of unlimited, it may not finish

before Job B’s start time, and it won’t be dispatched.

Using the gang scheduler

LoadLeveler for Linux does not support the use of the gang scheduler.

Gang scheduling can be used with all SP switch adapters except:

v SP Switch adapter (Micro Channel® Architecture (MCA))

v RS/6000 SP System Attachment adapter

Using the backfill scheduler

Chapter 5. Performing additional administrator tasks 97

|

||

|
|
|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

User applications do not have to be modified to take advantage of gang

enhancements. However, user applications using the communications libraries

need to be linked with the multi-threaded versions. Application environments such

as POE function without modification.

To find out more about using the gang scheduler to provide preemption support,

use the information in Table 19.

 Table 19. Roadmap of tasks for using the gang scheduler

Subtask Associated instructions (see . . .)

Configuring the gang scheduler v “Choosing a scheduler” on page 35

v “Setting keywords for gang scheduling”

v “Example: Configuration file for gang scheduling” on

page 99

v “Example: Administration file for gang scheduling” on

page 100

Using additional LoadLeveler

features available under the

gang scheduler

“Preempting and resuming jobs” on page 112

Use the gang scheduler to

dispatch and manage jobs

v “Scheduler support for parallel jobs” on page 157

v “llclass - Query class information” on page 349

v “llmodify - Change attributes of a submitted job step”

on page 379

v “llpreempt - Preempt a submitted job step” on page 382

v “llq - Query job status” on page 386

v “llsubmit - Submit a job” on page 423

v “Data Access API” on page 448

v “Error Handling API” on page 487

v “ll_modify subroutine” on page 514

v “ll_preempt subroutine” on page 517

Setting keywords for gang scheduling

To use the gang scheduler, the LoadLeveler administrator sets values for specific

configuration and administration file keywords. Depending on which keywords

the administrator sets, general users also might have to set the wall_clock_limit in

the job command file. Table 20 summarizes the job command, administration, and

configuration file keywords related to gang scheduling. For additional information

about using these settings, see “Planning to preempt jobs” on page 113.

 Table 20. LoadLeveler keywords for gang scheduler preemption

Keyword type / name Notes

Job command file keywords

preferences Ignored under gang scheduling.

wall_clock_limit Either must be set in the administration file, for the

class to which a job is assigned, or set in the job

command file.

Administration file keywords

Using the gang scheduler

98 LoadLeveler: Using and Administering

|
|

||

||

||

|

|
|

|
|

|
|
|

|

|
|
|

|

|
|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|

Table 20. LoadLeveler keywords for gang scheduler preemption (continued)

Keyword type / name Notes

css_type Must not have the following values when you are

using gang scheduling:

v RS/6000_SP_System_Attachment_Adapter

v SP_Switch_Adapter

master_node_exclusive Ignored under gang scheduling.

master_node_requirement Ignored under gang scheduling.

max_total_tasks Specific to gang scheduling.

wall_clock_limit Either must be set in the administration file, for the

class to which a job is assigned, or set in the job

command file.

Configuration file keywords

MACHINE_AUTHENTICATE Must be set to TRUE when you are using the gang

scheduler.

PREEMPTION_SUPPORT Specifies the level of preemption support for a

cluster.

PROCESS_TRACKING Must be set to TRUE when you are using the gang

scheduler.

START_CLASS [class name] Algorithm that determines whether or not the gang

scheduler starts a job.

Example: Configuration file for gang scheduling

The following sample illustrates the configuration file (LoadL_config) for using the

preemption function with the gang scheduler:

ARCH = R6000

LOADL_ADMIN = loadl

MACHINE_AUTHENTICATE = True

SCHEDULER_TYPE = GANG

PROCESS_TRACKING = True

MAX_STARTERS = 20

Class = No_Class(1) small(3) medium(4) large(4) secure(6)

PREMPT_CLASS[secure] = ALL {allclasses}

PREMPT_CLASS[small] = ENOUGH {medium}

PREMPT_CLASS[medium] = ENOUGH {large}

START_CLASS[secure] = (secure < 2)

START_CLASS[No_Class] = (secure < 1) && (allclasses < 3)

START_CLASS[small] = (secure < 1) && (allclasses < 3)

START_CLASS[medium] = (secure < 1) && (allclasses < 4) && (small < 3)

START_CLASS[large] = (secure < 1) && (allclasses < 4) && (small < 3)

RELEASEDIR = /usr/lpp/LoadL/full

ADMIN_FILE = $(tilde)/LoadL_admin

LOG = /tmp/log

SPOOL = /tmp/spool

EXECUTE = /tmp/execute

HISTORY = /tmp/history

BIN = $(RELEASEDIR)/bin

LIB = $(RELEASEDIR)/lib

KBDD = $(BIN)/LoadL_kbdd

KBDD_LOG = $(LOG)/KbdLog

STARTD = $(BIN)/LoadL_startd

STARTD_LOG = $(LOG)/StartLog

SCHEDD = $(BIN)/LoadL_schedd

SCHEDD_LOG = $(LOG)/SchedLog

Using the gang scheduler

Chapter 5. Performing additional administrator tasks 99

|

NEGOTIATOR = $(BIN)/LoadL_negotiator

NEGOTIATOR_LOG = $(LOG)/NegotiatorLog

GSMONITOR = $(BIN)/LoadL_GSmonitor

GSMONITOR_LOG = $(LOG)/GSmonitorLog

STARTER = $(BIN)/LoadL_starter

STARTER_LOG = $(LOG)/StarterLog

MASTER = $(BIN)/LoadL_master

MASTER_LOG = $(LOG)/MasterLog

PROCESS_TRACKING_EXTENSION = $(BIN)

START : T

SUSPEND : F

CONTINUE : T

VACATE : F

KILL : F

Example: Administration file for gang scheduling

The following sample illustrates the administration file (LoadL_admin) for gang

scheduling preemption:

default: type = machine

 pool_list = 1

default: type = class # default class stanza

 wall_clock_limit = 30:00 # default wall clock limit

default: type = user # default user stanza

 default_class = No_Class # default class = No_Class

 default_group = No_Group # default group = No_Group

 default_interactive_class = medium

 max_total_tasks = 50

default: type = group # default group stanza

secure: type = class # class for secure jobs

 wall_clock_limit = 120:30:00,120:00:00

small: type = class # class for small jobs

 wall_clock_limit = 35:00,30:00

 maxjobs = 2

 max_total_tasks = 20

medium: type = class # class for medium jobs

 wall_clock_limit = 04:30:00,04:00:00

large: type = class # class for large jobs

 wall_clock_limit = 120:30:00,120:00:00

c163n02.ppd.pok.ibm.com: type = machine

 adapter_stanzas = c163sn02.ppd.pok.ibm.com c163n02.ppd.pok.ibm.com

 alias = c163sn02.ppd.pok.ibm.com

 central_manager = true

c163n03.ppd.pok.ibm.com: type = machine

 adapter_stanzas = c163sn03.ppd.pok.ibm.com c163n03.ppd.pok.ibm.com

 alias = c163sn03.ppd.pok.ibm.com

c163sn03.ppd.pok.ibm.com: type = adapter

 adapter_name = css0

 network_type = switch

 interface_address = 9.114.52.131

 interface_name = c163sn03.ppd.pok.ibm.com

 switch_node_number = 2

 css_type = SP_Switch_MX_Adapter

c163n03.ppd.pok.ibm.com: type = adapter

Using the gang scheduler

100 LoadLeveler: Using and Administering

adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.52.67

 interface_name = c163n03.ppd.pok.ibm.com

c163sn02.ppd.pok.ibm.com: type = adapter

 adapter_name = css0

 network_type = switch

 interface_address = 9.114.52.130

 interface_name = c163sn02.ppd.pok.ibm.com

 switch_node_number = 1

 css_type = SP_Switch_MX_Adapter

c163n02.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.52.66

 interface_name = c163n02.ppd.pok.ibm.com

Using an external scheduler

The LoadLeveler API provides interfaces that allow an external scheduler to

manage the assignment of resources to jobs and dispatching those jobs. The

primary interfaces for the tasks of an external scheduler are:

v ll_query to obtain information about the LoadLeveler cluster, the machines of

the cluster, jobs and AIX Workload Manager

v ll_get_data to obtain information about specific objects such as jobs, machines

and adapters

There are two interfaces for starting a LoadLeveler job: ll_start_job and

ll_start_job_ext. Both support starting serial and parallel jobs but the capabilities

for starting parallel jobs with ll_start_job are limited and ll_start_job_ext is

preferred for starting parallel jobs. Either function can be used to start a serial job.

The steps for dispatching jobs with an external scheduler are:

1. Gather information about the LoadLeveler cluster (ll_query(CLUSTER)).

2. Gather information about the machines in the LoadLeveler cluster (

ll_query(MACHINES)).

3. Gather information about the jobs in the cluster (ll_query(JOBS)).

4. For each job that has completed, restore the resources it used to available.

5. Determine which jobs to start. Assign resources to jobs to be started and

dispatch (ll_start_job_ext(LL_start_job_info_ext*)).

6. Repeat steps 1 through 5.

To find out more about dispatching jobs with an external scheduler, use the

information in Table 21.

 Table 21. Roadmap of tasks for using an external scheduler

Subtask Associated instructions (see . . .)

Learn about the LoadLeveler functions

that are limited or not available when

you use an external scheduler

“Replacing the default LoadLeveler scheduling

algorithm with an external scheduler” on page

102

Prepare the LoadLeveler environment

for using an external scheduler

“Customizing the configuration file to define an

external scheduler” on page 103

Using the gang scheduler

Chapter 5. Performing additional administrator tasks 101

|

|
|

||

||

|
|
|

|
|
|

|
|
|
|

Table 21. Roadmap of tasks for using an external scheduler (continued)

Subtask Associated instructions (see . . .)

Use an external scheduler to dispatch

jobs

v “Steps for getting information about the

LoadLeveler cluster, its machines, and jobs” on

page 104

v “Assigning resources and dispatching jobs” on

page 108

Replacing the default LoadLeveler scheduling algorithm with

an external scheduler

It is important to know how LoadLeveler keywords and commands behave when

you replace the default LoadLeveler scheduling algorithm with an external

scheduler. LoadLeveler scheduling keywords and commands fall into the following

categories:

v Keywords not involved in scheduling decisions are unchanged.

v Keywords kept in the job object or in the machine which are used by the

LoadLeveler default scheduler have their values maintained as before and

passed to the query API.

v Keywords used only by the LoadLeveler default scheduler have no effect.

Table 22 discusses specific keywords and commands and how they behave when

you disable the default LoadLeveler scheduling algorithm.

 Table 22. Effect of LoadLeveler keywords under an external scheduler

Keyword type / name Notes

Job command file keywords

class This value is provided by the query APIs. Machines

chosen by ll_start_job must have the class of the job

available or the request will be rejected.

dependency Supported as before. Job objects for which

dependency cannot be evaluated (because a previous

step has not run) are maintained in the NotQueued

state, and attempts to start them via ll_start_job will

result in an error. If the dependency is met,

ll_start_job can start the proc.

hold ll_start_job cannot start a job that is in Hold status.

min_processors ll_start_job must specify at least this number of

processors.

max_processors ll_start_job must specify no more than this number

of processors.

preferences Passed to the query API.

requirements ll_start_job returns an error if the machine(s)

specified do not match the requirements of the job.

This includes Disk and Virtual Memory

requirements.

startdate The job remains in the Deferred state until the

startdate specified in the job is reached. ll_start_job

cannot start a job in the Deferred state.

Using an external scheduler

102 LoadLeveler: Using and Administering

|

||

|
|
|
|
|

|
|
|

|

|

|
|

|

Table 22. Effect of LoadLeveler keywords under an external scheduler (continued)

Keyword type / name Notes

user_priority Used in calculating the system priority (as described

in “Setting and changing the priority of a job” on

page 183). The system priority assigned to the job is

available through the query API. No other control of

the order in which jobs are run is enforced.

Administration file keywords

master_node_exclusive Ignored

master_node_requirement Ignored

max_jobs_scheduled Ignored

maxidle Supported

maxjobs Ignored

maxqueued Supported

priority Used to calculate the system priority (where

appropriate).

speed Available through the query API.

Configuration file keywords

MACHPRIO Calculated but is not used.

MAX_STARTERS Calculated, and if starting the job causes this value

to be exceeded, ll_start_job returns an error.

SYSPRIO Calculated and available to the query API.

NEGOTIATOR_PARALLEL_DEFER Ignored

NEGOTIATOR_PARALLEL_HOLD Ignored

NEGOTIATOR_RESCAN_QUEUE Ignored

NEGOTIATOR_RECALCULATE_

SYSPRIO_INTERVAL

Works as before. Set this value to 0 if you do not

want the system priorities of job objects recalculated.

Customizing the configuration file to define an external

scheduler

To use an external scheduler, one of the tasks you must perform is setting the

configuration file keyword SCHEDULER_TYPE to the value API. This keyword

option provides a time-based (rather than an event-based) interface. That is, your

application must use the Query API to poll LoadLeveler at specific times for

machine and job information.

When you enable a scheduler type of API, you must specify

AGGREGATE_ADAPTERS=NO to make the individual switch adapters available

to the external scheduler. This means the external scheduler receives each

individual adapter connected to the network, instead of collectively grouping them

together. You’ll see each adapter listed individually in the llstatus -l command

output. When this keyword is set to YES, the llstatus -l command will show an

aggregate adapter which contains information on all switch adapters on the same

network. For detailed information about individual switch adapters, issue the

llstatus -a command.

Using an external scheduler

Chapter 5. Performing additional administrator tasks 103

|

|

|

|
|

You also may use the PREEMPTION_SUPPORT keyword, which specifies the

level of preemption support for a cluster. Preemption allows for a running job step

to be suspended so that another job step can run.

Steps for getting information about the LoadLeveler cluster,

its machines, and jobs

Perform the following steps to retrieve and use information about the LoadLeveler

cluster, machines, jobs and AIX Workload Manager:

1. Create a query object for the kind of information you want.

Example: To query machine information, code the following instruction:

LL_element * query_element = ll_query(MACHINES);

2. Customize the query to filter the specific information you want. You can filter

the list of objects for which you want information. For some queries, you can

also filter how much information you want.

Example: The following lines customize the query for just hosts

node01.ibm.com and node02.ibm.com and to return the information contained

in the llstatus -f command:

char * hostlist[] = { "node01.ibm.com","node02.ibm.com",NULL };

ll_set_request(query_element,QUERY_HOST,hostlist,STATUS_LINE);

3. Once the query has been customized:

a. Submit it using ll_get_objs, which returns the first object that matches the

query.

b. Interrogate the returned object using the ll_get_data command to retrieve

specific attributes. Depending on the information being queried for, the

query may be directed to a specific node and a specific daemon on that

node.

Example: A JOBS query for all data may be directed to the negotiator, schedd

or the history file. If it is directed to the schedd, you must specify the host of

the schedd you are interested in. The following demonstrates retrieving the

name of the first machine returned by the query constructed previously:

 int machine_count;

 int rc;

 LL_element * element =ll_get_objs(query_element,LL_CM,NULL,&machine_count,&rc)

 char * mname;

 ll_get_data(element,LL_MachineName,&mname);

Because there is only one negotiator in a LoadLeveler cluster, the host does not

have to be specified. The third parameter is the address of an integer that will

receive the count of objects returned and the fourth parameter is the address of

an integer that will receive the completion code of the call. If the call fails,

NULL is returned and the location pointed to by the fourth parameter is set to

a reason code. If the call succeeds, the value returned is used as the first

parameter to a call to ll_get_data. The second parameter to ll_get_data is a

specification that indicates what attribute of the object is being interrogated.

The third parameter to ll_get_data is the address of the location into which to

store the result. ll_get_data returns zero if it is successful and nonzero if an

error occurs. It is important that the specification (the second parameter to

ll_get_data) be valid for the object passed in (the first parameter) and that the

address passed in as the third parameter point to the correct type for the

specification. Undefined, potentially dangerous behavior will occur if either of

these conditions is not met.

Using an external scheduler

104 LoadLeveler: Using and Administering

|
|
|

|

|

|
|

|

|

|

|

Example: Retrieving specific information about machines

The following example demonstrates printing out the name and adapter list of all

machines in the LoadLeveler cluster. The example could be extended to retrieve all

of the information available about the machines in the cluster such as memory,

disk space, pool list, features, supported classes, and architecture, among other

things. A similar process would be used to retrieve information about the cluster

overall.

 int i, w, rc;

 int machine_count;

 LL_element * query_elem;

 LL_element * machine;

 LL_element * adapter;

 char * machine_name;

 char * adapter_name;

 int * window_list;

 int window_count;

 /* First we need to obtain a query element which is used to pass */

 /* parameters in to the machine query */

 if ((query_elem = ll_query(MACHINES)) == NULL)

 {

 fprintf(stderr,"Unable to obtain query element\n");

 /* without the query object we will not be able to do anything */

 exit(-1);

 }

 /* Get information relating to machines in the LoadLeveler cluster. */

 /* QUERY_ALL: we are querying all machines */

 /* NULL: since we are querying all machines we do not need to */

 /* specify a filter to indicate which machines */

 /* ALL_DATA: we want all the information available about the machine */

 rc=ll_set_request(query_elem,QUERY_ALL,NULL,ALL_DATA);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_set_request\n"rc);

 /* Without customizing the query we cannot proceed */

 exit(rc);

 }

 /* If successful, ll_get_objs() returns the first object that */

 /* satisfies the criteria that are set in the query element and */

 /* the parameters. In this case those criteris are: */

 /* A machine (from the type of query object) */

 /* LL_CM: that the negotiator knows about */

 /* NULL: since there is only one negotiator we don’t have to */

 /* specify which host it is on */

 /* The number of machines is returned in machine_count and the */

 /* return code is returned in rc */

 machine = ll_get_objs(query_elem,LL_CM,NULL,&machine_count,&rc);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_get_objs\n"rc);

 /* query was not successful -- we cannot proceed but we need to */

 /* release the query element */

 if(ll_deallocate(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to deallocate invalid query element\n");

 }

 exit(rc);

Using an external scheduler

Chapter 5. Performing additional administrator tasks 105

|

}

 printf("Number of Machines = %d\n", machine_count);

 i = 0;

 while(machine!=NULL)

 {

 printf("--\n");

 printf("Machine %d:\n", i);

 int rc = ll_get_data(machine,LL_MachineName,&machine_name);

 if(0==rc)

 {

 printf("Machine name = %s\n",machine_name);

 }

 else

 {

 printf("Error %d returned attempting to get machine name\n",rc);

 }

 printf("Adapters\n");

 ll_get_data(machine,LL_MachineGetFirstAdapter,&adapter);

 while(adapter != NULL)

 {

 rc = ll_get_data(adapter,LL_AdapterName,&adapter_name);

 if(0!=rc)

 {

 printf("Error %d returned attempting to get adapter name\n",rc);

 }

 else

 {

 /* Because the list of windows on an adapter is returned */

 /* as an array of integers, we also need to know how big */

 /* the list is. First we query the window count, */

 /* storing the result in an integer, then we query for */

 /* the list itself, storing the result in a pointer to */

 /* an integer. The window list is allocated for us so */

 /* we need to free it when we are done */

 printf("%s : ",adapter_name);

 ll_get_data(adapter,LL_AdapterTotalWindowCount,&window_count);

 ll_get_data(adapter,LL_AdapterWindowList,&window_list);

 for (w = 0;w<iBuffer;w++)

 {

 printf("%d ",window_list[w]);

 }

 printf("\n");

 }

 free(window_list);

 /* After the first object has been gotten, GetNext returns */

 /* the next until the list is exhausted */

 ll_get_data(machine,LL_MachineGetNextAdapter,&adapter);

 }

 printf("\n");

 i++;

 machine = ll_next_obj(query_elem);

 }

 /* First we need to release the individual objects that were */

 /* obtained by the query */

 if(ll_free_objs(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to free invalid query element\n");

 }

 /* Then we need to release the query itself */

Using an external scheduler

106 LoadLeveler: Using and Administering

if(ll_deallocate(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to deallocate invalid query element\n");

 }

Example: Retrieving information about jobs

The following example demonstrates retrieving information about jobs up to the

point of starting a job:

 int i, rc;

 int job_count;

 LL_element * query_elem;

 LL_element * job;

 LL_element * step;

 int step_state;

 /* First we need to obtain a query element which is used to pass */

 /* parameters in to the jobs query */

 if ((query_elem = ll_query(JOBS)) == NULL)

 {

 fprintf(stderr,"Unable to obtain query element\n");

 /* without the query object we will not be able to do anything */

 exit(-1);

 }

 /* Get information relating to Jobs in the LoadLeveler cluster. */

 printf("Jobs Information ==\n\n");

 /* QUERY_ALL: we are querying all jobs */

 /* NULL: since we are querying all jobs we do not need to */

 /* specify a filter to indicate which jobs */

 /* ALL_DATA: we want all the information available about the job */

 rc=ll_set_request(query_elem,QUERY_ALL,NULL,ALL_DATA);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_set_request\n"rc);

 /* Without customizing the query we cannot proceed */

 exit(rc);

 }

 /* If successful, ll_get_objs() returns the first object that */

 /* satisfies the criteria that are set in the query element and */

 /* the parameters. In this case those criteris are: */

 /* A job (from the type of query object) */

 /* LL_CM: that the negotiator knows about */

 /* NULL: since there is only one negotiator we don’t have to */

 /* specify which host it is on */

 /* The number of jobs is returned in job_count and the */

 /* return code is returned in rc */

 job = ll_get_objs(query_elem,LL_CM,NULL,&job_count,&rc);

 if(rc<0)

 {

 /* A real application would map the return code to a message */

 printf("%d returned from ll_get_objs\n"rc);

 /* query was not successful -- we cannot proceed but we need to */

 /* release the query element */

 if(ll_deallocate(query_elem) == -1)

 {

 fprintf(stderr,"Attempt to deallocate invalid query element\n");

 }

 exit(rc);

 }

 printf("Number of Jobs = %d\n", job_count);

 step = NULL;

 while(job!=NULL)

Using an external scheduler

Chapter 5. Performing additional administrator tasks 107

|

{

 /* Each job is composed of one or more steps which are started */

 /* individually. We need to check the state of the job’s steps */

 ll_get_data(job,LL_JobGetFirstStep,&step);

 while(step!=NULL)

 {

 ll_get_data(step,LL_StepState,&step_state);

 /* We are looking for steps that are in idle state. The */

 /* state is returned as an int so we cast it to */

 /* enum StepState as declared in llapi.h */

 if((enum StepState)step_state == STATE_IDLE)

 break;

 }

 /* If we exit the loop with a valid step, it is the one to start */

 /* otherwise we need to keep looking */

 if(step != NULL)

 break;

 ll_next_obj(query_elem);

 }

 if(step==NULL)

 {

 printf("No step to start\n");

 exit(0);

 }

Assigning resources and dispatching jobs

In “Example: Retrieving information about jobs” on page 107, we reached the point

where a step to start was identified. In a real external scheduler, the decision

would be reached after consideration of all the idle jobs and constructing a priority

value based on attributes such as class and submit time, all of which are accessible

through ll_get_data. Next, the list of available machines would be examined to

determine whether a set exists with sufficient resources to run the job. This process

also involves determining the size of that set of machines using attributes of the

step such as number of nodes, instances of each node and tasks per node. The

LoadLeveler data query API allows access to that information about each job but

the interface for starting the job does not require that the machine and adapter

resource match the specifications when the job was submitted. For example, a job

could be submitted specifying node=4 but could be started by an external

scheduler on a single node only. Similarly, the job could specify the LAPI protocol

with network.lapi=... but be started and told to use the MPI protocol. This is not

considered an error since it is up to the scheduler to interpret (and enforce, if

necessary), the specifications in the job command file.

In allocating adapter resources for a step, it is important that the order of the

adapter usages be consistent with the structure of the step. In environments where

a task can use multiple adapter windows for a protocol, LoadLeveler expects those

usages to be contiguous in the list of adapter usages passed in to the

ll_start_job_ext call. Similarly, all the usages for a single task must be contiguous.

In other words, if a task is expected to use three adapter windows for MPI and

two for LAPI, there must be three MPI usages together followed immediately by

two LAPI usages. Each task must be allocated the same adapter resources so that

five element pattern must be repeated for each task.

All of the job command file keywords for specifying job structure such as

total_tasks, tasks_per_node, node=min,max and blocking are supported by the

ll_start_job_ext interface but users should ensure that they understand the

LoadLeveler model that is created for each combination when constructing the

Using an external scheduler

108 LoadLeveler: Using and Administering

|

|

adapter usage list for ll_start_job_ext. Jobs that are submitted with node=number

and tasks_per_node result in more regular LoadLeveler models and are easier to

create adapter usage lists for.

In the following example, it is assumed that the step found to be dispatched will

run on one machine with two tasks, each task using one switch adapter window

for MPI communication. The name of the machine to run on is contained in the

variable use_machine (char*), the names of the switch adapters are contained in

use_adapter_1 (char *) and use_adpater_2 (char *) and the adapter windows on

those adapters in use_window_1 int) and use_window_2 (int), respectively.

Further more, each adapter will be allocated 1M of memory.

 LL_start_job_info_ext *start_info;

 char * pChar;

 LL_element * step;

 LL_element * job;

 int rc;

 char * submit_host;

 char * step_id;

 start_info = (LL_start_job_info_ext *)(malloc(sizeof(LL_start_job_info_ext)));

 if(start_info == NULL)

 {

 fprintf(stderr, "Out of memory.\n");

 return;

 }

 /* Create a NULL terminated list of target machines. Each task */

 /* must have an entry in this list and the entries for tasks on the */

 /* same machine must be sequential. For example, if a job is to run */

 /* on two machines, A and B, and three tasks are to run on each */

 /* machine, the list would be: AAABBB */

 /* Any specifications on the job when it was submitted such as */

 /* nodes, total_tasks or tasks_per_node must be explicitly queried */

 /* and honored by the external scheduler in order to take effect. */

 /* They are not automatically enforced by LoadLeveler when an */

 /* external scheduler is used. */

 /* */

 /* In this example, the job will only be run on one machine */

 /* with only one task so the machine list consists of only 1 machine */

 /* (plus the terminating NULL entry) */

 start_info->nodeList = (char **)malloc(2*sizeof(char *));

 if (!start_info->nodeList)

 {

 fprintf(stderr, "Out of memory.\n");

 return;

 }

 start_info->nodeList[0] = strdup(use_machine);

 start_info->nodeList[1] = NULL;

 /* Retrieve information from the job to populate the start_info */

 /* structure */

 /* In the interest of brevity, the success of the ll_get_data() */

 /* is not tested. In a real application it shuld be */

 /* The version number is set from the header that is included when */

 /* the application using the API is compiled. This allows for */

 /* checking that the application was compiled with a version of the */

 /* API that is compatible with the version in the library when the */

 /* application is run. */

 start_info->version_num = LL_PROC_VERSION;

 /* Get the first step of the job to start */

 ll_get_data(job,LL_JobGetFirstStep,&step);

 if(step==NULL)

Using an external scheduler

Chapter 5. Performing additional administrator tasks 109

{

 printf("No step to start\n");

 return;

 }

 /* In order to set the submitting host, cluster number and proc */

 /* number in the start_info structure, we need to parse it out of */

 /* the step id */

 /* First get the submitting host and save it */

 ll_get_data(job,LL_JobSubmitHost,&submit_host);

 start_info->StepId.from_host = strdup(submit_host);

 free(submit_host);

 rc = ll_get_data(step, LL_StepID, &step_id);

 /* The step id format is submit_host.jobno.stepno . Because the */

 /* submit host is a dotted string of indeterminant length, the */

 /* simplest way to detect where the job number starts is to retrieve */

 /* the submit host from the job and skip forward its length in the */

 /* step id. */

 pChar = step_id+strlen(start_info->StepId.from_host)+1;

 /* The next segment is the cluster or job number */

 pChar = strtok(pChar,".");

 start_info->StepId.cluster=atoi(pChar);

 /* The last token is the proc or step number */

 pChar = strtok(NULL,".");

 start_info->StepId.proc = atoi(pChar);

 free(step_id);

 /* For each protocol (eg. MPI or LAPI) on each task, we need to */

 /* specify which adapter to use, whether a window is being used */

 /* (subsystem = "US") or not (subsytem="IP"). If a window is used, */

 /* the window ID and window buffer size must be specified. */

 /* */

 /* The adapter usage entries for the protocols of a task must be */

 /* sequential and the set of entries for tasks on the same node must */

 /* be sequential. For example the twelve entries for a job where */

 /* each task uses one window for MPI and one for LAPI with three */

 /* tasks per node and running on two nodes would be laid out as: */

 /* 1: MPI window for 1st task running on 1st node */

 /* 2: LAPI window for 1st task running on 1st node */

 /* 3: MPI window for 2nd task running on 1st node */

 /* 4: LAPI window for 2nd task running on 1st node */

 /* 5: MPI window for 3rd task running on 1st node */

 /* 6: LAPI window for 3rd task running on 1st node */

 /* 7: MPI window for 1st task running on 2nd node */

 /* 8: LAPI window for 1st task running on 2nd node */

 /* 9: MPI window for 2nd task running on 2nd node */

 /* 10: LAPI window for 2nd task running on 2nd node */

 /* 11: MPI window for 3rd task running on 2nd node */

 /* 12: LAPI window for 3rd task running on 2nd node */

 /* An improperly ordered adapter usage list may cause the job not to */

 /* be started or, if started, incorrect execution of the job */

 /* */

 /* This example starts the job with two tasks on one machine, using */

 /* one switch adapter window on each task. The protocol is forced */

 /* to MPI and a fixed window size of 1M is used. An actual external */

 /* scheduler application would check the steps requirements and its */

 /* adapter requirements of the step with ll_get_data */

 /* */

 start_info->adapterUsageCount = 2;

 start_info->adapterUsage =

 (LL_ADAPTER_USAGE *)malloc((start_info->adapterUsageCount)

 * sizeof(LL_ADAPTER_USAGE));

Using an external scheduler

110 LoadLeveler: Using and Administering

start_info->adapterUsage[0].dev_name = use_adapter_1;

 start_info->adapterUsage[0].protocol = "MPI";

 start_info->adapterUsage[0].subsystem = "US";

 start_info->adapterUsage[0].wid = use_window_1;

 start_info->adapterUsage[0].mem = 1048577;

 start_info->adapterUsage[1].dev_name = use_adapter_2;

 start_info->adapterUsage[1].protocol = "MPI";

 start_info->adapterUsage[1].subsystem = "US";

 start_info->adapterUsage[1].wid = use_window_2;

 start_info->adapterUsage[1].mem = 1048577;

 if ((rc = ll_start_job_ext(start_info)) != API_OK)

 {

 printf("Error %d returned attempting to start Job Step %s.%d.%d on %s\n",

 rc,

 start_info->StepId.from_host,

 start_info->StepId.cluster,

 start_info->StepId.proc,

 start_info->nodeList[0]

);

 }

 else

 {

 printf("ll_start_job_ext() invoked to start job step: "

 "%s.%d.%d on machine: %s.\n\n",

 start_info->StepId.from_host, start_info->StepId.cluster,

 start_info->StepId.proc, start_info->nodeList[0]);

 }

 free(start_info->nodeList[0]);

 free(start_info);

Finally, when the step and job element are no longer in use, ll_free_objs() and

ll_deallocate() should be called on the query element.

Example: Changing scheduler types

You can toggle between the default LoadLeveler scheduler and other types of

schedulers by using the SCHEDULER_TYPE keyword. Changes to

SCHEDULER_TYPE will not take effect at reconfiguration. The administrator must

stop and restart or recycle LoadLeveler when changing SCHEDULER_TYPE. A

combination of changes to SCHEDULER_TYPE and some other keywords may

terminate LoadLeveler.

The following example illustrates how you can toggle between the default

LoadLeveler scheduler and an external scheduler, such as the Extensible Argonne

Scheduling sYstem (EASY), developed by Argonne National Laboratory and

available as public domain code.

If you are running the default LoadLeveler scheduler, perform the following steps

to switch to an external scheduler:

1. In the configuration file, set SCHEDULER_TYPE = API

2. On the central manager machine:

v Issue llctl -g stop and llctl -g start, or

v Issue llctl -g recycle

If you are running an external scheduler, this is how you can re-enable the

LoadLeveler scheduling algorithm:

Using an external scheduler

Chapter 5. Performing additional administrator tasks 111

|

|
|

|
|

|
|

|
|

1. In the configuration file, set SCHEDULER_TYPE = LL_DEFAULT

2. On the central manager machine:

v Issue llctl -g stop and llctl -g start, or

v Issue llctl -g recycle

Preempting and resuming jobs

Both the backfill and gang schedulers allow LoadLeveler jobs to be preempted so

that a higher priority job step can run. Administrators may specify not only

preemption rules for job classes, but also the method that LoadLeveler uses to

preempt jobs. The backfill scheduler supports various methods of preemption; the

gang scheduler supports preemption through only the suspend method.

LoadLeveler for Linux does not support the use of the gang scheduler, and does

not support the use of the suspend method under the backfill scheduler.

Use Table 23 to find more information about preemption.

 Table 23. Roadmap of tasks for using preemption

Subtask Associated instructions (see . . .)

Learn about types of

preemption and what it

means for preempted jobs

“Overview of preemption”

Prepare the LoadLeveler

environment and jobs for

preemption

“Planning to preempt jobs” on page 113

Configure LoadLeveler to use

preemption

“Steps for configuring a scheduler to preempt jobs” on page

115

Overview of preemption

LoadLeveler supports two types of preemption:

v System-initiated preemption

– Automatically enforced by LoadLeveler, except for job steps running under a

reservation.

– Governed by the PREEMPT_CLASS rules defined in the global configuration

file.

– When resources required by an incoming job are in use by other job steps, all

or some of those job steps in certain classes may be preempted according to

the PREEMPT_CLASS rules.

– An automatically preempted job step will be resumed by LoadLeveler when

resources become available and conditions such as START_CLASS rules are

satisfied.

– An automatically preempted job step cannot be resumed using llpreempt

command or ll_preempt subroutine.

– For the gang scheduler only, a special kind of system-initiated preemption is

related to the llmodify command. When llmodify -x 99 makes a job step

non-preemptable, neither user-initiated preemption nor system-initiated

preemption will be able to preempt the job step. All other job steps sharing

the same node will be preempted and stay in preempted state until the

non-preemptable job step finishes or becomes preemptable by llmodify -x 1.

Changing scheduler types

112 LoadLeveler: Using and Administering

|
|
|

|

|
|
|
|
|

|
|

|

||

||

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|

|
|

|
|
|

|

v User-initiated preemption

– Manually initiated by LoadLeveler administrators using llpreempt command

or ll_preempt subroutine.

– A manually preempted job step cannot be resumed automatically by

LoadLeveler.

– A manually preempted job step can be resumed using llpreempt command or

ll_preempt subroutine. Issuing this command or subroutine, however, does

not guarantee that the job step will successfully be resumed. A manually

preempted job step that was resumed through these interfaces competes for

resources with system-preempted job steps, and will be resumed only when

resources become available.

For the backfill scheduler only, administrators may select which method

LoadLeveler uses to preempt and resume jobs. The suspend method is the default

behavior, and is the preemption method LoadLeveler uses for the gang scheduler

and any external schedulers that support preemption. For more information about

preemption methods, see “Planning to preempt jobs.”

For a preempted job to be resumed after system- or user-initiated preemption

occurs through a method other than suspend, the restart keyword in the job

command file must be set to yes. Otherwise, LoadLeveler vacates the job step and

removes it from the cluster.

Planning to preempt jobs

Consider the following points when planning to use preemption:

v Avoiding circular preemption under the backfill and gang schedulers

Both backfill and gang scheduling enable job preemption using rules specified

with the PREEMPT_CLASS keyword. When you are setting up the preemption

rules, make sure that you do not create a circular preemption path. Circular

preemption causes a job class to preempt itself after applying the preemption

rules recursively. For example, the following keyword definitions set up circular

preemption rules on Class_A.:

PREEMPT_CLASS[Class_A] = ALL { Class_B }

PREEMPT_CLASS[Class_B] = ALL { Class_C }

PREEMPT_CLASS[Class_C] = ENOUGH { Class_A }

Another example of circular preemption involves allclasses:

PREEMPT_CLASS[Class_A] = ENOUGH {allclasses}

PREEMPT_CLASS[Class_B] = ALL {Class_A}

In this instance, allclasses means all classes except Class_A, any additional

preemption rule preempting Class_A causes circular preemption.

v Understanding implied START_CLASS values

Using the ″ALL″ value in the PREEMPT_CLASS keyword places implied

restrictions on when a job can start. For example,

PREEMPT_CLASS[Class_A] = ALL {Class_B Class_C}

tells LoadLeveler two things:

1. If a new Class_A job is about to run on a node set, then preempt all Class_B

and Class_C jobs on those nodes

2. If a Class_A job is running on a node set, then do not start any Class_B or

Class_C jobs on those nodes

This PREEMPT_CLASS statement also implies the following START_CLASS

expressions:

1. START_CLASS[Class_B] = (Class_A < 1)

Preempting and resuming jobs

Chapter 5. Performing additional administrator tasks 113

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

2. START_CLASS[Class_C] = (Class_A < 1)

LoadLeveler adds all implied START_CLASS expressions to the START_CLASS

expressions specified in the configuration file. This overrides any existing values

for START_CLASS.

For example, if the configuration file contains the following statements:

PREEMPT_CLASS[Class_A] = ALL {Class_B Class_C}

START_CLASS[Class_B] = (Class_A < 5)

START_CLASS[Class_C] = (Class_C < 3)

When LoadLeveler runs through the configuration process, the

PREEMPT_CLASS statement on the first line generates the two implied

START_CLASS statements. When the implied START_CLASS statements get

added in, the user specified START_CLASS statements are overridden and the

resulting START_CLASS statements are effectively equivalent to:

START_CLASS[Class_B] = (Class_A < 1)

START_CLASS[Class_C] = (Class_C < 3) && (Class_A < 1)

Note: LoadLeveler’s central manager (CM) uses these effective expressions

instead of the original statements specified in the configuration file. The

output from llclass -l displays the original customer specified

START_CLASS expressions.

v Selecting the preemption method under the backfill scheduler

Use Table 24 and Table 25 on page 115 to determine which preemption you want

to use for jobs running under the backfill scheduler. You may define one or

more of the following:

– A default preemption method to be used for all job classes, by setting the

DEFAULT_PREEMPT_METHOD keyword in the configuration file.

– A specific preemption method for one or more classes or job steps, by using

an option on:

- The PREEMPT_CLASS statement in the configuration file.

- The llpreempt command, ll_preempt subroutine or ll_preempt_jobs

subroutine.

Notes:

1. LoadLeveler for Linux does not support the suspend method of preemption.

2. For a preempted job to be resumed after system- or user-initiated preemption

occurs through a method other than suspend and remove, the restart

keyword in the job command file must be set to yes. Otherwise, LoadLeveler

vacates the job step and removes it from the cluster.

 Table 24. Preemption methods for which LoadLeveler automatically resumes preempted jobs

Preemption

method

(abbreviation)

LoadLeveler resumes preempted job:

At this time At this location At this processing point

Suspend (su) When preempting job

completes

On the same nodes At the point of suspension

Vacate (vc) When nodes are

available

Any nodes that meet

job requirements

At the beginning or at the

last successful checkpoint

Preempting and resuming jobs

114 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

||

|
|
|

|

|||

||
|
||

||
|
|
|
|
|
|

Table 25. Preemption methods for which administrator or user intervention is required

Preemption

method

(abbreviation) Required intervention

LoadLeveler resumes preempted job:

At this location At this processing point

Remove (rm) Administrator or user must

resubmit the preempted job

Any nodes that

meet job

requirements,

when they are

available

At the beginning or at

the last successful

checkpoint System Hold

(sh)

Administrator must release

the preempted job

User Hold (uh) User must release the

preempted job

v Understanding how LoadLeveler treats resources held by jobs to be

preempted

When a job step is running, it may be holding the following resources:

– Processors

– Scheduling slots

– Real memory

– ConsumableCpus and ConsumableMemory

– Communication switches, if the PREEMPTION_TYPE keyword is set to FULL

in the configuration file.

When LoadLeveler suspends preemptable jobs running under the backfill or

gang scheduler, certain resources held by those jobs do not become available for

the preempting jobs. These resources include ConsumableVirtualMemory and

floating resources. Under the backfill scheduler only, LoadLeveler releases these

resources when you select a preemption method other than suspend. For all

preemption methods other than suspend, LoadLeveler treats all job-step

resources as available when it preempts the job step.

v Learning about restrictions for gang scheduling preemption

The following conditions are not supported with gang scheduling preemption:

– css_type = RS/6000_SP_System_Attachment_Adapter in the administration

file

– css_type = SP_Switch_Adapter in the administration file

– MACHINE_AUTHENTICATE = false in the configuration file

– PROCESS_TRACKING = false in the configuration file

– Circular preemption rules specified in the configuration file

If any of the conditions listed above exist, the following will occur:

– LoadLeveler will not start when SCHEDULER_TYPE = GANG

– Reconfiguration will not take place when SCHEDULER_TYPE = GANG
v Understanding how LoadLeveler processes multiple entries for the same

keywords

If there are multiple entries for the same keyword in either a configuration file

or an administration file, the last entry wins. For example, the following

statements are all valid specifications for the same keyword START_CLASS:

START_CLASS [Class_B] = (Class_A < 1)

START_CLASS [Class_B] = (Class_B < 1)

START_CLASS [Class_B] = (Class_C < 1)

However, all three statements identify Class_B as the incoming class.

LoadLeveler resolves these statements according to the ″last one wins″ rule.

Because of that, the actual value used for the keyword is (Class_C < 1).

Steps for configuring a scheduler to preempt jobs

Before you begin:

Preempting and resuming jobs

Chapter 5. Performing additional administrator tasks 115

||

|
|
||

|

||

||
|
|
|
|
|
|

|
|
||
|
|
|

||
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

v To define rules for starting and preempting jobs, you need to know certain

details about the job characteristics and workload at your installation, including:

– Which jobs require the same resources, or must be run on the same machines,

and so on. This knowledge allows you to group specific jobs into a class.

– Which jobs or classes have higher priority than others. This knowledge allows

you to define which job classes can preempt other classes.
v To correctly configure LoadLeveler to preempt jobs, you might need to refer to

the following information:

– “Choosing a scheduler” on page 35.

– “Planning to preempt jobs” on page 113.

– Chapter 11, “Configuration file reference,” on page 211.

– Chapter 12, “Administration file reference,” on page 263.

– “llctl - Control LoadLeveler daemons” on page 353.

Perform the following steps to configure a scheduler to preempt jobs:

1. In the configuration file, use the SCHEDULER_TYPE keyword to define the

type of LoadLeveler or external scheduler you want to use. Of the LoadLeveler

schedulers, only the backfill and gang schedulers support preemption.

Rule: If you select the backfill scheduler, you must set the

PREEMPTION_SUPPORT configuration keyword to either full or no_adapter.

2. (Optional) In the configuration file, use the DEFAULT_PREEMPT_METHOD

to define the default method that the backfill scheduler should use for

preempting jobs.

Alternatives: You also may set the preemption method through:

v The PREEMPT_CLASS keyword or on the LoadLeveler preemption

command or APIs, which override the setting for the

DEFAULT_PREEMPT_METHOD keyword.

v The LoadLeveler GUI by selecting Admin � Preempt.

Rule: For the gang scheduler only, if you select the suspend method explicitly

or by default, you must set both of the following configuration keywords to

true:

v PROCESS_TRACKING

v MACHINE_AUTHENTICATE

.

3. In the configuration file, use the PREEMPT_CLASS and START_CLASS to

define the preemption and start policies for job classes.

4. In the administration file, use the max_total_tasks keyword to define the

maximum number of tasks that may be run per user, group, or class.

5. On the central manager machine:

v Issue llctl -g stop and llctl -g start, or

v Issue llctl -g recycle

When you are done with this procedure, you can use the llq command to

determine whether jobs are being preempted and resumed correctly. If not, use the

LoadLeveler logs to trace the actions of each daemon involved in preemption to

determine the problem.

Preempting and resuming jobs

116 LoadLeveler: Using and Administering

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|

|

|
|

|

|
|
|

|

|
|
|
|

Configuring LoadLeveler to support reservations

Under the backfill scheduler only, LoadLeveler allows authorized users to make

reservations, which specify a time period during which specific node resources are

reserved for use by particular users or groups. Normally, jobs wait to be

dispatched until the resources they require become available. Through the use of

reservations, wait time can be reduced because only jobs bound to the reservation

may use the node resources as soon as the reservation period begins.

Use Table 26 to find additional information about reservations.

 Table 26. Roadmap of reservation tasks for administrators

Subtask Associated instructions (see . . .)

Learn how reservations work in the

LoadLeveler environment

v “Overview of reservations” on page 22

v “Understanding the reservation life cycle”

on page 172

Configuring a LoadLeveler cluster to

support reservations

v “Steps for configuring reservations in a

LoadLeveler cluster”

v “Examples: Reservation keyword

combinations in the administration file” on

page 119

v “Collecting accounting data for reservations”

on page 122

Working with reservations:

v Creating reservations

v Submitting jobs under a reservation

v Managing reservations

“Working with reservations” on page 171

Correctly coding and using administration

and configuration keywords

v Chapter 12, “Administration file reference,”

on page 263

v Chapter 11, “Configuration file reference,”

on page 211

Steps for configuring reservations in a LoadLeveler cluster

Before you begin:

v You need to know that only the backfill scheduler supports the use of

reservations. For information about configuring the backfill scheduler, see

“Choosing a scheduler” on page 35.

v You need to decide:

– Which users will be allowed to create reservations.

– How many reservations users may own, and how long a duration for their

reservations will be allowed.

– Which nodes will be used for reservations.

– How much setup time is required before the reservation period starts.

– Whether accounting data for reservations is to be saved.
v For examples of possible reservation keyword combinations, see “Examples:

Reservation keyword combinations in the administration file” on page 119.

v For details about specific keyword syntax and use:

– In the administration file, see Chapter 12, “Administration file reference,” on

page 263.

– In the configuration file, see Chapter 11, “Configuration file reference,” on

page 211.

Configuring LoadLeveler for reservations

Chapter 5. Performing additional administrator tasks 117

|

|
|
|
|
|
|

|

||

||

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

Perform the following steps to configure reservations:

1. In the administration file, modify the user or group stanzas to authorize users

to create reservations. You may grant the ability to create reservations to an

individual user, a group of users, or a combination of users and groups. To do

so, define the following keywords in the appropriate user or group stanzas:

v max_reservations, to set the maximum number of reservations that a user or

group may have.

v (Optional) max_reservation_duration, to set the maximum amount of time

for the reservation period.

Tip: To quickly set up and use reservations, use one of the following examples:

v To allow every user to create a reservation, add max_reservations=1 to the

default user stanza. Then every administrator or user may create a

reservation, as long as the number of reservations has not reached the limit

for a LoadLeveler cluster.

v To allow a specific group of users to make 10 reservations, add

max_reservations=10 to the group stanza for that LoadLeveler group. Then

every user in that group may create a reservation, as long as the number of

reservations has not reached the limit for that group or for a LoadLeveler

cluster.

See the max_reservations description in Chapter 12, “Administration file

reference,” on page 263 for more information about setting this keyword in the

user or group stanza.

2. In the administration file, modify the machine stanza of each machine that may

be reserved. To do so, set the reservation_permitted keyword to true.

Tip: If you want to allow every machine to be reserved, you do not have to set

this keyword; by default, any LoadLeveler machine may be reserved. If you

want to prevent particular machines from being reserved, however, you must

define a machine stanza for that machine and set the reservation_permitted

keyword to false.

3. In the global configuration file, set reservation policy by specifying values for

the following keywords:

v MAX_RESERVATIONS to specify the maximum number of reservations per

cluster.

Rule: The total number of reservations supported in a LoadLeveler cluster is

10.

v RESERVATION_CAN_BE_EXCEEDED to specify whether LoadLeveler will

be permitted to schedule job steps bound to a reservation when their

expected end times exceed the reservation end time.

The default for this keyword is TRUE, which means that LoadLeveler will

schedule these bound job steps even when they are expected to continue

running beyond the time at which the reservation ends. Whether these job

steps run and successfully complete depends on resource availability, which

is not guaranteed after the reservation ends. In addition, these job steps

become subject to preemption rules after the reservation ends.

Tip: You might want to set this keyword value to FALSE to prevent users

from binding long-running jobs to run under reservations of short duration.

v RESERVATION_MIN_ADVANCE_TIME to define the minimum time

between the time at which a reservation is created and the time at which the

reservation is to start.

Configuring LoadLeveler for reservations

118 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

Tip: To reduce the impact to the currently running workload, consider

changing the default for this keyword, which allows reservations to begin as

soon as they are created. You may, for example, require reservations to be

made at least one day (1440 minutes) in advance, by specifying

RESERVATION_MIN_ADVANCE_TIME=1440 in the global configuration file.

v RESERVATION_PRIORITY to define whether LoadLeveler administrators

may reserve nodes on which running jobs are expected to end after the start

time for the reservation.

Tip: The default for this keyword is NONE, which means that LoadLeveler will

not reserve a node on which running jobs are expected to end after the start

time for the reservation. If you want to allow LoadLeveler administrators to

reserve specific nodes regardless of the expected end times of job steps

currently running on the node, set this keyword value to HIGH. Note,

however, that setting this keyword value to HIGH might increase the number

of job steps that must be preempted when LoadLeveler sets up the

reservation, and many jobs might remain in Preempted state.

This keyword value applies only for LoadLeveler administrators; other

reservation owners do not have this capability.

v RESERVATION_SETUP_TIME to define the amount of time LoadLeveler

uses to prepare for a reservation before it is to start.

4. (Optional) In the global configuration file, set controls for the collection of

accounting data for reservations:

v To turn on accounting for reservations, add the A_RES flag to the ACCT

keyword.

v To specify a file other than the default history file to contain the data, use the

RESERVATION_HISTORY keyword.

To learn how to collect accounting data for reservations, see “Collecting

accounting data for reservations” on page 122.

5. If LoadLeveler is already started, to process the changes you made in the

preceding steps, issue the command llctl -g reconfig

Tip: If you have changed the value of only the RESERVATION_PRIORITY

keyword, issue the command llctl reconfig only on the central manager node.

Result: The new keyword values take effect immediately, but they do not

change the attributes of existing reservations.

When you are done with this procedure, you may perform additional tasks

described in “Working with reservations” on page 171.

Examples: Reservation keyword combinations in the

administration file

The following examples demonstrate LoadLeveler behavior when the

max_reservations and max_reservation_duration keywords are set. The examples

assume that only the user and group stanzas listed exist in the LoadLeveler

administration file.

v Example 1: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

Configuring LoadLeveler for reservations

Chapter 5. Performing additional administrator tasks 119

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|

|

|
|
|
|

include_users = rich dave steve

rich: type = user

 default_group = group2

This example shows that, by default, no one is allowed to make any

reservations. No one, including LoadLeveler administrators, is permitted to

make any reservations unless the max_reservations keyword is used.

v Example 2: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

rich: type = user

 default_group = group2

 max_reservations = 5

This example shows how permission to make reservations can be granted to a

specific user through the user stanza only. Because the max_reservations

keyword is not used in any group stanza, by default, the group stanzas neither

grant permissions nor put any restrictions on reservation permissions. User Rich

can make reservations in any group (group2, No_Group, Group_A, and so on),

whether or not the group stanzas exist in the LoadLeveler administration file.

The total number of reservations user Rich can own at any given time is limited

to five.

v Example 3: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

 max_reservations = 5

rich: type = user

 default_group = group2

This example shows how permission to make reservations can be granted to a

group of users through the group stanza only. Because the max_reservations

keyword is not used in any user stanza, by default, the user stanzas neither

grant nor deny permission to make reservations. All users in group2 (Rich, Dave

and Steve) can make reservations, but they must make reservations in group2

because other groups do not grant the permission to make reservations. The

total number of reservations the users in group2 can own at any given time is

limited to five.

v Example 4: Assume the administration file contains the following stanzas:

default: type = user

 maxjobs = 10

group2: type = group

 include_users = rich dave steve

 max_reservations = 5

rich: type = user

 default_group = group2

 max_reservations = 0

This example shows how permission to make reservations can be granted to a

group of users except one specific user. Because the max_reservations keyword

Configuring LoadLeveler for reservations

120 LoadLeveler: Using and Administering

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

is set to zero in the user stanza for Rich, he does not have permission to make

any reservation, even though all other users in group2 (Dave and Steve) can

make reservations.

v Example 5: Assume the administration file contains the following stanzas:

default: type = group

 max_reservations = 0

default: type = user

 max_reservations = 0

group2: type = group

 include_users = rich dave steve

 max_reservations = 5

rich: type = user

 default_group = group2

 max_reservations = 5

dave: type = user

 max_reservations = 2

This example shows how permission to make reservations can be granted to

specific user and group pairs. Because the max_reservations keyword is set to

zero in both the default user and group stanza, no one has permission to make

any reservation unless they are specifically granted permission through both the

user and group stanza. In this example:

– User Rich can own at any time up to five reservations in group2 only.

– User Dave can own at any time up to two reservations in group2 only.

The total number of reservations they can own at any given time is limited to

five. No other combination of user or group pairs can make any reservations.

v Example 6: Assume the administration file contains the following stanzas:

default: type = user

 max_reservations = 1

This example permits any user to make one reservation in any group, until the

number of reservations reaches the maximum number allowed in the

LoadLeveler cluster.

v Example 7: Assume the administration file contains the following stanzas:

default: type = group

 max_reservations = 0

default: type = user

 max_reservations = 0

group1: type = group

 max_reservations = 6

 max_reservation_duration = 1440

carol: type = user

 default_group = group1

 max_reservations = 4

 max_reservation_duration = 720

dave: type = user

 default_group = group1

 max_reservations = 4

 max_reservation_duration = 2880

In this example, two users, Carol and Dave, are members of group1. Neither

Carol nor Dave belong to any other group with a group stanza in the

LoadLeveler administration file, although they may use any string as the name

of a LoadLeveler group and belong to it by default.

Configuring LoadLeveler for reservations

Chapter 5. Performing additional administrator tasks 121

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Because the max_reservations keyword is set to zero in the default group stanza,

reservations can be made only in group1, which has an allotment of six

reservations. Each reservation can have a maximum duration of 1440 minutes

(24 hours).

Considering only the user-stanza attributes for reservations:

– User Carol can make up to four reservations with each having a maximum

duration of 720 minutes (12 hours).

– User Dave can make up to four reservations with each having a maximum

duration of 2880 minutes (48 hours).

If there are no reservations in the system and user Carol wants to make four

reservations, she may do so. Each reservation can have a maximum duration of

no more than 720 minutes. If Carol attempts to make a reservation with a

duration greater than 720 minutes, LoadLeveler will not make the reservation

because it exceeds the duration allowed for Carol.

Assume that Carol has created four reservations, and user Dave now wants to

create four reservations:

– The number of reservations Dave may make is limited by the state of Carol’s

reservations and the maximum limit on reservations for group1. If the four

reservations Carol made are still being set up, or are active, active shared or

waiting, LoadLeveler will restrict Dave to making only two reservations at

this time.

– Because the value of max_reservation_duration for the group is more

restrictive than max_reservation_duration for user Dave, LoadLeveler

enforces the group value, 1440 minutes.

If Dave belonged to another group that still had reservations available, then he

could make reservations under that group, assuming the maximum number of

reservations for the cluster had not been met. However, in this example, Dave

cannot make any further reservations because they are allowed in group1 only.

Collecting accounting data for reservations

LoadLeveler can collect accounting data for reservations, which are set periods of

time during which node resources are reserved for the use of particular users or

groups. To enable recording of reservation information, specify the following

keywords in the configuration file:

v To turn on accounting for reservations, add the A_RES flag to the ACCT

keyword.

v To specify a file other than the default history file to contain the data, use the

RESERVATION_HISTORY keyword.

See Chapter 11, “Configuration file reference,” on page 211 for details about the

ACCT and RESERVATION_HISTORY keywords.

When these keyword values are set and a reservation ends or is canceled,

LoadLeveler records the following information:

v The reservation ID

v The time at which the reservation was created

v The user ID of the reservation owner

v The name of the owning group

v Requested and actual start times

v Requested and actual duration

v Actual time at which the reservation ended or was canceled

v Whether the reservation was created with the SHARED or REMOVE_ON_IDLE options

v A list of users and a list of groups that were authorized to use the reservation

v The number of reserved nodes

Configuring LoadLeveler for reservations

122 LoadLeveler: Using and Administering

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

v The names of reserved nodes

This reservation information is appended in a single line to the reservation history

file for the reservation. The format of reservation history data is:

reservation id!reservation creation time!reservation owner!owning group!

requested start time!actual start time!

requested duration!actual duration!actual end time!

SHARED(yes if shared, no otherwise)!

REMOVE ON IDLE(yes if remove on idle, no otherwise)

!user list!group_list!number of nodes!hostlist

In reservation history data:

v The unit of measure for start times and end times is the number of seconds since

January 1, 1970.

v The unit of time for durations is seconds.

The following is an example of a reservation history file entry:

c188f2n01.ppd.pok.ibm.com.4.r!1091038734!iris!No_Group!1091040300!1091040300!720

!720!1091041020!no!no!!!1!c188f2n01

To collect the reservation information stored in the history file, use one of the

following:

v The llacctmrg command with the -R option. For llacctmrg command syntax, see

“llacctmrg - Collect machine history files” on page 337.

v The LoadLeveler GUI. From the Machines window, use the LoadLeveler GUI by

selecting one or more machines, then selecting Admin � Collect Reservation

Data and specifying the directory to contain the merged file. If you do not enter

a directory, LoadLeveler uses the directory specified in the GLOBAL_HISTORY

keyword in the configuration file.

To format reservation history data contained in a file, use the sample script

llreshist.pl in directory /usr/lpp/LoadL/full/samples/llres/.

Steps for integrating LoadLeveler with AIX Workload Manager

Another administrative setup task you must consider is whether you want to

enforce resource usage of ConsumableCPUs and ConsumableMemory. If you

want to control these resources, AIX Workload Manager (WLM) can be integrated

with LoadLeveler to balance workloads at the machine level.

WLM is not supported in LoadLeveler for Linux.

Workload balancing is done by assigning relative priorities to job processes. These

job priorities prevent one job from monopolizing system resources when that

resource is under contention.

To integrate LoadLeveler and WLM, perform the following steps:

1. Define ConsumableCpus, ConsumableMemory, or both as consumable

resources in the SCHEDULE_BY_RESOURCES global configuration keyword.

This enables the LoadLeveler scheduler to consider these consumable resources.

2. Define ConsumableCpus, ConsumableMemory, or both in the

ENFORCE_RESOURCE_USAGE global configuration keyword. This enables

enforcement of these consumable resources by AIX WLM.

Configuring LoadLeveler for reservations

Chapter 5. Performing additional administrator tasks 123

|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

3. Define hard, soft or shares in the ENFORCE_RESOURCE_POLICY

configuration keyword. This defines what policy is used by LoadLeveler when

setting WLM class resource entitlements.

4. (Optional) Set the ENFORCE_RESOURCE_MEMORY configuration keyword

to true. This setting allows AIX WLM to limit the real memory usage of a

WLM class as precisely as possible. When a class exceeds its limit, all processes

in the class are killed.

Rule: ConsumableMemory must be defined in the

ENFORCE_RESOURCE_USAGE keyword in the global configuration file, or

LoadLeveler does not consider the ENFORCE_RESOURCE_MEMORY

keyword to be valid.

Tips:

v When set to true, the ENFORCE_RESOURCE_MEMORY keyword overrides

the policy set through the ENFORCE_RESOURCE_POLICY keyword for

ConsumableMemory only. The ENFORCE_RESOURCE_POLICY keyword

value still applies for ConsumableCpus.

v ENFORCE_RESOURCE_MEMORY may be set in either the global or the

local configuration file. In the global configuration file, this keyword sets the

default value for all the machines in the LoadLeveler cluster. If the keyword

also is defined in a local file, the local setting overrides the global setting.

5. Using the resources keyword in a machine stanza in the administration file,

define the CPU and real memory machine resources available for user jobs.

v The ConsumableCpus reserved word accepts a count value of ″all.″ This

indicates that the initial resource count will be obtained from the Startd

machine update value for CPUs.

v If no resources are defined for a machine, then no enforcement will be done

on that machine.

v If the count specified by the administrator is greater than what the Startd

update indicates, the initial count value will be reduced to match what the

Startd reports.

v If the count specified by the administrator is less than what the Startd

update indicates, the WLM resource shares assigned to a job will be adjusted

to represent that difference and a WLM softlimit will be defined for each

WLM class. For example, if the administrator defines 8 CPUs on a 16 CPU

machine, then a job requesting 4 CPUs will get a share of 4 and a softlimit of

50%.

v Use caution when determining the amount of real memory available for user

jobs. A certain percentage of a machine’s real memory will be dedicated to

the Default and System WLM classes and will not be included in the

calculation of real memory available for users jobs. Start LoadLeveler with

the ENFORCE_RESOURCE_USAGE keyword enabled and issue wlmstat -v

-m. Look at the npg column to determine how much memory is being used

by these classes.

6. Decide if all jobs should have their CPU or real memory resources enforced

and then define the ENFORCE_RESOURCE_SUBMISSION global

configuration keyword.

v If the value specified is true, LoadLeveler will check all jobs at submission

time for the resources keyword. The job’s resources keyword needs to have

the same resources specified as the ENFORCE_RESOURCE_USAGE

keyword in order to be submitted.

LoadLeveler with AIX Workload Manager

124 LoadLeveler: Using and Administering

|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|

v If the value specified is false, no checking will be done and jobs submitted

without the resources keyword will not have resources enforced and may

interfere with other jobs whose resources are enforced.

v To support existing job command files without the resources keyword, the

default_resources keyword in the class stanza can be defined. The

default_resources keyword needs to be defined in the default interactive

class to support interactive jobs.

For more information on the ENFORCE_RESOURCE_USAGE and the

ENFORCE_RESOURCE_SUBMISSION keywords, see “Defining usage policies

for consumable resources” on page 56.

Checkpointing jobs

Checkpointing is a method of periodically saving the state of a job step so that if

the step does not complete it can be restarted from the saved state. When

checkpointing is enabled, checkpoints can be initiated from within the application

at major milestones, or by the user, administrator or LoadLeveler external to the

application. Both serial and parallel job steps can be checkpointed.

LoadLeveler for Linux does not support checkpointing of user jobs.

Once a job step has been successfully checkpointed, if that step terminates before

completion, the checkpoint file can be used to resume the job step from its saved

state rather than from the beginning. When a job step terminates and is removed

from the LoadLeveler job queue, it can be restarted from the checkpoint file by

submitting a new job and setting the restart_from_ckpt = yes job command file

keyword. When a job is terminated and remains on the LoadLeveler job queue,

such as when a job step is vacated, the job step will automatically be restarted

from the latest valid checkpoint file. A job can be vacated as a result of flushing a

node, issuing checkpoint and hold, stopping or recycling LoadLeveler or as the

result of a node crash.

To find out more about checkpointing jobs, use the information in Table 27.

 Table 27. Roadmap of tasks for checkpointing jobs

Subtask Associated instructions (see . . .)

Preparing the LoadLeveler

environment for

checkpointing and restarting

jobs

v “Checkpoint keyword summary”

v “Planning considerations for checkpointing jobs” on page

126

v “Checkpoint and restart limitations” on page 127

v “Naming checkpoint files and directories” on page 129

Checkpointing and restarting

jobs

v “Checkpointing a job” on page 184

v “Removing old checkpoint files” on page 130

Correctly specifying

configuration and

administration file keywords

v Chapter 11, “Configuration file reference,” on page 211

v Chapter 12, “Administration file reference,” on page 263

Checkpoint keyword summary

The following is a summary of keywords associated with the checkpoint and

restart function.

LoadLeveler with AIX Workload Manager

Chapter 5. Performing additional administrator tasks 125

|

|

||

||

|
|
|
|

|

|
|

|

|

|
|
|

|

|
|
|

|

|

|

|

v Configuration file keywords

– CKPT_CLEANUP_INTERVAL

– CKPT_CLEANUP_PROGRAM

– CKPT_EXECUTE_DIR

– MAX_CKPT_INTERVAL

– MIN_CKPT_INTERVAL

For more information about these keywords, see the following checkpoint topics

and Chapter 11, “Configuration file reference,” on page 211.

v Administration file keywords

– ckpt_dir

– ckpt_time_limit

For more information about these keywords, see the following checkpoint topics

and Chapter 12, “Administration file reference,” on page 263.

v Job command file keywords

– checkpoint

– ckpt_dir

– ckpt_execute_dir

– ckpt_file

– ckpt_time_limit

– restart_from_ckpt

For more information about these keywords, see the following checkpoint topics

and “Job command file keyword descriptions” on page 294.

Planning considerations for checkpointing jobs

Review the following guidelines before you submit a checkpointing job:

v Plan for jobs that you will restart on different nodes

If you plan to migrate jobs (restart jobs on a different node or set of nodes), you

should understand the difference between writing checkpoint files to a local file

system versus a global file system (such as AFS or GPFS). The ckpt_file and

ckpt_dir keywords in the job command and configuration files allows you to

write to either type of file system. If you are using a local file system, before

restarting the job from checkpoint, make certain that the checkpoint files are

accessible from the machine on which the job will be restarted.

v Reserve adequate disk space

A checkpoint file requires a significant amount of disk space. The checkpoint

will fail if the directory where the checkpoint file is written does not have

adequate space. For serial jobs, one checkpoint file will be created. For parallel

jobs, one checkpoint file will be created for each task. Since the old set of

checkpoint files are not deleted until the new set of files are successfully created,

the checkpoint directory should be large enough to contain two sets of

checkpoint files. You can make an accurate size estimate only after you have run

your job and noticed the size of the checkpoint file that is created.

v Plan for staging executables

If you want to stage the executable for a job step, use the ckpt_execute_dir

keyword to define the directory where LoadLeveler will save the executable.

This directory cannot be the same as the current location of the executable file,

or LoadLeveler will not stage the executable.

You may define the ckpt_execute_dir keyword in either the configuration file or

the job command file. To decide where to define the keyword, use the

information in Table 28 on page 127.

Checkpointing jobs

126 LoadLeveler: Using and Administering

|

|

|

|
|
|
|

|
|
|

Table 28. Deciding where to define the directory for staging executables

If the ckpt_execute_dir

keyword is defined in: Then the following information applies:

The configuration file only v LoadLeveler stages the executable file in a new subdirectory

of the specified directory. The name of the subdirectory is the

job step ID.

v The user is the owner of the subdirectory and has permission

700.

v If the user issues the llckpt command with the -k option,

LoadLeveler deletes the staged executable.

v LoadLeveler will delete the subdirectory and the staged

executable when the job step ends.

The job command file only v LoadLeveler stages the executable file in the directory

specified in the job command file.

v The user is the owner of the file and has execute permission

for it.

v The user is responsible for deleting the staged file after the

job step ends.

Both the configuration and

job command files

Neither file (the keyword

is not defined)

LoadLeveler does not stage the executable file for the job step.

v Set your checkpoint file size to the maximum

To make sure that your job can write a large checkpoint file, assign your job to a

job class that has its file size limit set to the maximum (unlimited). In the

administration file, set up a class stanza for checkpointing jobs with the

following entry:

 file_limit = unlimited,unlimited

This statement specifies that there is no limit on the maximum size of a file that

your program can create.

v Choose a unique checkpoint file name

To prevent another job step from writing over your checkpoint file with another

checkpoint file, make certain that your checkpoint file name is unique. The

ckpt_dir and ckpt_file keywords give you control over the location and name of

these files.

For mode information, see “Naming checkpoint files and directories” on page

129.

Checkpoint and restart limitations

v The following items cannot be checkpointed:

– Programs that are being run under:

- The dynamic probe class library (DPCL).

- Any debugger.
– MPI programs that are not compiled with mpcc_r, mpCC_r, mpxlf_r,

mpxlf90_r, or mpxlf95_r.

– Processes that use:

- Extended shmat support

- Pinned shared memory segments.
– Sets of processes in which any process is running a setuid program when a

checkpoint occurs.

– Sets of processes if any process is running a setgid program when a

checkpoint occurs.

– Interactive parallel jobs for which POE input or output is a pipe.

Checkpointing jobs

Chapter 5. Performing additional administrator tasks 127

||

|
||

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|

|
|

|
|
|

|

|

– Interactive parallel jobs for which POE input or output is redirected, unless

the job is submitted from a shell that had the CHECKPOINT environment

variable set to yes before the shell was started. If POE is run from inside a

shell script and is run in the background, the script must be started from a

shell started in the same manner for the job to be checkpointable.

– Interactive POE jobs for which the su command was used prior to

checkpointing or restarting the job.
v The node on which a process is restarted must have:

– The same operating system level (including PTFs). In addition, a restarted

process may not load a module that requires a system call from a kernel

extension that was not present at checkpoint time.

– The same switch type (SP Switch or SP Switch2) as the node where the

checkpoint occurred.

If any threads in a process were bound to a specific processor ID at checkpoint

time, that processor ID must exist on the node where that process is restarted.

v If the LoadLeveler cluster contains nodes running a mix of 32–bit and 64–bit

kernels then applications must be checkpointed and restarted on the same set of

nodes. For more information, see “llckpt - Checkpoint a running job step” on

page 347 and the restart_on_same_nodes keyword description on page 319.

v For a parallel job, the number of tasks and the task geometry (the tasks that are

common within a node) must be the same on a restart as it was when the job

was checkpointed.

v Any regular file open in a process when it is checkpointed must be present on

the node where that process is restarted, including the executable and any

dynamically loaded libraries or objects.

v If any process uses sockets or pipes, user callbacks should be registered to save

data that may be ″in flight″ when a checkpoint occurs, and to restore the data

when the process is resumed after a checkpoint or restart. Similarly, any user

shared memory in a parallel task should be saved and restored.

v A checkpoint operation will not begin on a process until each user thread in that

process has released all pthread locks, if held. This can potentially cause a

significant delay from the time a checkpoint is issued until the checkpoint

actually occurs. Also, any thread of a process that is being checkpointed that

does not hold any pthread locks and tries to acquire one will be stopped

immediately. There are no similar actions performed for atomic locks

(_check_lock and _clear_lock, for example).

v Atomic locks must be used in such a way that they do not prevent the releasing

of pthread locks during a checkpoint. For example, if a checkpoint occurs and

thread 1 holds a pthread lock and is waiting for an atomic lock, and thread 2

tries to acquire a different pthread lock (and does not hold any other pthread

locks) before releasing the atomic lock that is being waited for in thread 1, the

checkpoint will hang.

v A process must not hold a pthread lock when creating a new process (either

implicitly using popen, for example, or explicitly using fork) if releasing the lock

is contingent on some action of the new process. Otherwise, a checkpoint could

occur which would cause the child process to be stopped before the parent

could release the pthread lock causing the checkpoint operation to hang.

v The checkpoint operation will hang if any user pthread locks are held across:

– Any collective communication calls in MPI or LAPI

– Calls to mpc_init_ckpt or mp_init_ckpt
v Processes cannot be profiled at the time a checkpoint is taken.

v There can be no devices other than TTYs or /dev/null open at the time a

checkpoint is taken.

Checkpointing jobs

128 LoadLeveler: Using and Administering

|

v Open files must either have an absolute pathname that is less than or equal to

PATHMAX in length, or must have a relative pathname that is less than or equal

to PATHMAX in length from the current directory at the time they were opened.

The current directory must have an absolute pathname that is less than or equal

to PATHMAX in length.

v Semaphores or message queues that are used within the set of processes being

checkpointed must only be used by processes within the set of processes being

checkpointed. This condition is not verified when a set of processes is

checkpointed. The checkpoint and restart operations will succeed, but

inconsistent results can occur after the restart.

v The processes that create shared memory must be checkpointed with the

processes using the shared memory if the shared memory is ever detached from

all processes being checkpointed. Otherwise, the shared memory may not be

available after a restart operation.

v The ability to checkpoint and restart a process is not supported for B1 and C2

security configurations.

v SP Switch Communications Adapter Type 6–9 (Microchannel TB3 adapters) are

not supported.

v A process can only checkpoint another process if it can send a signal to the

process. In other words, the privilege checking for checkpointing processes is

identical to the privilege checking for sending a signal to the process. A

privileged process (the effective user ID is 0) can checkpoint any process. A set

of processes can only be checkpointed if each process in the set can be

checkpointed.

v A process can only restart another process if it can change its entire privilege

state (real, saved, and effective versions of user ID, group ID, and group list) to

match that of the restarted process. A set of processes can only be restarted if

each process in the set can be restarted.

v The only DCE function supported is DCE credential forwarding by LoadLeveler

using the DCE_AUTHENTICATION_PAIR configuration keyword. DCE

credential forwarding is for the sole purpose of DFS™ access by the application.

Naming checkpoint files and directories

At checkpoint time, a checkpoint file and potentially an error file will be created.

For jobs which are enabled for checkpoint, a control file may be generated at the

time of job submission. The directory which will contain these files must pre-exist

and have sufficient space and permissions for these files to be written. The name

and location of these files will be controlled through keywords in the job command

file or the LoadLeveler configuration. The file name specified is used as a base

name from which the actual checkpoint file name is constructed. To prevent

another job step from writing over your checkpoint file, make certain that your

checkpoint file name is unique. For serial jobs and the master task (POE) of

parallel jobs, the checkpoint file name will be <basename>.Tag. For a parallel job, a

checkpoint file is created for each task. The checkpoint file name will be

<basename>.Taskid.Tag.

The tag is used to differentiate between a current and previous checkpoint file. A

control file may be created in the checkpoint directory. This control file contains

information LoadLeveler uses for restarting certain jobs. An error file may also be

created in the checkpoint directory. The data in this file is in a machine readable

format. The information contained in the error file is available in mail, LoadLeveler

logs or is output of the checkpoint command. Both of these files are named with

the same base name as the checkpoint file with the extensions .cntl and .err,

respectively.

Checkpointing jobs

Chapter 5. Performing additional administrator tasks 129

Naming checkpoint files for serial and batch parallel jobs

The following describes the order in which keywords are checked to construct the

full path name for a serial or batch checkpoint file:

v Base name for the checkpoint file name

1. The ckpt_file keyword in the job command file

2. The default file name [< jobname.>]<job_step_id>.ckpt

Where:

jobname

The job_name specified in the Job Command File. If job_name is not

specified, it is omitted from the default file name

job_step_id

Identifies the job step that is being checkpointed
v Checkpoint Directory Name

1. The ckpt_file keyword in the job command file, if it contains a ″/″ as the first

character

2. The ckpt_dir keyword in the job command file

3. The ckpt_dir keyword specified in the class stanza of the LoadLeveler admin

file

4. The default directory is the initial working directory

Note that two or more job steps running at the same time cannot both write to the

same checkpoint file, since the file will be corrupted.

Naming checkpointing files for interactive parallel jobs

The following describes the order in which keywords and variables are checked to

construct the full path name for the checkpoint file for an interactive parallel job.

v Checkpoint File Name

1. The value of the MP_CKPTFILE environment variable within the POE

process

2. The default file name, poe.ckpt.<pid>
v Checkpoint Directory Name

1. The value of the MP_CKPTFILE environment variable within the POE

process, if it contains a full path name.

2. The value of the MP_CKPTDIR environment variable within the POE

process.

3. The initial working directory.

Note: The keywords ckpt_dir and ckpt_file are not allowed in the command file

for an interactive session. If they are present, they will be ignored and the

job will be submitted.

Removing old checkpoint files

To keep your system free of checkpoint files that are no longer necessary,

LoadLeveler provides two keywords to help automate the process of removing

these files:

v CKPT_CLEANUP_PROGRAM

v CKPT_CLEANUP_INTERVAL

Both keywords must contain valid values to automate this process. For information

about configuration file keyword syntax and other details, see Chapter 11,

“Configuration file reference,” on page 211.

Checkpointing jobs

130 LoadLeveler: Using and Administering

Routing jobs to NQS machines

Users can submit NQS scripts to LoadLeveler and have them routed to a machine

outside of the LoadLeveler cluster that runs NQS. LoadLeveler supports COSMIC

NQS version 2.0 and other versions of NQS that support the same commands and

options and produce similar output for those commands.

LoadLeveler for Linux does not support NQS. If NQS is enabled, the LoadLeveler

daemons on the Linux nodes will not start.

Figure 16 illustrates a typical environment that allows users to have their jobs

routed to machines outside of LoadLeveler for processing:

 As the diagram illustrates, machines A, B, and C, are members of the LoadLeveler

cluster. Machine A has the central manager running on it and machine B has both

LoadLeveler and NQS running on it. Machine C is a third member of the cluster.

Machine D is outside of the cluster and is running NQS.

When a user submits a job to LoadLeveler, machine A, that runs the central

manager, schedules the job to machine B. LoadLeveler running on machine B

routes the job to machine D using NQS. Keep this diagram in mind as you

continue to the NQS topics listed in Table 29.

 Table 29. Roadmap of administrator tasks for NQS

Subtask Associated information (see . . .)

Setting up the NQS environment

and LoadLeveler machines

v “Setting up the NQS environment” on page 132

v “Steps for designating machines to which jobs will

be routed” on page 132

v “Steps for routing jobs to NQS machines” on page

132

Figure 16. Environment illustrating jobs being routed to NQS machines.

Routing jobs to NQS machines

Chapter 5. Performing additional administrator tasks 131

||

||

|
|
|

|
|

|
|

Table 29. Roadmap of administrator tasks for NQS (continued)

Subtask Associated information (see . . .)

Submitting and managing jobs

running on NQS machines

v “Steps for submitting a job to be routed to an NQS

machine” on page 179

v “Querying the status of a job” on page 181

v “Canceling a job” on page 184

Setting up the NQS environment

Setting up the NQS environment involves the following:

v Installing NQS on each node that an NQS class is defined. In Figure 16 on page

131, this is machine B.

v Creating an NQS pipe queue on the LoadLeveler machine whose destination is

the NQS batch queue on the machine designated to run the NQS jobs.

In Figure 16 on page 131, you would create the NQS pipe queue on machine B.

v Creating an NQS batch queue on the machine designated to run the NQS jobs.

In Figure 16 on page 131, this is machine D.

Steps for designating machines to which jobs will be routed

To designate a machine to which your jobs will be routed, follow these steps:

1. Set up a special class in the administration (LoadL_admin) file by adding the

following class definitions:

NQS_class = true

NQS_submit = name

NQS_query = queue names

You can set up multiple classes to access different machines.

2. Modify the local configuration file on the machines that you want to accept this

class of jobs.

3. Add the NQS_DIR keyword to the configuration (LoadL_config) file.

4. Notify LoadLeveler daemons by issuing the llctl command with either the

reconfig or recycle keyword. Otherwise, LoadLeveler will not process the

modifications you made to the administration and configuration files.

Steps for routing jobs to NQS machines

The following procedure details how to set up your system for routing jobs to

machines running NQS.

Assume Figure 17 on page 133 depicts your environment. You have three machines

in the cluster named A, B, and C. Outside of the cluster, you have machine D

running NQS.

Routing jobs to NQS machines

132 LoadLeveler: Using and Administering

|

||

|
|
|
|

|

|
|

|

|
|
|

|

|

Perform the following steps to have LoadLeveler route jobs to NQS machines:

1. Modify the administration file (LoadL_admin) by defining the class NQS

including the following stanzas:

NQS:

type = class

NQS_class = true

NQS_submit = pipe_a

NQS_query = queue@chevy.kgn.ibm.com

2. Modify the local configuration file (LoadL_config.local) on the machines that

you want to accept this class of jobs.

Example: In the configuration shown in Figure 17, you would modify machine

B’s LoadL_config.local file. To do this, add a class statement similar to:

CLASS = {"NQS" "a" "b" }

Where NQS is the name of the class of jobs that will be routed to the machines

that run NQS, and a and b are names of additional classes.

Figure 17. Environment illustrating jobs being routed to NQS machines.

Routing jobs to NQS machines

Chapter 5. Performing additional administrator tasks 133

|

|

|

Routing jobs to NQS machines

134 LoadLeveler: Using and Administering

Chapter 6. Using LoadLeveler’s GUI to perform administrator

tasks

The end user can perform many tasks more efficiently and faster using the

graphical user interface (GUI) but there are certain tasks that end users cannot

perform unless they have the proper authority. If you are defined as a LoadLeveler

administrator in the LoadLeveler configuration file then you are immediately

granted administrative authority and can perform the administrative tasks

discussed in this section. To find out how to grant someone administrative

authority, see “Defining LoadLeveler administrators” on page 34.

You can access LoadLeveler administrative commands using the Admin pull-down

menu on both the Jobs window and the Machines window of the GUI. The Admin

pull-down menu on the Jobs window corresponds to the command options

available in the llhold, llfavoruser, and llfavorjob commands. The Admin

pull-down menu on the Machines window corresponds to the command options

available in the llctl command.

The main window of the GUI, as shown in Figure 33 on page 328, has three

sub-windows: one for job status with pull-down menus for job-related commands,

one for machine status with pull-down menus for machine-related commands, and

one for messages and logs. There are a variety of facilities available that allow you

to sort and select the items displayed.

Job-related administrative actions

You access the administrative commands that act on jobs through the Admin

pull-down menu in the Jobs window of the GUI.

You can perform the following tasks with this menu:

Favor Users Allows you to favor users. This means that you can select one or

more users whose jobs you want to move up in the job queue. This

corresponds to the llfavoruser command.

Select Admin from the Jobs window

Select Favor User

 �The Order by User window appears.

Type in

The name of the user whose jobs you want to favor.

Press OK

Unfavor Users

Allows you to unfavor users. This means that you want to unfavor

the user’s jobs which you previously favored. This corresponds to

the llfavoruser command.

Select Admin from the Jobs window

Select Unfavor User

 �The Order by User window appears.

 135

Type in

The name of the user for whom you want to unfavor their

jobs.

Press OK

Favor Jobs Allows you to select a job that you want to favor. This corresponds

to the llfavorjob command.

Select One or more jobs from the Jobs window

Select Admin from the Jobs window

Select Favor Job

 �The selected jobs are favored.

Press OK

Unfavor Jobs Allows you select a job that you want to unfavor. This corresponds

to the llfavorjob command.

Select One or more jobs from the Jobs window

Select Admin from the Jobs window

Select Unfavor Job

 �Unfavors the jobs that you previously selected.

Syshold Allows you to place a system hold on a job. This corresponds to

the llhold command.

Select A job from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Syshold to place a system hold on the job.

Release From Hold

Allows you to release the system hold on a job. This corresponds

to the llhold command.

Select A job from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Release From Hold to release the system hold on the job.

Preempt Available when using the Backfill, Gang or external schedulers.

Preempt allows you to place the selected jobs in preempted state.

This action corresponds to the llpreempt command.

Select One or more jobs from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Preempt

Resume Preempted Job

Available only when using the backfill, gang or external

schedulers. Resume Preempted Job allows you to remove

user-initiated preemption (initiated using the Preempt menu option

or the llpreempt command) from the selected jobs. This action

corresponds to the llpreempt -r command.

Select One or more jobs from the Jobs window

Select Admin pull-down menu from the Jobs window

Administrative uses of the GUI

136 LoadLeveler: Using and Administering

|

|
|
|

Select Resume Preempted Job

Prevent Preempt

Available only when using the backfill, gang, or API scheduler.

Prevent Preempt allows you to place the selected running job into

a non-preemptable state. When the backfill or API scheduler is in

use, this is equivalent to the llmodify -p nopreempt command.

When the gang scheduler is in use, this is equivalent to the

llmodify -x 99 command.

Select One job from the Jobs window

Select Admin pull-down menu from the Jobs window

Select Prevent Preempt

Allow Preempt

Available only when using the backfill, gang, or API scheduler,

Allow Preempt makes the unpreemptable job preemptable again.

When the backfill or API scheduler is in use, this is equivalent to

the llmodify -p preempt command. When the gang scheduler is in

use, this is equivalent to the llmodify -x 1 command.

Select One or more jobs from the Jobs window

Select Admin pull-down menu from the Jobs window

Select

Allow Preempt

Extend Wallclock Limits

Allows you to extend the wallclock limits by the number of

minutes specified. This corresponds to the llmodify -W command.

Select Admin pull-down window from the Jobs window

Select Extend Wallclock Limit

 �The Extend Wallclock Limits window appears.

Type in

The number of minutes to extend the wallclock limit.

Press OK

Modify Job Priority

Allows you to modify the system priority of a job step. This

corresponds to the llmodify -s command.

Select Admin pull-down window from the Jobs window

Select Modify Job Priority

 �The Modify Job Priority window appears.

Type in

An integer value for system priority.

Press OK

Machine-related administrative actions

You access the administrative commands that act on machines using the Admin

pull-down menu in the Machines window of the GUI.

Administrative uses of the GUI

Chapter 6. Using LoadLeveler’s GUI to perform administrator tasks 137

|

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

||

||

|

|
|

||

Using the GUI pull-down menu, you can perform the tasks described in this

section.

Start All Starts LoadLeveler on all machines listed in machine stanzas

beginning with the central manager. Submit-only machines are

skipped. Use this option when specifying alternate central

managers in order to ensure the primary central manager starts

before any alternate central manager attempts to serve as central

manager.

Select Admin from the Machines window.

Select Start All

Start LoadLeveler

Allows you to start LoadLeveler on selected machines.

Select One or more machines on which you want to start

LoadLeveler.

Select Admin from the Machines window.

Select Start LoadLeveler

Start Drained Allows you to start LoadLeveler with startd drained on selected

machines.

Select One or more machines on which you want startd drained.

Select Admin from the Machines window.

Select Start Drained

Stop LoadLeveler

Allows you to stop LoadLeveler on selected machines.

Select One or more machines on which you want to stop

LoadLeveler.

Select Admin from the Machines window.

Select Stop LoadLeveler.

Stop All Stops LoadLeveler on all machines listed in machine stanzas.

Submit-only machines are skipped.

Select Admin from the Machines window.

Select Stop All

reconfig Forces all daemons to reread the configuration files

Select The machine on which you want to operate. To reconfigure

this xloadl session, choose reconfig but do not select a

machine.

Select Admin from the Machines window.

Select reconfig

recycle Stops all LoadLeveler daemons and restarts them.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select recycle

Administrative uses of the GUI

138 LoadLeveler: Using and Administering

Configuration Tasks

Starts Configuration Tasks wizard

Select Admin from the Machines window.

Select Config Tasks

Note: Use the invoking script lltg to start the wizard outside of

xloadl. This option will appear on the pull-down only if the

LoadL.tguides fileset is installed.

drain Allows no more LoadLeveler jobs to begin running on this

machine but it does allow running jobs to complete.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select drain.

 A cascading menu allows you to select either daemons,

schedd, startd, or startd by class. If you select daemons,

both machines will be drained. If you select schedd, only

the schedd on the selected machine will be drained. If you

select startd, only the startd on the selected machine will

be drained. If you select startd by class, a window appears

which allows you to select classes to be drained.

flush Terminates running jobs on this host and sends them back to the

system queue to await redispatch. No new jobs are redispatched to

this machine until resume is issued. Forces a checkpoint if jobs are

enabled for checkpointing.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select flush

suspend Suspends all jobs on this host.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select suspend

resume Resumes all jobs on this machine.

Select The machine on which you want to operate.

Select Admin from the Machines window

Select resume

 A cascading menu allows you to select either daemons,

schedd, startd, or startd by class. If you select daemons,

both machines will be resumed. If you select schedd, only

the schedd on the selected machine will be resumed. If you

select startd, only the startd on the selected machine will

be resumed. If you select startd by class, a window

appears which allows you to select classes to be resumed.

Purge Allows you to instruct the schedd daemon to purge all transactions

pending on the selected machines. The selected machines must be

machines that are not returning to the LoadLeveler cluster. This

Administrative uses of the GUI

Chapter 6. Using LoadLeveler’s GUI to perform administrator tasks 139

option is intended for recovery and clean up after a machine has

permanently crashed or was inadvertently removed from the

LoadLeveler cluster before all activity on it was quiesced.

Select One or more machines that are no longer available but still

have queued transactions.

Select Admin pull-down menu from the Machines window

Select

Purge

 � The Purge Machine window opens

Type in

The name of the machine running the schedd daemon

which purges the transactions

Press OK

Capture Data Collects information on the machines selected.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select Capture Data.

Collect Account Data

Collects accounting data on the machines selected.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select Collect Account Data.

 A window appears prompting you to enter the name of the

directory in which you want the collected data stored.

Collect Reservation Data

Collects reservation data on the machines selected.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select Collect Reservation Data.

 A window appears prompting you to enter the name of the

directory in which you want the collected data stored.

Create Account Report

Creates an accounting report for you.

Select Admin → Create Account Report...

 Note: If you want to receive an extended accounting

report, select the extended cascading button.

 A window appears prompting you to enter the following

information:

v A short, long, or extended version of the output. The

short version is the default.

v The user ID

v The class name

v The LoadL (LoadLeveler) group name

v The UNIX group name

Administrative uses of the GUI

140 LoadLeveler: Using and Administering

|
|

||

||

||

|
|

v The Allocated host

v The job ID

v The report Type

v The section

v A start and end date for the report. If no date is

specified, the default is to report all of the data in the

report.

v The name of the input data file.

v The name of the output data file. This is the same as

stdout.

Press OK

 The window closes and you return to the main window.

The report appears in the Messages window if no output

data file was specified.

version Displays version and release data for LoadLeveler on the machines

selected in an information window.

Select The machine on which you want to operate.

Select Admin from the Machines window.

Select version

Administrative uses of the GUI

Chapter 6. Using LoadLeveler’s GUI to perform administrator tasks 141

Administrative uses of the GUI

142 LoadLeveler: Using and Administering

Part 3. Submitting and managing LoadLeveler jobs

After an administrator installs LoadLeveler and customizes the environment,

general users may build and submit jobs to exploit the many features of the

LoadLeveler runtime environment.

 To learn about: Read the following:

Creating and submitting serial and

parallel jobs

Chapter 7, “Building and submitting jobs,” on

page 145

Controlling and monitoring

LoadLeveler jobs

Chapter 8, “Managing submitted jobs,” on page

181

Ways to control or monitor LoadLeveler

operations by using the LoadLeveler

commands, GUI, and APIs

v Chapter 15, “Commands,” on page 335

v Chapter 9, “Example: Using commands to build,

submit, and manage jobs,” on page 187

v Chapter 10, “Using LoadLeveler’s GUI to build,

submit, and manage jobs,” on page 189

v Chapter 16, “Application programming

interfaces (APIs),” on page 437

 143

|
|
|

|||

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

144 LoadLeveler: Using and Administering

Chapter 7. Building and submitting jobs

Table 30 lists the tasks that general users perform to run LoadLeveler jobs.

 Table 30. Roadmap of user tasks for building and submitting jobs

To learn about: Read the following:

Building jobs v “Building a job command file”

v “Editing job command files” on page 151

v “Defining resources for a job step” on page 151

v “Using bulk data transfer” on page 152

v “Preparing a job for checkpoint/restart” on page 154

v “Preparing a job for preemption” on page 156

Submitting jobs v “Submitting a job command file” on page 156

v “llsubmit - Submit a job” on page 423

Working with parallel jobs “Working with parallel jobs” on page 157

Working with reserved node

resources and the jobs that use

them

“Working with reservations” on page 171

Working with NQS jobs “Steps for submitting a job to be routed to an NQS

machine” on page 179

Correctly specifying job

command file keywords

Chapter 13, “Job command file reference,” on page 289

Building a job command file

Before you can submit a job or perform any other job related tasks, you need to

build a job command file. A job command file describes the job you want to

submit, and can include LoadLeveler keyword statements. For example, to specify

a binary to be executed, you can use the executable keyword, which is described

later in this section. To specify a shell script to be executed, the executable

keyword can be used; if it is not used, LoadLeveler assumes that the job command

file itself is the executable.

The job command file can include the following:

v LoadLeveler keyword statements: A keyword is a word that can appear in job

command files. A keyword statement is a statement that begins with a

LoadLeveler keyword. These keywords are described in “Job command file

keyword descriptions” on page 294.

v Comment statements: You can use comments to document your job command

files. You can add comment lines to the file as you would in a shell script.

v Shell command statements: If you use a shell script as the executable, the job

command file can include shell commands.

v LoadLeveler variables: See “Job command file variables” on page 324 for more

information.

You can build a job command file either by using the Build a Job window on the

GUI or by using a text editor.

 145

|

|

||

||

||

|

|

|

|

|

||

|

||

|
|
|

|

||
|

|
|
|

|

|

Using multiple steps in a job command file

To specify a stream of job steps, you need to list each job step in the job command

file. You must specify one queue statement for each job step. Also, the executables

for all job steps in the job command file must exist when you submit the job. For

most keywords, if you specify the keyword in a job step of a multi-step job, its

value is inherited by all proceeding job steps. Exceptions to this are noted in the

keyword description.

LoadLeveler treats all job steps as independent job steps unless you use the

dependency keyword. If you use the dependency keyword, LoadLeveler

determines whether a job step should run based upon the exit status of the

previously run job step.

For example, Figure 18 contains two separate job steps. Notice that step1 is the

first job step to run and that step2 is a job step that runs only if step1 exits with

the correct exit status.

 In Figure 18, step1 is called the sustaining job step. step2 is called the dependent job

step because whether or not it begins to run is dependent upon the exit status of

step1. A single sustaining job step can have more than one dependent job steps

and a dependent job step can also have job steps dependent upon it.

In Figure 18, each job step has its own executable, input, output, and error

statements. Your job steps can have their own separate statements, or they can use

those statements defined in a previous job step. For example, in Figure 19 on page

147, step2 uses the executable statement defined in step1:

This job command file lists two job steps called "step1"

and "step2". "step2" only runs if "step1" completes

with exit status = 0. Each job step requires a new

queue statement.

@ step_name = step1

@ executable = executable1

@ input = step1.in1

@ output = step1.out1

@ error = step2.err1

@ queue

@ dependency = (step1 == 0)

@ step_name = step2

@ executable = executable2

@ input = step2.in1

@ output = step2.out1

@ error = step2.err1

@ queue

Figure 18. Job command file with multiple steps

Building a job command file

146 LoadLeveler: Using and Administering

Examples: Job command files

v Example 1: Generating multiple jobs with varying outputs

To run a program several times, varying the initial conditions each time, you

could can multiple LoadLeveler scripts, each specifying a different input and

output file as described in Figure 21 on page 149. It would probably be more

convenient to prepare different input files and submit the job only once, letting

LoadLeveler generate the output files and do the multiple submissions for you.

Figure 20 illustrates the following:

– You can refer to the LoadLeveler name of your job symbolically, using

$(jobid) and $(stepid) in the LoadLeveler script file.

– $(jobid) refers to the job identifier.

– $(stepid) refers to the job step identifier and increases after each queue

command. Therefore, you only need to specify input, output, and error

statements once to have LoadLeveler name these files correctly.

Assume that you created five input files and each input file has different initial

conditions for the program. The names of the input files are in the form

longjob.in.x, where x is 0–4.

Submitting the LoadLeveler script shown in Figure 20 results in your program

running five times, each time with a different input file. LoadLeveler generates

the output file from the LoadLeveler job step IDs. This ensures that the results

from the different submissions are not merged.

To submit the job, type the command:

llsubmit longjob.cmd

This job command file uses only one executable for

both job steps.

@ step_name = step1

@ executable = executable1

@ input = step1.in1

@ output = step1.out1

@ error = step1.err1

@ queue

@ dependency = (step1 == 0)

@ step_name = step2

@ input = step2.in1

@ output = step2.out1

@ error = step2.err1

@ queue

Figure 19. Job command file with multiple steps and one executable

@ executable = longjob

@ input = longjob.in.$(stepid)

@ output = longjob.out.$(jobid).$(stepid)

@ error = longjob.err.$(jobid).$(stepid)

@ queue

@ queue

@ queue

@ queue

@ queue

Figure 20. Job command file with varying input statements

Building a job command file

Chapter 7. Building and submitting jobs 147

LoadLeveler responds by issuing the following:

submit: The job "ll6.23" with 5 job steps has been submitted.

The following table shows you the standard input files, standard output files,

and standard error files for the five job steps:

 Job Step Standard Input Standard Output Standard Error

ll6.23.0 longjob.in.0 longjob.out.23.0 longjob.err.23.0

ll6.23.1 longjob.in.1 longjob.out.23.1 longjob.err.23.1

ll6.23.2 longjob.in.2 longjob.out.23.2 longjob.err.23.2

ll6.23.3 longjob.in.3 longjob.out.23.3 longjob.err.23.3

ll6.23.4 longjob.in.4 longjob.out.23.4 longjob.err.23.4

v Example 2: Using LoadLeveler variables in a job command file

Figure 21 on page 149 shows how you can use LoadLeveler variables in a job

command file to assign different names to input and output files. This example

assumes the following:

– The name of the machine from which the job is submitted is lltest1

– The user’s home directory is /u/rhclark and the current working directory is

/u/rhclark/OSL

– LoadLeveler assigns a value of 122 to $(jobid).

In Job Step 0:

– LoadLeveler creates the subdirectories oslsslv_out and oslsslv_err if they do

not exist at the time the job step is started.

In Job Step 1:

– The character string rhclark denotes the home directory of user rhclark in

input, output, error, and executable statements.

– The $(base_executable) variable is set to be the “base” portion of the

executable, which is oslsslv.

– The $(host) variable is equivalent to $(hostname). Similarly, $(jobid) and

$(stepid) are equivalent to $(cluster) and $(process), respectively.

In Job Step 2:

– This job step is executed only if the return codes from Step 0 and Step 1 are

both equal to zero.

– The initial working directory for Step 2 is explicitly specified.

Building a job command file

148 LoadLeveler: Using and Administering

v Example 3: Using the job command file as the executable

The name of the sample script shown in Figure 22 on page 151 is run_spice_job.

This script illustrates the following:

– The script does not contain the executable keyword. When you do not use

this keyword, LoadLeveler assumes that the script is the executable. (Since the

name of the script is run_spice_job, you can add the executable =

run_spice_job statement to the script, but it is not necessary.)

– The job consists of four job steps (there are 4 queue statements). The spice3f5

and spice2g6 programs are invoked at each job step using different input data

files:

Job step 0 ==

The names of the output and error files created by this job step are:

output: /u/rhclark/OSL/oslsslv_out/lltest1.122.0.out

error : /u/rhclark/OSL/oslsslv_err/lltest1_122_0_err

@ job_name = OSL

@ step_name = step_0

@ executable = oslsslv

@ arguments = -maxmin=min -scale=yes -alg=dual

@ environment = OSL_ENV1=20000; OSL_ENV2=500000

@ requirements = (Arch == "R6000") && (OpSys == "AIX43")

@ input = test01.mps.$(stepid)

@ output = $(executable)_out/$(host).$(jobid).$(stepid).out

@ error = $(executable)_err/$(host)_$(jobid)_$(stepid)_err

@ queue

Job step 1 ==

The names of the output and error files created by this job step are:

output: /u/rhclark/OSL/oslsslv_out/lltest1.122.1.out

error : /u/rhclark/OSL/oslsslv_err/lltest1_122_1_err

@ step_name = step_1

@ executable = rhclark/$(job_name)/oslsslv

@ arguments = -maxmin=max -scale=no -alg=primal

@ environment = OSL_ENV1=60000; OSL_ENV2=500000; \

 OSL_ENV3=70000; OSL_ENV4=800000;

@ input = rhclark/$(job_name)/test01.mps.$(stepid)

@ output = rhclark/$(job_name)/$(base_executable)_out/$(hostname).$(cluster).$(process).out

@ error = rhclark/$(job_name)/$(base_executable)_err/$(hostname)_$(cluster)_$(process)_err

@ queue

Job step 2 ==

The names of the output and error files created by this job step are:

output: /u/rhclark/OSL/oslsslv_out/lltest1.122.2.out

error : /u/rhclark/OSL/oslsslv_err/lltest1_122_2_err

@ step_name = OSL

@ dependency = (step_0 == 0) && (step_1 == 0)

@ comment = oslsslv

@ initialdir = /u/rhclark/$(step_name)

@ arguments = -maxmin=min -scale=yes -alg=dual

@ environment = OSL_ENV1=300000; OSL_ENV2=500000

@ input = test01.mps.$(stepid)

@ output = $(comment)_out/$(host).$(jobid).$(stepid).out

@ error = $(comment)_err/$(host)_$(jobid)_$(stepid)_err

@ queue

Figure 21. Using LoadLeveler variables in a job command file

Building a job command file

Chapter 7. Building and submitting jobs 149

- spice3f5: Input for this program is from the file spice3f5_input_x where x

has a value of 0, 1, and 2 for job steps 0, 1, and 2, respectively. The name of

this file is passed as the first argument to the script. Standard output and

standard error data generated by spice3f5 are directed to the file

spice3f5_output_x. The name of this file is passed as second argument to

the script. In job step 3, the names of the input and output files are

spice3f5_input_benchmark1 and spice3f5_output_benchmark1,

respectively.

- spice2g6: Input for this program is from the file spice2g6_input_x.

Standard output and standard error data generated by spice2g6 together

with all other standard output and standard error data generated by this

script are directed to the files spice_test_output_x and spice_test_error_x,

respectively. In job step 3, the name of the input file is

spice2g6_input_benchmark1. The standard output and standard error files

are spice_test_output_benchmark1 and spice_test_error_benchmark1.

All file names that are not fully qualified are relative to the initial working

directory /home/loadl/spice. LoadLeveler will send the job steps 0 and 1 of

this job to a machine for that has a real memory of 64 MB or more for

execution. Job step 2 most likely will be sent to a machine that has more that

128 MB of real memory and has the ESSL library installed since these

preferences have been stated using the LoadLeveler preferences keyword.

LoadLeveler will send job step 3 to the machine ll5.pok.ibm.com for

execution because of the explicit requirement for this machine in the

requirements statement.

Building a job command file

150 LoadLeveler: Using and Administering

Editing job command files

After you build a job command file, you can edit it using the editor of your choice.

You may want to change the name of the executable or add or delete some

statements.

When you create a job command file, it is considered the job executable unless you

specify otherwise by using the executable keyword in the job command file.

LoadLeveler copies the executable to the spool directory unless the checkpoint

keyword was set to yes or interval. Jobs that are to be checkpointed cannot be

moved to the spool directory. Do not make any changes to the executable while the

job is still in the queue–it could affect the way that job runs.

Defining resources for a job step

The LoadLeveler user may use the resources keyword in the job command file to

specify the resources to be consumed by each task of a job step. If the resources

keyword is specified in the job command file, it overrides any default_resources

specified by the administrator for the job step’s class.

#!/bin/ksh

@ job_name = spice_test

@ account_no = 99999

@ class = small

@ arguments = spice3f5_input_$(stepid) spice3f5_output_$(stepid)

@ input = spice2g6_input_$(stepid)

@ output = $(job_name)_output_$(stepid)

@ error = $(job_name)_error_$(stepid)

@ initialdir = /home/loadl/spice

@ requirements = ((Arch == "R6000") && \

(OpSys == "AIX43") && (Memory > 64))

@ queue

@ queue

@ preferences = ((Memory > 128) && (Feature == "ESSL"))

@ queue

@ class = large

@ arguments = spice3f5_input_benchmark1 spice3f5_output_benchmark1

@ requirements = (Machine == "ll5.pok.ibm.com")

@ input = spice2g6_input_benchmark1

@ output = $(job_name)_output_benchmark1

@ error = $(job_name)_error_benchmark1

@ queue

OS_NAME=`unamè

case $OS_NAME in

 AIX)

 echo "Running $OS_NAME version of spice3f5" > $2

 AIX_bin/spice3f5 < $1 >> $2 2>&1

 echo "Running $OS_NAME version of spice2g6"

 AIX_bin/spice2g6

 ;;

 *)

 echo "spice3f5 for $OS_NAME is not available" > $2

 echo "spice2g6 for $OS_NAME is not available"

 ;;

esac

Figure 22. Job command file used as the executable

Building a job command file

Chapter 7. Building and submitting jobs 151

|

For example, the following job requests one CPU and one FRM license for each of

its tasks:

resources = ConsumableCpus(1) FRMlicense(1)

If this were specified in a serial job step, one CPU and one FRM license would be

consumed while the job step runs. If this were a parallel job step, then the number

of CPUs and FRM licenses consumed while the job step runs would depend upon

how many tasks were running on each machine. For more information on

assigning tasks to nodes, see “Task-assignment considerations” on page 159.

Using bulk data transfer

On AIX systems with device drivers and network adapters that support remote

direct-memory access (RDMA), LoadLeveler supports bulk data transfer for jobs

that use either the Internet or User Space communication protocol mode. For jobs

using the Internet protocol (IP jobs), LoadLeveler does not monitor or control the

use of bulk transfer. For User Space jobs that request bulk transfer, however,

LoadLeveler creates a consumable RDMA resource, and limits RDMA resources to

only four for a single machine. Each step that requests bulk transfer consumes one

RDMA resource on each machine on which that step runs.

The RDMA resource is similar to user-defined consumable resources except in one

important way: A user-specified resource requirement is consumed by every task

of the job assigned to a machine, whereas the RDMA resource is consumed once

on a machine no matter how many tasks of the job are running on the machine.

Other than that exception, LoadLeveler handles the RDMA resource as it does all

other consumable resources. LoadLeveler displays RDMA resources in the output

of the following commands:

v llq -l

v llstatus -l

v llstatus -R

v llsummary -l

LAPI bulk transfer is supported only on systems where the device driver of the

network adapters supports RDMA. To determine which systems will support LAPI

bulk transfer, use the llstatus command with either the -l or -R flag to display

machines with adapters that support RDMA (supporting machines will have an

RDMA resource listed in the command output).

Under certain conditions, LoadLeveler displays a total count of RDMA resources as

less than four:

v If jobs that LoadLeveler does not manage use RDMA, the amount of available

RDMA resource reported to the Negotiator is reduced by the amount consumed

by the unmanaged jobs.

v In rare situations, LoadLeveler jobs can fail to release their adapter resources

before reporting to the Negotiator that they have completed. In these situations,

the amount of available RDMA reported to the Negotiator is reduced by the

amount consumed by the unreleased adapter resources. When the adapter

resources are eventually released, the RDMA resource they consumed becomes

available again.

These conditions do not require corrective action.

You do not need to perform specific job-definition tasks to enable bulk transfer for

LoadLeveler jobs that use the IP network protocol. LoadLeveler cannot affect

Building a job command file

152 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|

whether IP communication uses bulk transfer; the implementation of IP where the

job runs determines whether bulk transfer is supported.

To enable User Space jobs to use bulk data transfer, however, all of the following

tasks must be completed. If you omit one or more of these steps, the job will run

but will not be able to use bulk transfer.

__ v A LoadLeveler administrator must update the LoadLeveler configuration file

to include the value RDMA in the SCHEDULE_BY_RESOURCES list.

Example:

 SCHEDULE_BY_RESOURCES = RDMA others

__ v Users must request bulk transfer for their LoadLeveler jobs, using one of the

following methods:

– Specifying the bulkxfer keyword in the LoadLeveler job command file.

Example:

 #@ bulkxfer=yes

If users specify this keyword for jobs that use the IP communication

protocol, LoadLeveler ignores the bulkxfer keyword.

– Specifying a POE line command parameter on interactive jobs.

Example:

poe_job -use_bulk_xfer=yes

– Specifying an environment variable on interactive jobs.

Example:

export MP_USE_BULK_XFER=yes

 poe_job

__ v Because LoadLeveler honors the bulk transfer request only for LAPI or MPI

jobs, users must ensure that the network keyword in the job command file

specifies the MPI, LAPI, or MPI_LAPI protocol for user space communication.

Examples:

network.MPI =sn_single,not_shared,US,HIGH

network.MPI_LAPI =sn_single,not_shared,US,HIGH

Using bulk data transfer

Chapter 7. Building and submitting jobs 153

|
|

|
|
|

|
|

|

|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|

Preparing a job for checkpoint/restart

Use the information in Table 31 to correctly configure your job for checkpointing.

 Table 31. Checkpoint configurations

To specify that: Do this:

Your job is

checkpointable

v Add either one of the following two options to your job

command file:

1. checkpoint = yes

This enables your job to checkpoint in any of the following

ways:

– The application can initiate the checkpoint.

– Checkpoint from a program which invokes the ll_ckpt API.

– Checkpoint using the llckpt command.

– As the result of a flush command.

OR

2. checkpoint = interval

This enables your job to checkpoint in any of the following

ways:

– The application can initiate the checkpoint.

– Checkpoint from a program which invokes the ll_ckpt API.

– Checkpoint using the llckpt command.

– Checkpoint automatically taken by LoadLeveler.

– As the result of a flush command.

v If you would like your job to checkpoint itself, use the API

ll_init_ckpt in your serial application, or mpc_init_ckpt for

parallel jobs to cause the checkpoint to occur.

Your job step’s

executable is to be

copied to the execute

node

Add the ckpt_execute_dir keyword to the job command file.

Preparing a job for checkpoint/restart

154 LoadLeveler: Using and Administering

|
|

|

|
|
|
|

|

Table 31. Checkpoint configurations (continued)

To specify that: Do this:

LoadLeveler

automatically

checkpoints your job

at preset intervals

1. Add the following option to your job command file:

checkpoint = interval

This enables your job to checkpoint in any of the following

ways:

v Checkpoint automatically at preset intervals

v Checkpoint initiated from user application

v Checkpoint from a program which invokes the ll_ckpt API

v Checkpoint using the llckpt command

v As the result of a flush command

2. The system administrators must set the following two keywords

in the configuration file to specify how often LoadLeveler

should take a checkpoint of the job. These two keywords are:

MIN_CKPT_INTERVAL = number

Where number specifies the initial period, in seconds,

between checkpoints taken for running jobs.

MAX_CKPT_INTERVAL = number

Where number specifies the maximum period, in seconds,

between checkpoints taken for running jobs.

The time between checkpoints will be increased after each

checkpoint within these limits as follows:

v The first checkpoint is taken after a period of time equal to the

MIN_CKPT_INTERVAL has passed.

v The second checkpoint is taken after LoadLeveler waits twice as

long (MIN_CKPT_INTERVAL X 2)

v The third checkpoint is taken after LoadLeveler waits twice as

long again (MIN_CKPT_INTERVAL X 4) before taking the third

checkpoint.

LoadLeveler continues to double this period until the value of

MAX_CKPT_INTERVAL has been reached, where it stays for the

remainder of the job.

A minimum value of 900 (15 minutes) and a maximum value of

7200 (2 hours) are the defaults.

You can set these keyword values globally in the global

configuration file so that all machines in the cluster have the same

value, or you can specify a different value for each machine by

modifying the local configuration files.

Your job will not be

checkpointed

Add the following option to your job command file:

v checkpoint = no

This will disable checkpoint.

Preparing a job for checkpoint/restart

Chapter 7. Building and submitting jobs 155

Table 31. Checkpoint configurations (continued)

To specify that: Do this:

Your job has

successfully

checkpointed and

terminated. The job

has left the

LoadLeveler job queue

and you want

LoadLeveler to restart

your executable from

an existing checkpoint

file.

1. Add the following option to your job command file:

v restart_from_ckpt = yes

2. Specify the name of the checkpoint file by setting the following

job command file keywords to specify the directory and file

name of the checkpoint file to be used:

v ckpt_dir

v ckpt_file

When the job command file is submitted, a new job will be started

which uses the specified checkpoint file to restart the previously

checkpointed job.

The job command file which was used to submit the original job

should be used to restart from checkpoint. The only modifications

to this file should be the addition of restart_from_ckpt = yes and

ensuring ckpt_dir and ckpt_file point to the appropriate checkpoint

file.

Your job has

successfully

checkpointed. The job

has been vacated and

remains on the

LoadLeveler job

queue.

When the job restarts, if a checkpoint file is available, the job will

be restarted from that file.

If a checkpoint file is not available upon restart, the job will be

started from the beginning.

Preparing a job for preemption

Depending on various configuration options, LoadLeveler may preempt your job

so that a higher priority job step can run. Administrators may:

v Configure LoadLeveler or external schedulers to preempt jobs through various

methods.

v Specify preemption rules for job classes.

v Manually preempt your job using LoadLeveler interfaces.

To ensure that your job can be resumed after preemption, set the restart keyword

in the job command file to yes.

Submitting a job command file

After building a job command file, you can submit it for processing either to a

machine in the LoadLeveler cluster or one outside of the cluster. (See “Querying

multiple LoadLeveler clusters” on page 65 for information on submitting a job to a

machine outside the cluster.) You can submit a job command file either by using

the GUI or the llsubmit command.

When you submit a job, LoadLeveler assigns the job a three part identifier and also

sets environment variables for the job.

The identifier consists of the following:

v Machine name: the name of the machine that schedules the job. This is not

necessarily the name of the machine that runs the job.

v Job ID: an identifier given to a group of job steps that were initiated from the

same job command file. For example, if you created a job command file that

Preparing a job for checkpoint/restart

156 LoadLeveler: Using and Administering

|

|
|
|
|
|
|

|
|

submitted the same program five times (using five queue statements) possibly

with different input and output, each program would have the same job ID.

v Step ID: an identifier that is unique for every job step in the job you submit. If a

job command file contains multiple job steps, every job step will have a unique

step ID but the same job ID.

For an example of submitting a job, see Chapter 9, “Example: Using commands to

build, submit, and manage jobs,” on page 187.

Submitting a job using a submit-only machine

You can submit jobs from submit-only machines. Submit-only machines allow

machines that do not run LoadLeveler daemons to submit jobs to the cluster. You

can submit a job using either the submit-only version of the GUI or the llsubmit

command.

To install submit-only LoadLeveler, follow the procedure in the LoadLeveler

Installation Memo.

In addition to allowing you to submit jobs, the submit-only feature allows you to

cancel and query jobs from a submit-only machine.

Working with parallel jobs

LoadLeveler allows you to schedule parallel batch jobs that have been written

using the following:

v On AIX 5L, IBM Parallel Environment (PE) 4.2

v On AIX 5L and Linux:

– MPICH 1.2.6, which is an open-source, portable implementation of the

Message-Passing Interface Standard developed by Argonne National

Laboratory

– MPICH-GM 1.2.5..13, which is a port of MPICH on top of Myrinet GM code

Support for PE is not available in this release of LoadLeveler for Linux.

Scheduler support for parallel jobs

Several LoadLeveler job command language keywords are associated with parallel

jobs. Whether a keyword is appropriate is dependent upon the type of

LoadLeveler scheduler you are running.

Table 32 shows you the parallel keywords supported by LoadLeveler’s default,

Backfill, and Gang schedulers. If your administrator disabled the default

LoadLeveler scheduler to run an external scheduler, see “Replacing the default

LoadLeveler scheduling algorithm with an external scheduler” on page 102 for an

explanation of which keywords are supported.

 Table 32. Parallel keywords supported by the default, Backfill, and Gang schedulers

Keywords supported by the default

scheduler

Keywords supported by the Backfill and

Gang schedulers

v max_processors

v min_processors

v Adapter requirement

v network

v node

v node_usage

v tasks_per_node

v total_tasks

v task_geometry

v blocking

Submitting a job command file

Chapter 7. Building and submitting jobs 157

|
|
|

|

|

|
|
|
|
|

These keywords are used in the examples in this chapter, and are described in

more detail in “Job command file keyword descriptions” on page 294.

Step for controlling whether LoadLeveler copies environment

variables to all executing nodes

You may specify that LoadLeveler is to copy, either to all executing nodes or to

only the master executing node, the environment variables that are specified in the

environment job command file statement for a parallel job.

Before you begin: You need to know:

v Whether Parallel Environment (PE) will be used to run the parallel job; if so,

then LoadLeveler does not have to copy the application environment to the

executing nodes.

v How to correctly specify the env_copy keyword. For information about keyword

syntax and other details, see the env_copy keyword description on page 302.
1. To specify whether LoadLeveler is to copy environment variables to only the

master node, or to all executing nodes, use the #@ env_copy keyword in the

job command file.

Alternative: You can use the Job Builder window in the LoadLeveler GUI to

specify a value for this keyword.

Ensuring that parallel jobs in a cluster run on the correct

levels of PE and LoadLeveler software

If support for parallel POE jobs is required, users must be aware that LoadLeveler

uses Parallel Environment for parallel job submission, and that the PE software

requires the same level of PE to be used throughout the parallel job. Different

levels of PE cannot be mixed. PE 4.2 supports only LoadLeveler 3.3, and PE 4.1

supports only LoadLeveler 3.2. Therefore, a POE parallel job cannot run some of its

tasks on LoadLeveler 3.3 machines and the remaining tasks on LoadLeveler 3.2

machines.

The requirements keyword of the job command file can be used to ensure that all

the tasks of a POE job run on compatible levels of PE and LoadLeveler software in

a cluster. Here are three examples showing different ways this can be done:

1. If the following requirements statement is included in the job command file,

LoadLeveler’s central manager will select only 3.3 or higher machines with the

appropriate OpSys level for this job step.

@ requirements = (LL_Version >= "3.3") && (OpSys == "AIX53")

The requirements expression should contain the OpSys specification because

the llsubmit command automatically adds the OpSys of the submitting machine

to the other job requirements unless an OpSys requirement has already been

explicitly specified.

2. If a requirements statement such as the following is specified, the tasks of a

POE job will see a consistent environment when ″hostname1″ and ″hostname2″

run the same levels of PE and LoadLeveler software.

@ requirements = (Machine == { "hostname1" "hostname2" }) && (OpSys == "AIX53")

3. If the mixed cluster has been partitioned into 3.3 and 3.2 LoadLeveler pools,

then you may use a requirements statement similar to one of the two following

statements to select machines running the same levels of software.

v # @ requirements = (Pool == 33) && (OpSys == "AIX53")"

Working with parallel jobs

158 LoadLeveler: Using and Administering

|

|

|
|
|

|

|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|
|

|
|

|

|
|

|

|
|
|

|

v # @ requirements = (Pool == 32) && (OpSys == "AIX52")

Here, it is assumed that all the 3.3 machines in this mixed cluster are assigned

to pool 33 and all 3.2 machines are assigned to pool 32. A LoadLeveler

administrator can use the ″pool_list″ keyword of the machine stanza of the

LoadLeveler administration file to assign machines to pools.

If a statement such as # @ executable = /bin/poe is specified in a job command

file, and if the job is intended to be run on 3.2 machines, then it is important that

the job be submitted from a 3.2 machine. When the ″executable″ keyword is used,

LoadLeveler will copy the associated binary on the submitting machine and send it

to a running machine for execution. In this example, the POE program will fail if

the submitting and the running machines are at different software levels. In a

mixed cluster, this problem can be circumvented by not using the ″executable″

keyword in the job command file. By omitting this keyword, the job command file

itself is the shell script that will be executed. If this script invokes a local version of

the POE binary then there is no compatibility problem at run time.

Task-assignment considerations

You can use the following keywords to specify how LoadLeveler assigns tasks to

nodes. With the exception of unlimited blocking, each of these methods prioritizes

machines in an order based on their MACHPRIO expressions. Various task

assignment keywords can be used in combination, and others are mutually

exclusive.

 Table 33. Valid combinations of task assignment keywords are listed in each column

Keyword Valid Combinations

total_tasks X X

tasks_per_node X X

node = <min, max> X

node = <number> X X

min_processors X X

max_processors X X

task_geometry X

blocking X

The following examples show how each allocation method works. For each

example, consider a 3-node SP with machines named ″N1,″ ″N2,″ and ″N3″. The

machines’ order of priority, according to the values of their MACHPRIO

expressions, is: N1, N2, N3. N1 has 4 initiators available, N2 has 6, and N3 has 8.

node and total_tasks

When you specify the node keyword with the total_tasks keyword, the assignment

function will allocate all of the tasks in the job step evenly among however many

nodes you have specified. If the number of total_tasks is not evenly divisible by

the number of nodes, then the assignment function will assign any larger groups to

the first nodes on the list that can accept them. In this example, 14 tasks must be

allocated among 3 nodes:

@ node=3

@ total_tasks=14

Working with parallel jobs

Chapter 7. Building and submitting jobs 159

|
|

Table 34. node and total_tasks

Machine Available

Initiators

Assigned Tasks

N1 4 4

N2 6 5

N3 8 5

The assignment function divides the 14 tasks into groups of 5, 5, and 4, and begins

at the top of the list, to assign the first group of 5. The assignment function starts

at N1, but because there are only 4 available initiators, cannot assign a block of 5

tasks. Instead, the function moves down the list and assigns the two groups of 5 to

N2 and N3, the assignment function then goes back and assigns the group of 4

tasks to N1.

node and tasks_per_node

When you specify the node keyword with the tasks_per_node keyword, the

assignment function will assign tasks in groups of the specified value among the

specified number of nodes.

@ node = 3

@ tasks_per_node = 4

blocking

When you specify blocking, tasks are allocated to machines in groups (blocks) of

the specified number (blocking factor). The assignment function will assign one

block at a time to the machine which is next in the order of priority until all of the

tasks have been assigned. If the total number of tasks are not evenly divisible by

the blocking factor, the remainder of tasks are allocated to a single node. The

blocking keyword must be specified with the total_tasks keyword. For example:

@ blocking = 4

@ total_tasks = 17

Where blocking specifies that a job’s tasks will be assigned in blocks, and 4

designates the size of the blocks. Here is how a blocking factor of 4 would work

with 17 tasks:

 Table 35. Blocking

Machine Available

Initiators

Assigned Tasks

N1 4 4

N2 6 5

N3 8 8

The assignment function first determines that there will be 4 blocks of 4 tasks, with

a remainder of one task. Therefore, the function will allocate the remainder with

the first block that it can. N1 gets a block of four tasks, N2 gets a block, plus the

remainder, then N3 gets a block. The assignment function begins again at the top

of the priority list, and N3 is the only node with enough initiators available, so N3

ends up with the last block.

unlimited blocking

When you specify unlimited blocking, the assignment function will allocate as

many jobs as possible to each node; the function prioritizes nodes primarily by

how many initiators each node has available, and secondarily on their MACHPRIO

expressions. This method allows you to allocate tasks among as few nodes as

Working with parallel jobs

160 LoadLeveler: Using and Administering

possible. To specify unlimited blocking, specify ″unlimited″ as the value for the

blocking keyword. The total_tasks keyword must also be specified with unlimited

blocking. For example:

@ blocking = unlimited

@ total_tasks = 17

 Table 36. Unlimited blocking

Machine Available

Initiators

Assigned Tasks

N3 8 8

N2 6 6

N1 4 3

The assignment function begins with N3 (because N3 has the most initiators

available), and assigns 8 tasks, N2 takes six, and N1 takes the remaining 3.

task_geometry

The task_geometry keyword allows you to specify which tasks run together on the

same machines, although you cannot specify which machines. In this example, the

task_geometry keyword groups 7 tasks to run on 3 nodes:

@ task_geometry = {(5,2)(1,3)(4,6,0)}

The entire task_geometry expression must be enclosed within braces. The task IDs

for each node must be enclosed within parenthesis, and must be separated by

commas. The entire range of task IDs that you specify must begin with zero, and

must end with the task ID which is one less than the total number of tasks. You

can specify the task IDs in any order, but you cannot skip numbers (the range of

task IDs must be complete). Commas may only appear between task IDs, and

spaces may only appear between nodes and task IDs.

Submitting jobs that use striping

When communication between parallel tasks occurs only over a single device such

as css0 or en0, the application and the device are gated by each other. The device

must wait for the application to fill a communication buffer before it transmits the

buffer and the application must wait for the device to transmit and empty the

buffer before it can refill the buffer. Thus the application and the device must wait

for each other and this wastes time.

The technique of striping refers to using two or more communication paths to

implement a single communication path as perceived by the application. As the

application sends data, it fills up a buffer on one device. As that buffer is

transmitted over the first device, the application’s data begins filling up a second

buffer and the application perceives no delay in being able to write. When the

second buffer is full, it begins transmission over the second device and the

application moves on to the next device. When all devices have been used, the

application returns to the first device. Much, if not all of the buffer on the first

device has been transmitted while the application wrote to the buffers on the other

devices so the application waits for a minimal amount of time or possibly does not

wait at all.

LoadLeveler supports striping in two ways. When multiple switch planes or

networks are present, striping over them is indicated by requesting the device csss

(multiple switch planes) or sn_all (multiple networks).

Working with parallel jobs

Chapter 7. Building and submitting jobs 161

If multiple adapters are present on the same network and the communication

subsystem, such as LAPI, supports striping over multiple adapters on the same

network, specifying the instances keyword on the network statement requests

striping over adapters on the same network. The instances keyword specifies the

number of adapters on a single network to stripe on. It is possible to stripe over

multiple networks and over multiple adapters on each network by specifying both

sn_all and a value for instances greater than one. For HPS adapters, only

machines that are connected to both networks are considered for csss or sn_all

jobs.

v User space striping: When sn_all is specified on a network statement with US

mode, LoadLeveler commits an equivalent set of adapter resources (adapter

windows and memory) on each of the networks present in the system to the job

on each node where the job runs. The communication subsystem is initialized to

indicate that it should use the user space communication protocol on all the

available switch adapters to service communication requests on behalf of the

application.

v IP striping: When the csss device is specified on a network statement with the

IP mode, LoadLeveler attempts to locate the striped IP address associated with

the switch adapters, known as the multi-link address. If it is successful, it passes

the multi-link address to POE for use. If multi-link addresses are not available,

LoadLeveler instructs POE to use the IP address of one of the switch adapters.

The IP address that is used is different each time a choice has to be made in an

attempt to balance the adapter use. Multi-link addresses must be configured on

the system prior to running LoadLeveler and they are specified with the

multilink_address keyword on the switch adapter stanza in the administration

file. If a multi-link address is specified for a node, LoadLeveler assigns the

multi-link address and multi-link IP name to the striping adapter on that node.

If a multi-link address is not present on a node, the csss adapter associated with

the node will not have an IP address or IP name. If not all of the nodes of a

system have multi-link addresses but some do, LoadLeveler will only dispatch

jobs that request IP striping to nodes that have multi-link addresses.

Jobs that request striping (both user space and IP) can be submitted to nodes

with only one switch adapter. In that situation, the result is the same as if the

job requested no striping.

Note: When configured, a multi-link address is associated with the virtual ml0

device. The IP address of this device is the multi-link address. The

llextSDR and llextRPD programs will create a stanza for the ml0 device

that will appear similar to Ethernet or token ring adapter stanzas except

that it will include the multilink_list keyword that lists the adapters it

performs striping over. As with any other device with an IP address, the

ml0 device can be requested in IP mode on the network statement. Doing

so would yield a comparable effect to requesting csss IP except that no

checking would be performed by LoadLeveler to ensure the associated

adapters are actually working. Thus it would be possible to dispatch a job

that requested communication over ml0 only to have the job fail because

the switch adapters that ml0 stripes over were down.

v Striping over one network: If the instances keyword is specified on a network

statement with a value greater than one, LoadLeveler allocates multiple sets of

resources for the protocol using as many sets as the instances keyword

specified. For User Space jobs, these sets are adapter windows and memory. For

IP jobs, these sets are IP addresses. If multiple adapters exist on each node on

the same network, then these sets of adapter resources will be distributed among

all the available adapters on the same network. Even though LoadLeveler will

Working with parallel jobs

162 LoadLeveler: Using and Administering

|
|
|

allocate resources to support striping over a single network, the communication

subsystem must be capable of exploiting these resources in order for them to be

used.

Understanding striping over multiple networks

For a job to successfully run using the striped adapter method, there must be a

common communication path among the nodes and adapters on the system. This

communication path between different nodes and adapters is called the

communication network or fabric.

Consider these sample scenarios using the network configuration as shown in the

preceding figure:

v If a three node job requests striping over networks, it will be dispatched to Node

1, Node 2 and Node 4 where it can communicate on Network 1. It cannot run

on Node 3 because that node only has a common communication path with

Node 2, namely Network 0.

v If a three node job requests no striping, it will not be run because there are not

enough adapters connected to Network 0 to run the job. Notice both the adapter

connected to Network 0 on Node 1 and the adapter connected to Network 0 on

Node 4 are both at fault.

v If a three node job requests striped IP and some but not all of the nodes have

multi-linked addresses, the job will only be dispatched to the nodes that have

the multi-link addresses.

As you can see from these scenarios, LoadLeveler will find enough nodes on the

same communication path to run the job. If enough nodes connected to a common

communication path cannot be found, no communication can take place and the

job will not run.

Working with parallel jobs

Chapter 7. Building and submitting jobs 163

Understanding striping over a single network

The figure above shows a network configuration where the adapters support

striping over a single network. Both Adapter A and Adapter B on a node are

connected to Network 0. The entire oval represents the physical network and the

concentric ovals (shaded differently) represent the separate communication paths

created for a job by the instances keyword on the network statement. In this case a

three node job requests two instances for communication. On Node 1, adapter A is

used for instance 0 and adapter B is used for instance 1. There is no requirement to

use the same adapter for the same instance so on Node 2, adapter B was used for

instance 0 and adapter A for instance 1.

On Node 3, where a fault is keeping adapter B from connecting to the network,

adapter A is used for both instance 0 and instance 1 and Node 3 is available for

the job to use.

The network itself does not impose any limitation on the total number of

communication paths that can be active at a given time for either a single job or all

the jobs using the network. As long as nodes with adapter resources are available,

additional communication paths can be created.

Examples: Requesting striping in network statements

You request that a job be run using striping with the network statement in your

job command file. The default when instances is not specified for a job in the

network statement is controlled by the class stanza keyword for csss and sn_all.

For more information on the network and max_protocol_instances statements, see

the keyword descriptions in “Job command file keyword descriptions” on page

294.

Shown here are examples of IP and user space network modes:

Working with parallel jobs

164 LoadLeveler: Using and Administering

|

v Example 1: Requesting striping using IP mode

To submit a job using IP striping, your network statement would look like this:

network.MPI = csss,,IP

v Example 2: Requesting striping using user space mode

To submit a job using user space striping, your network statement would look

like this:

network.MPI = csss,,US

v Example 3: Requesting striping over a single network

To request IP striping over multiple adapter on a single network, the network

statement would look like this:

network.MPI = sn_single,,IP,,instances=2

If the nodes on which the job runs have two or more adapters on the same

network, two different IP addresses will be allocated to each task for MPI

communication. If only one adapter exists per network, the same IP address will

be used twice for each task for MPI communication.

v Example 4: Requesting striping over multiple networks and multiple adapters

on the same network

To submit a user space job that will stripe MPI communication over multiple

adapters on all networks present in the system the network statement would

look like this:

network.MPI = sn_all,,US,,instances=2

If, on a node where the job runs, there are two adapters on each of the two

networks, one adapter window would be allocated from each adapter for MPI

communication by the job. If only one network were present with two adapters,

one adapter window from each of the two adapters would be used. If two

networks were present but each only had one adapter on it, two adapter

windows from each adapter would be used to satisfy the request for two

instances.

Running interactive POE jobs

POE will accept LoadLeveler job command files; however, you can still set the

following environment variables to define specific LoadLeveler job attributes before

running an interactive POE job:

LOADL_ACCOUNT_NO

The account number associated with the job.

LOADL_INTERACTIVE_CLASS

The class to which the job is assigned.

For information on other POE environment variables, see IBM Parallel Environment

for AIX; Operation and Use, Volume 1.

You also may run interactive POE jobs under a reservation. For additional details

about reservations and submitting jobs to run under them, see “Working with

reservations” on page 171.

Running MPICH and MPICH-GM jobs

MPICH is an open-source, portable implementation of the Message-Passing

Interface (MPI) Standard developed by Argonne National Laboratory. It contains a

complete implementation of version 1.2 of the MPI Standard and also significant

Working with parallel jobs

Chapter 7. Building and submitting jobs 165

|
|
|

|

parts of MPI-2, particularly in the area of parallel I/O. MPICH and MPICH-GM

are the two MPI implementations supported by LoadLeveler for AIX 5L and Linux:

v MPICH is currently used by a large number of providers of MPI

implementations. Additional documentation for MPICH is available from the

Argonne National Laboratory web site at http://www-
unix.mcs.anl.gov/mpi/mpich/docs.html.

v MPICH-GM is a port of MPICH on top of GM (ch_gm) and is supported by

Myrinet. Additional documentation for MPICH-GM is available from the

Myrinet web site at http://www.myri.com/scs/

For either MPICH or MPICH-GM, LoadLeveler allocates the machines to run the

parallel job and starts the implementation specific script. LoadLeveler has no

interaction with the parallel tasks started with the script.

v When using MPICH, the mpirun script is run on the first machine allocated to

the job. The mpirun script manages the actual execution of the parallel tasks on

the other nodes included in the LoadLeveler cluster. Cancelling the job with the

llcancel command may not completely remove the MPICH application because

the llcancel command terminates only the mpirun script, not the MPICH tasks.

v When using MPICH-GM, the mpirun.ch_gm script is run on the first machine

allocated to the job. The mpirun.ch_gm script manages the actual execution of

the parallel tasks on the other nodes included in the LoadLeveler cluster. As

with MPICH, llcancel terminates only the mpirun.ch_gm script. To terminate

the parallel tasks, start mpirun.ch_gm with the --gm-kill 0 option.

Sample programs are available:

v See “MPICH” on page 168 for a sample MPICH job command file.

v See “MPICH-GM” on page 169 for a sample MPICH-GM job command file.

v The LoadLeveler samples directory also contains sample files:

– On AIX 5L, use directory /usr/lpp/LoadL/full/samples/llmpich

– On Linux, use directory /opt/ibmll/LoadL/full/samples/linux/llmpich

These sample files include:

– ivp.c: A simple MPI application that you may run as an MPICH or

MPICH-GM job.

– ll_get_machine_list.c: An application that queries the appropriate schedd

daemon for information about the LoadLeveler machines assigned to run the

various tasks of a job step.

– Shell scripts to create the ll_get_machine_list binary and to compile and

link the ivp.c program:

- For MPICH: mpich_cmp.sh

- For MPICH-GM: mpich_gm_cmp.sh
– Job command files to run the ivp.c program as a batch job:

- For MPICH: mpich_ivp.cmd

- For MPICH-GM: mpich_gm_ivp.cmd

Examples: Building parallel job command files

This section contains sample job command files for the following parallel

environments:

v IBM AIX Parallel Operating Environment (POE)

v MPICH

v MPICH-GM

Working with parallel jobs

166 LoadLeveler: Using and Administering

|

|

|
|

|

|

http://www-unix.mcs.anl.gov/mpi/mpich/docs.html
http://www-unix.mcs.anl.gov/mpi/mpich/docs.html
http://www.myri.com/scs/

POE

Figure 23 is a sample job command file for POE.

 Figure 23 shows the following:

v The total number of nodes requested is a minimum of eight and a maximum of

10 (node=8,10). Two tasks run on each node (tasks_per_node=2). Thus the total

number of tasks can range from 16 to 20.

v Each task of the job will run using the LAPI protocol in US mode with a switch

adapter (network.LAPI=sn_all,US,,instances=1), and using the MPI protocol in

US mode with a switch adapter (network.MPI=sn_all,US,,instances=1).

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

Figure 24 is a second sample job command file for POE

 Figure 24 shows the following:

v POE is invoked twice, through my_POE_setup_program and

my_POE_main_program.

v The job requests a minimum of two nodes and a maximum of eight nodes

(node=2,8).

v The job by default runs one task per node.

v The job uses the MPI protocol with a switch adapter in IP mode

(network.MPI=sn_single,shared,IP).

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

@ job_type = parallel

@ environment = COPY_ALL

@ output = poe.out

@ error = poe.error

@ node = 8,10

@ tasks_per_node = 2

@ network.LAPI = sn_all,US,,instances=1

@ network.MPI = sn_all,US,,instances=1

@ wall_clock_limit = 60

@ executable = /usr/bin/poe

@ arguments = /u/richc/My_POE_program -euilib "us"

@ class = POE

@ queue

Figure 23. POE job command file – multiple tasks per node

@ job_type = parallel

@ input = poe.in.1

@ output = poe.out.1

@ error = poe.err

@ node = 2,8

@ network.MPI = sn_single,shared,IP

@ wall_clock_limit = 60

@ class = POE

@ queue

/usr/bin/poe /u/richc/my_POE_setup_program -infolevel 2

/usr/bin/poe /u/richc/my_POE_main_program -infolevel 2

Figure 24. POE sample job command file – invoking POE twice

Working with parallel jobs

Chapter 7. Building and submitting jobs 167

MPICH

Figure 25 is a sample job command file for MPICH.

 Figure 25 shows the following:

v The operation associated with the statement

/common/NFS/ll_bin/llmpich/ll_get_machine_list>/tmp/machinelist.$LOADL_STEP_ID

creates a temporary file that contains the list of machines that have been

assigned by LoadLeveler to this parallel job step.LOADL_STEP_ID is an

environment variable set by LoadLeveler. The source file ll_get_machine_list.c

and the script mpich_cmp.sh that can be used to compile this file are located in

the /opt/ibmll/LoadL/full/samples/linux/llmpich directory. ll_get_machine_list

uses the LoadLeveler Data Access API to query the appropriate LoadL_schedd

daemon for the machine list information.

v The statement machine_count=`cat /tmp/machinelist.$LOADL_STEP_ID | wc

-l` counts the number of entries in the machine list. The number of entries in the

machine list is equal to the number of parallel tasks.

v In the job command file statement /opt/mpich/bin/mpirun -np $machine_count

-machinefile /tmp/machinelist.$LOADL_STEP_ID

/common/NFS/ll_bin/mpich_test:

– -np specifies the number of parallel processes.

– -machinefile specifies the machine list file.
v rm /tmp/machinelist.$LOADL_STEP_ID removes the temporary machine list

file once the application completes.

Canceling an MPICH job step with the llcancel command terminates only the

mpirun script associated with the job step. It does not terminate all the tasks

started by this mpirun script. This is also true for cancellation operations started

by the llctl flush and llctl stop commands.

! /bin/ksh

LoadLeveler JCF file for runing an MPICH job

@ job_type = parallel

@ node = 4

@ tasks_per_node = 2

@ output = mpich_test.$(cluster).$(process).out

@ error = mpich_test.$(cluster).$(process).err

@ queue

echo "--"

echo LOADL_STEP_ID=$LOADL_STEP_ID

echo "--"

Make sure that the ll_get_machine_list binary is accessible on all machines

in the LoadLeveler cluster.

/common/NFS/ll_bin/ll_get_machine_list > /tmp/machinelist.$LOADL_STEP_ID

machine_count=`cat /tmp/machinelist.$LOADL_STEP_ID | wc -l`

echo $machine_count

echo MachineList:

cat /tmp/machinelist.$LOADL_STEP_ID

echo "--"

/opt/mpich/bin/mpirun -np $machine_count -machinefile \

 /tmp/machinelist.$LOADL_STEP_ID /common/NFS/ll_bin/mpich_test

rm /tmp/machinelist.$LOADL_STEP_ID

Figure 25. MPICH job command file

Working with parallel jobs

168 LoadLeveler: Using and Administering

|

MPICH-GM

Figure 26 is a sample job command file for MPICH-GM.

 Figure 26 shows the following:

v The statement # @ resources = gmports(1) specifies that each task consumes one

GM port. This is how LoadLeveler limits the number of GM ports

simultaneously in use on any machine. This resource name is the name the

LoadLeveler administrator specified in schedule_by_resources in the

configuration file and each machine stanza in the administration file must define

GM ports and specify the quantity of GM ports available on each machine. Use

llstatus -R to confirm the names and values of the configured and available

consumable resources.

v The operation associated with the statement

/common/NFS/ll_bin/llmpich/ll_get_machine_list>/tmp/machinelist.$LOADL_STEP_ID

creates a temporary file that contains the list of machines that have been

assigned by LoadLeveler to this parallel job step.LOADL_STEP_ID is an

environment variable set by LoadLeveler. The source file ll_get_machine_list.c

and the script mpich_gm_cmp.sh that can be used to compile this file are

located in the /opt/ibmll/LoadL/full/samples/linux/llmpich directory.

ll_get_machine_list uses the LoadLeveler Data Access API to query the

appropriate LoadL_schedd daemon for the machine list information.

v The statement machine_count=`cat /tmp/machinelist.$LOADL_STEP_ID | wc

-l` counts the number of entries in the machine list. The number of entries in the

machine list is equal to the number of parallel tasks.

v In the job command file statement /opt/mpich/bin/mpirun.ch_gm --gm-kill 0

-np $machine_count -machinefile /tmp/machinelist.$LOADL_STEP_ID

/common/NFS/ll_bin/mpich_gm_test:

– /opt/mpich/bin/mpirun.ch_gm specifies the location of the mpirun.ch_gm

script shipped with the MPICH-GM implementation that runs the

MPICH-GM application.

#! /bin/ksh

LoadLeveler JCF file for running an MPICH-GM job

@ job_type = parallel

@ resources = gmports(1)

@ node = 4

@ tasks_per_node = 2

@ output = mpich_gm_test.$(cluster).$(process).out

@ error = mpich_gm_test.$(cluster).$(process).err

@ queue

echo "--"

echo LOADL_STEP_ID=$LOADL_STEP_ID

echo "--"

Make sure that the ll_get_machine_list binary is accessible on all machines

in the LoadLeveler cluster.

/common/NFS/ll_bin/ll_get_machine_list > /tmp/machinelist.$LOADL_STEP_ID

machine_count=`cat /tmp/machinelist.$LOADL_STEP_ID | wc -l`

echo $machine_count

echo MachineList:

cat /tmp/machinelist.$LOADL_STEP_ID

echo "--"

/opt/mpich/bin/mpirun.ch_gm --gm-kill 0 -np $machine_count -machinefile \

 /tmp/machinelist.$LOADL_STEP_ID /common/NFS/ll_bin/mpich_gm_test

rm /tmp/machinelist.$LOADL_STEP_ID

Figure 26. MPICH-GM job command file

Working with parallel jobs

Chapter 7. Building and submitting jobs 169

|

– --gm-kill 0 indicates that all parallel tasks are stopped when any one task

ends. This option is necessary for MPICH-GM jobs to respond properly to an

llcancel command.

– -np specifies the number of parallel processes.

– -machinefile specifies the machine list file.
v rm /tmp/machinelist.$LOADL_STEP_ID removes the temporary machine list

file once the application completes.

Obtaining status of parallel jobs

Both end users and LoadLeveler administrators can obtain status of parallel jobs in

the same way as they obtain status of serial jobs – either by using the llq

command or by viewing the Jobs window on the graphical user interface (GUI). By

issuing llq -l, or by using the Job Actions → Details selection in xloadl, users get a

list of machines allocated to the parallel job. If you also need to see task instance

information use the -x option in addition to the -l option (llq -l -x). See “llq -

Query job status” on page 386 for samples of output using the -x and -l options

with the llq command. As an alternative, you can also use the GUI and select: Job

Actions → Extended Details.

Obtaining allocated host names

llq -l output includes information on allocated host names. Another way to obtain

the allocated host names is with the LOADL_PROCESSOR_LIST environment

variable, which you can use from a shell script in your job command file as shown

in Figure 27 on page 171.

This example uses LOADL_PROCESSOR_LIST to perform a remote copy of a

local file to all of the nodes, and then invokes POE. Note that the processor list

contains an entry for each task running on a node. If two tasks are running on a

node, LOADL_PROCESSOR_LIST will contain two instances of the host name

where the tasks are running. The example in Figure 27 on page 171 removes any

duplicate entries.

Note that LOADL_PROCESSOR_LIST is set by LoadLeveler, not by the user. This

environment variable is limited to 128 hostnames. If the value is greater than the

128 limit, the environment variable is not set.

Working with parallel jobs

170 LoadLeveler: Using and Administering

Working with reservations

Under the backfill scheduler only, LoadLeveler allows authorized users to make

reservations, which specify a time period during which specific node resources are

reserved for use by particular users or groups.

Use Table 37 to find information about working with reservations.

 Table 37. Roadmap of tasks for reservation owners and users

Subtask Associated instructions (see . . .)

Learn how reservations work in the

LoadLeveler environment

v “Overview of reservations” on page 22

v “Understanding the reservation life cycle” on page

172

Creating new reservations “Creating new reservations” on page 174

Managing jobs that run under a

reservation

v “Submitting jobs to run under a reservation” on

page 175

v “Removing bound jobs from the reservation” on

page 177

Managing existing reservations v “Querying existing reservations” on page 177

v “Modifying existing reservations” on page 178

v “Canceling existing reservations” on page 178

Using the LoadLeveler interfaces for

reservations

v Chapter 15, “Commands,” on page 335

v “Reservation API” on page 496

#!/bin/ksh

@ output = my_POE_program.$(cluster).$(process).out

@ error = my_POE_program.$(cluster).$(process).err

@ class = POE

@ job_type = parallel

@ node = 8,12

@ network.MPI = css0,shared,US

@ queue

tmp_file="/tmp/node_list"

rm -f $tmp_file

Copy each entry in the list to a new line in a file so

that duplicate entries can be removed.

for node in $LOADL_PROCESSOR_LIST

 do

 echo $node >> $tmp_file

 done

Sort the file removing duplicate entries and save list in variable

nodelist= sort -u /tmp/node_list

for node in $nodelist

 do

 rcp localfile $node:/home/userid

 done

rm -f $tmp_file

/usr/bin/poe /home/userid/my_POE_program

Figure 27. Using LOADL_PROCESSOR_LIST in a shell script

Working with reservations

Chapter 7. Building and submitting jobs 171

|

|
|
|

|

||

||

|
|
|

|
|

||

|
|
|
|
|
|

||
|
|

|
|
|
|
|

Understanding the reservation life cycle

From the time at which LoadLeveler creates a reservation through the time the

reservation ends or is canceled, a reservation goes through various states, which

are indicated in command listings and other displays or output. Understanding

these states is important because the current state of a reservation dictates what

actions you can take; for example, if you want to modify the start time for a

reservation, you may do so only while the reservation is in Waiting state. Table 38

lists the possible reservation states, their abbreviations, and usage notes.

 Table 38. Reservation states, abbreviations, and notes

Reservation

state

Abbreviation

in displays /

output

Notes

Waiting W When LoadLeveler first creates a reservation, the

reservation is in Waiting state. While the reservation is in

this state:

v Only administrators and reservation owners may

modify, cancel, and add users or groups to the

reservation.

v Administrators, reservation owners, and users or groups

that are allowed to use the reservation may query it, and

submit jobs to run during the reservation period.

Setup S LoadLeveler changes the state of a reservation from

Waiting to Setup just before the start time of the

reservation. The actual time at which LoadLeveler places

the reservation in Setup state depends on the value set for

the RESERVATION_SETUP_TIME keyword in the

configuration file.

While the reservation is in Setup state:

v Only administrators and reservation owners may

modify, cancel, and add users or groups to the

reservation.

v Administrators, reservation owners, and users or groups

that are allowed to use the reservation may query it, and

submit jobs to run during the reservation period.

During this setup period, LoadLeveler:

v Stops scheduling unbound job steps to reserved nodes.

v Preempts any jobs that are still running on the nodes

that are reserved through this reservation. To preempt

the running jobs, LoadLeveler uses the preemption

method specified through the

DEFAULT_PREEMPT_METHOD keyword in the

configuration file.

Working with reservations

172 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|

||

|
|
|
|
|

|

|||
|
|
|
|
|
|
|
|

|||
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Table 38. Reservation states, abbreviations, and notes (continued)

Reservation

state

Abbreviation

in displays /

output

Notes

Active A At the reservation start time, LoadLeveler changes the

reservation state from Setup to Active. It also dispatches

only job steps that are bound to the reservation, until the

reservation completes or is canceled.

LoadLeveler does not dispatch bound job steps that:

v Require certain resources, such as floating consumable

resources, that are not available during the reservation

period.

v Have expected end times that exceed the end time of the

reservation. By default, LoadLeveler allows such jobs to

run, but their completion is subject to resource

availability. (An administrator may configure

LoadLeveler to prevent such jobs from running.)

These bound job steps remain idle unless the required

resources become available.

While the reservation is in Active state:

v Only administrators and reservation owners may

modify, cancel, and add users or groups to the

reservation.

v Administrators, reservation owners, and users or groups

that are allowed to use the reservation may query it, and

submit jobs to run during the reservation period.

Active_Shared AS At the reservation start time, LoadLeveler changes the

reservation state from Setup to Active. It also dispatches

only job steps that are bound to the reservation, unless the

reservation was created with the SHARED mode. In this case,

if reserved resources are still available after LoadLeveler

dispatches any bound job steps that are eligible to run,

LoadLeveler changes the reservation state to

Active_Shared, and begins dispatching job steps that are

not bound to the reservation. Once the reservation state

changes to Active_Shared, it remains in that state until the

reservation completes or is canceled. During this time,

LoadLeveler dispatches both bound and unbound job

steps, pending resource availability; bound job steps are

considered before unbound job steps.

The conditions under which LoadLeveler will not dispatch

bound job steps are the same as those listed in the notes

for the Active state.

The actions that administrators, reservation owners, and

users may perform are the same as those listed in the

notes for the Active state.

Canceled CA When a reservation owner, administrator, or LoadLeveler

issues a request to cancel the reservation, LoadLeveler

changes the state of a reservation to Canceled and unbinds

any job steps bound to this reservation. When the

reservation is in this state, no one can modify or submit

jobs to this reservation.

Working with reservations

Chapter 7. Building and submitting jobs 173

|

|
|
|
|
|

|

|||
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|||
|
|
|
|
|

Table 38. Reservation states, abbreviations, and notes (continued)

Reservation

state

Abbreviation

in displays /

output

Notes

Complete C When a reservation end time is reached, LoadLeveler

changes the state of a reservation to Complete. When the

reservation is in this state, no one can modify or submit

jobs to this reservation.

Creating new reservations

You must be an authorized user or member of an authorized group to successfully

create a reservation. LoadLeveler administrators define authorized users by adding

the max_reservations keyword to the user or group stanza in the administration

file. The max_reservations keyword setting also defines how many reservations

you are allowed to own. Ask your administrator whether you are authorized to

create reservations.

To be authorized to create reservations, LoadLeveler administrators also must have

the max_reservations keyword set in their user or group stanza.

To create a reservation, use the llmkres command. When you create a reservation,

you must:

v Specify the start time and duration of the reservation. Use the -t and -d

command options, respectively.

v Explicitly specify nodes through one the following methods, which are mutually

exclusive. You must use only one method when you request LoadLeveler to

create a reservation.

– The -n option on the llmkres command instructs LoadLeveler to reserve a

number of nodes. LoadLeveler may select any unreserved node to satisfy a

reservation. This command option is perhaps the easiest to use, because you

need to know only how many nodes you want, not specific node

characteristics.

The minimum number of nodes a reservation must have is 1.

– The -h option on the llmkres command instructs LoadLeveler to reserve

specific nodes.

– The -f option on the llmkres command instructs LoadLeveler to submit the

specified job command file, and reserve appropriate nodes for the first job

step in the job command file. Through this action, all job steps for the job are

bound to the reservation. If the reservation request fails, LoadLeveler changes

the state for all job steps for this job to NotQueued, and will not schedule any

of those job steps to run.

– The -j option on the llmkres command instructs LoadLeveler to reserve

appropriate nodes for that job step. Through this action, the job step is bound

to the reservation. If the reservation request fails, the job step remains in the

same state as it was before.

You also may define other reservation attributes, including:

v Whether additional users or groups are allowed to use the reservation. Use the

-U or -G command options, respectively.

v Whether the reservation will be in one or both of these optional modes:

– SHARED mode: When you use the -s command option, LoadLeveler allows

reserved resources to be shared by job steps that are not associated with a

reservation. This mode enables the efficient use of reserved resources; if the

Working with reservations

174 LoadLeveler: Using and Administering

|

|
|
|
|
|

|

|||
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

bound job steps do not use all of the reserved resources, LoadLeveler can

schedule unbound job steps as well so the resources do not remain idle.

Unless you specify this mode, however, only job steps bound to the

reservation may use the reserved resources.

– REMOVE_ON_IDLE mode: When you use the -i command option, LoadLeveler

automatically cancels the reservation when all bound job steps that can run

finish running. Using this mode is efficient because it prevents LoadLeveler

from wasting reserved resources when no jobs are available to use them.

Selecting this mode is especially useful for workloads that will run

unattended.

Additional rules apply to the use of these options; see “llmkres - Make a

reservation” on page 376 for details.

Alternatives:

v Use the ll_make_reservation and the ll_init_reservation_param subroutines in a

program.

v Use the LoadLeveler GUI by selecting File � Reservations � Create a

reservation.

Tips:

v If your user ID is not authorized to create reservations but you are member of a

group with authority to create reservations, you must use the -g option to

specify the name of the authorized group on the llmkres command.

v Only reservations in waiting and in use are counted toward the limit of allowed

reservations set through the max_reservations keyword. LoadLeveler does not

count reservations that already have ended or are in the process of being

canceled.

v Although you may create more than one reservation for a particular node or set

of nodes, only one of those reservations may be active at a time. If LoadLeveler

determines that the reservation you are requesting will overlap with another

reservation, LoadLeveler fails the create request. No reservation periods for the

same set of machines can overlap.

If the create request is successful, LoadLeveler assigns and returns to the owner a

unique reservation ID, in the form host.rid.r, where:

v host is the machine to which the reservation request was submitted.

v rid is an ID assigned to the reservation by LoadLeveler.

v The letter r is used to distinguish a reservation ID from a job step name.

The following are examples of reservation IDs:

c94n16.80.r

c94n06.1.r

For details about the LoadLeveler interfaces for creating reservations, see:

v “llmkres - Make a reservation” on page 376.

v “ll_make_reservation subroutine” on page 496 and “ll_init_reservation_param

subroutine” on page 499.

Submitting jobs to run under a reservation

LoadLeveler administrators, reservation owners, and authorized users may submit

jobs to run under a reservation. You may bind both batch and interactive POE job

steps to a reservation, both before a reservation starts or while it is active.

Before you begin:

Working with reservations

Chapter 7. Building and submitting jobs 175

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|

|

|
|
|

|

v If you are a reservation owner and used the -f or -j options on the llmkres

command when you created the reservation, you do not have to perform the

steps listed in Table 39. Those command options automatically bind the job steps

to the reservation. To find out whether a particular job step is bound to a

reservation, use the command llq -l and check the listing for a reservation ID.

v To find out which reservation IDs you may use, check with your LoadLeveler

administrator, or enter the command llqres -l and check the names in the Users

or Groups fields (under the Modification time field) in the output listing. If your

user name or a group name to which you belong appears in these output fields,

you are authorized to use the reservation.

v LoadLeveler cannot guarantee that certain resources will be available during a

reservation period. If you submit job steps that require these resources,

LoadLeveler will bind the job steps to the reservation, but will not dispatch

them unless the resources become available during the reservation. These

resources include:

– Specific nodes that were not reserved under this reservation.

– Floating consumable resources for a cluster.

– Resources that are not released through preemption, such as virtual memory

and adapters.

Also, your job step will be bound to the reservation but will remain idle when

the job step requires more nodes than the number of reserved nodes.

v Whether bound job steps are successfully dispatched depends not only on

resource availability, but also on administration file keywords that set maximum

numbers, including:

– max_jobs_scheduled

– maxidle

– maxjobs

– maxqueued

If LoadLeveler determines that scheduling a bound job will exceed one or more

of these configured limits, your job will remain idle unless conditions permit

scheduling at a later time during the reservation period.

 Table 39. Instructions for submitting a job to run under a reservation

To bind this

type of job: Use these instructions:

Already

submitted

jobs

Use the llbind command

Alternatives:

v Use the ll_bind_reservation subroutine in a program.

v From the Jobs window, use the LoadLeveler GUI by selecting one or more

jobs, then selecting Actions � Bind to reservation, and selecting the ID of

the reservation to which you want to bind these jobs.

Result: LoadLeveler either sets the reservation ID for each job step that can

be bound to the reservation, or sends a failure notification for the bind

request.

Working with reservations

176 LoadLeveler: Using and Administering

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

||

|
||

|
|
|

|

|
|
|
|
|

|
|
|

Table 39. Instructions for submitting a job to run under a reservation (continued)

To bind this

type of job: Use these instructions:

A new,

unsubmitted

job

1. Specify the reservation ID through the LL_RES_ID environment variable.

Tip: You may examine but cannot modify this environment variable using

a job command filter.

2. Use the llsubmit command to submit the job.

Result: If the job can be bound to the requested reservation, LoadLeveler

sets the reservation ID for each job step that can be bound to the

reservation. Otherwise, if the job step cannot be bound to the reservation,

LoadLeveler changes the job state to NotQueued. To change the job step’s

state to Idle, issue the llbind -r command.

Use the llqres command or llq command with the -l option to check the success or

failure of the binding request for each job step.

For details about the LoadLeveler interfaces for submitting jobs under reservations,

see:

v “llbind - Bind job steps to a reservation” on page 339.

v “ll_bind subroutine” on page 503.

v “llsubmit - Submit a job” on page 423.

Removing bound jobs from the reservation

LoadLeveler administrators, reservation owners, and authorized users may use the

llbind command to unbind one or more existing jobs from a reservation.

Alternatives:

v Use the ll_bind_reservation subroutine in a program.

v From the Jobs window, use the LoadLeveler GUI by selecting one or more jobs,

then selecting Actions � Unbind from reservation, and selecting the ID of the

reservation from which you want to unbind these jobs.

Result: LoadLeveler either unbinds the jobs from the reservation, or sends a failure

notification for the unbind request. Use the llqres or llq command to check the

success or failure of the remove request.

For details about the LoadLeveler interfaces for removing bound jobs from the

reservation, see:

v “llbind - Bind job steps to a reservation” on page 339.

v “ll_bind subroutine” on page 503.

Querying existing reservations

Any LoadLeveler administrator or user may issue the llqres and llq commands to

request specific information about reservations.

v To filter reservations displayed by owner, group, or nodes, use the llqres

command with the -u, -g, or -h options.

v To show details of specific reservations, use the llqres command with the -l

option.

v To show job steps that are bound to specific reservations, use the llq command

with the -R option.

Alternative: Use the LoadLeveler GUI by selecting File � Reservations.

Working with reservations

Chapter 7. Building and submitting jobs 177

|

|
||

|
|
|

|

|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

For details about:

v Reservation attributes and llqres command syntax, see “llqres - Query a

reservation” on page 406.

v llq command syntax, see “llq - Query job status” on page 386.

Modifying existing reservations

Only administrators and reservation owners may use the llchres command to

modify one or more attributes of a reservation. Certain attributes cannot be

changed after a reservation has become active. Typical uses for the llchres

command include the following:

v Using the command llchres -U +newuser1 newuser2 to allow additional users to

submit jobs to the reservation.

v If a reservation was made through the command llmkres -h all but LoadLeveler

cannot include a particular node because it is down, you can use the command

llchres -h +node to add the node to the reserved node list when that node

becomes available again.

v If a reserved node is down after the reservation becomes active, a LoadLeveler

administrator can use:

– The command llchres -h -node to remove that node from the reservation.

– The command llchres -h +1 to add another node to the reservation.

Alternatives:

v Use the ll_change_reservation subroutine in a program.

v Use the LoadLeveler GUI by selecting File � Reservations � Modify a

reservation.

For details about the LoadLeveler interfaces for modifying reservations, see:

v “llchres - Change attributes of a reservation” on page 343.

v “ll_change_reservation subroutine” on page 500.

Canceling existing reservations

Only administrators and reservation owners may use the llrmres command to

cancel one or more reservations.

Alternatives:

v Use the ll_remove_reservation subroutine in a program.

v Use the LoadLeveler GUI by selecting File � Reservations � Cancel a

reservation.

Result: If the cancel request can be granted, LoadLeveler:

1. Unbinds all jobs associated with the reservation to be removed.

2. Removes the reservation.

Use the llqres command to check the success or failure of the remove request.

For details about the LoadLeveler interfaces for canceling reservations, see:

v “llrmres - Cancel a reservation” on page 409.

v “ll_remove_reservation subroutine” on page 505.

Working with reservations

178 LoadLeveler: Using and Administering

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|

|

|
|
|

Steps for submitting a job to be routed to an NQS machine

To submit an NQS job, tailor a job command file for NQS and use the llsubmit

command to route the job to a machine running NQS. All options in the command

file pertaining to scheduling are used by LoadLeveler to schedule the job. When

the job is dispatched to the node running the specified NQS class, the LoadLeveler

options pertaining to the runtime environment are converted to NQS options and

the job is submitted to the specified NQS queue.

Before you begin:

v You need to know the differences between LoadLeveler and NQS options, and

how they are processed. For details, see “Mapping NQS script options to

LoadLeveler job command file options” on page 292.

v If you need details about issuing the llsubmit command, see “llsubmit - Submit

a job” on page 423.

Perform the following steps to submit a job to be routed to an NQS machine:

1. In the job command file, specify a shell script to be submitted to the NQS node.

Rules:

v NQS accepts only shell scripts; binaries are not allowed.

v You may specify a script originally written for NQS. In this case, any NQS

options in the script are used to schedule the job, and once dispatched by

LoadLeveler, the file is sent to NQS unmodified.

2. In the job command file, specify the class keyword value for NQS. For

example:

class = NQS

3. Issue the llsubmit command.

Results:

v When a job is sent to an NQS class, llsubmit saves:

– The name of the current directory (pwd) and the current value of the user

file create mask (umask).

– The following environment variables:

- HOME

- LOGNAME

- MAIL

- PATH

- SHELL

- TZ

- USER
v When the job is dispatched, LoadLeveler:

– Determines whether or not it is running in an NQS class.

– Installs the environment variables that llsubmit saved, so that they are

available to the NQS command qsub.

– Issues the NQS command qsub to submit the job.

LoadLeveler monitors the job by periodically invoking a qstat command. A qstat

command is first issued for the pipe queue on the local host. If the request id is

Submitting jobs to an NQS machine

Chapter 7. Building and submitting jobs 179

|

|
|

|

|
|
|

|

not found, a qstat is issued for each queue listed in the NQS_query class keyword.

If the request id is still not found, starter marks the job as complete.

Submitting jobs to an NQS machine

180 LoadLeveler: Using and Administering

Chapter 8. Managing submitted jobs

Table 40 lists the tasks and sources of additional information for managing

LoadLeveler jobs.

 Table 40. Roadmap of user tasks for managing submitted jobs

To learn about: Read the following:

Displaying information about

a submitted job or its

environment

v “Querying the status of a job”

v “Working with machines” on page 182

v “Displaying currently available resources” on page 182

v “llclass - Query class information” on page 349

v “llq - Query job status” on page 386

v “llstatus - Query machine status” on page 412

v “llsummary - Return job resource information for

accounting” on page 425

Changing the priority of a

submitted job

v “Setting and changing the priority of a job” on page 183

v “llmodify - Change attributes of a submitted job step” on

page 379

Changing the state of a

submitted job

v “Placing and releasing a hold on a job” on page 184

v “Canceling a job” on page 184

v “llhold - Hold or release a submitted job” on page 372

v “llcancel - Cancel a submitted job” on page 341

Checkpointing a submitted

job

v “Checkpointing a job” on page 184

v “llckpt - Checkpoint a running job step” on page 347

Querying the status of a job

Once you submit a job, you can query the status of the job to determine, for

example, if it is still in the queue or if it is running. You also receive other job

status related information such as the job ID and job owner. You can query the

status of a LoadLeveler job either by using the GUI or the llq command. For an

example of querying the status of a job, see Chapter 9, “Example: Using commands

to build, submit, and manage jobs,” on page 187.

v Querying the status of a job running on an NQS machine:

If your job command file was routed to an NQS machine for processing, you can

obtain its status by using either the GUI or the llq command. Keep in mind that

a machine in the LoadLeveler cluster monitors the NQS machine where your job

is running. The status you see on the GUI (or from llq) is generated by the

machine in the LoadLeveler cluster.

LoadLeveler monitors the job until qstat shows the job is no longer in any

specified queue. Because LoadLeveler only checks the NQS machine for status

periodically, the status of the job on the NQS machine may change before

LoadLeveler has an opportunity to update the GUI. If this happens, NQS will

notify you regarding the status of the job.

LoadLeveler will not send mail when the job completes. The LoadLeveler

notification option is translated to the appropriate NQS flag (me or mb) and

NQS will send the mail.

 181

|
|

||

||

|
|
|

|

|

|

|

|

|

|
|

|
|
|

|
|

|
|
|

|

|

|

|
|
|

|
|

|

NQS does not provide job accounting. Therefore, the only accounting

information LoadLeveler will have is the total time for the job.

v Querying the status of a job using a submit-only machine:

In addition to allowing you to submit and cancel jobs, a submit-only machine

allows you to query the status of jobs. You can query a job using either the

submit-only version of the GUI or by using the llq command. For information

on llq, see “llq - Query job status” on page 386.

Working with machines

You can perform the following types of tasks related to machines:

v Display machine status

When you submit a job to a machine, the status of the machine automatically

appears in the Machines window on the GUI. This window displays machine

related information such as the names of the machines running jobs, as well as

the machine’s architecture and operating system. For detailed information on

one or more machines in the cluster, you can use the Details option on the

Actions pull-down menu. This will provide you with a detailed report that

includes information such as the machine’s state and amount of installed

memory.

For an example of displaying machine status, see Chapter 9, “Example: Using

commands to build, submit, and manage jobs,” on page 187.

v Display central manager

The LoadLeveler administrator designates one of the machines in the

LoadLeveler cluster as the central manager. When jobs are submitted to any

machine, the central manager is notified and decides where to schedule the jobs.

In addition, it keeps track of the status of machines in the cluster and jobs in the

system by communicating with each machine. LoadLeveler uses this information

to make the scheduling decisions and to respond to queries.

Usually, the system administrator is more concerned about the location of the

central manager than the typical end user but you may also want to determine

its location. One reason why you might want to locate the central manager is if

you want to browse some configuration files that are stored on the same

machine as the central manager.

v Display public scheduling machines

Public scheduling machines are machines that participate in the scheduling of

LoadLeveler jobs on behalf of users at submit-only machines and users at other

workstations that are not running the schedd daemon. You can find out the

names of all these machines in the cluster.

Submit-only machines allow machines that are not part of the LoadLeveler

cluster to submit jobs to the cluster for processing.

Displaying currently available resources

The LoadLeveler user can get information about currently available resources by

using the llstatus command with either the -F, or -R options. The -F option

displays a list of all of the floating resources associated with the LoadLeveler

cluster. The -R option lists all of the consumable resources associated with all of

the machines in the LoadLeveler cluster. The user can specify a hostlist with the

llstatus command to display only the consumable resources associated with

specific hosts.

182 LoadLeveler: Using and Administering

Setting and changing the priority of a job

LoadLeveler uses the priority of a job to determine its position among a list of all

jobs waiting to be dispatched. LoadLeveler schedules jobs based on the adjusted

system priority, which takes in account both system priority and user priority:

User priority

Every job has a user priority associated with it. A job with a higher priority

runs before a job with a lower priority (when both jobs are owned by the

same user). You can set this priority through the user_priority keyword in

the job command file, and modify it through the llprio command. See

“llprio - Change the user priority of submitted job steps” on page 384 for

more information.

System priority

Every job has a system priority associated with it. Administrators can set

this priority in the configuration file using the SYSPRIO keyword

expression. The SYSPRIO expression can contain class, group, and user

priorities, as shown in the following example:

SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

The SYSPRIO expression is evaluated by LoadLeveler to determine the

overall system priority of a job. To determine which jobs to run first,

LoadLeveler does the following:

1. Assigns a system priority value when the negotiator adds the new job

to the queue of jobs eligible for dispatch.

2. Orders jobs first by system priority.

3. Assigns jobs belonging to the same user and the same class an adjusted

system priority, which takes all the system priorities and orders them

by user priority. Jobs with a higher adjusted system priority are

scheduled ahead of jobs with a lower adjusted system priority.

Only administrators may modify the system priority through the llmodify

command with the -s option. See “llmodify - Change attributes of a

submitted job step” on page 379 for more information.

Example: How does a job’s priority affect dispatching order?

To understand how a job’s priority affects dispatching order, consider the sample

jobs in Table 41, which lists the priorities assigned to jobs submitted by two users,

Rich and Joe. Two of the jobs belong to Joe, and three belong to Rich. User Joe has

two jobs (Joe1 and Joe2) in Class A with SYSPRIOs of 9 and 8 respectively. Since

Joe2 has the higher user priority (20), and because both of Joe’s jobs are in the

same class, Joe2’s priority is swapped with that of Joe1 when the adjusted system

priority is calculated. This results in Joe2 getting an adjusted system priority of 9,

and Joe1 getting an adjusted system priority of 8. Similarly, the Class A jobs

belonging to Rich (Rich1 and Rich3) also have their priorities swapped. The

priority of the job Rich2 does not change, since this job is in a different class (Class

B).

 Table 41. How LoadLeveler handles job priorities

Job User Priority System

Priority

(SYSPRIO)

Class Adjusted System

Priority

Rich1 50 10 A 6

Joe1 10 9 A 8

Chapter 8. Managing submitted jobs 183

|
|

|

|
|
|

|

|
|

Table 41. How LoadLeveler handles job priorities (continued)

Job User Priority System

Priority

(SYSPRIO)

Class Adjusted System

Priority

Joe2 20 8 A 9

Rich2 100 7 B 7

Rich3 90 6 A 10

Placing and releasing a hold on a job

You may place a hold on a job and thereby cause the job to remain in the queue

until you release it.

There are two types of holds: a user hold and a system hold. Both you and your

LoadLeveler administrator can place and release a user hold on a job. Only a

LoadLeveler administrator, however, can place and release a system hold on a job.

You can place a hold on a job or release the hold either by using the GUI or the

llhold command. For examples of holding and releasing jobs, see Chapter 9,

“Example: Using commands to build, submit, and manage jobs,” on page 187.

As a user or an administrator, you can also use the startdate keyword described on

page 320 to place a hold on a job. This keyword allows you to specify when you

want to run a job.

Canceling a job

You can cancel one of your jobs that is either running or waiting to run by using

either the GUI or the llcancel command. You can use llcancel to cancel

LoadLeveler jobs, including jobs from a submit-only machine and jobs routed to

NQS.

To cancel NQS jobs using the LoadLeveler llcancel command, you need to know

the LoadLeveler job ID for the NQS job. Once you submit the request to cancel the

job, LoadLeveler forwards the request to the appropriate node and a qdel will be

issued for the job for the queue listed in the NQS_submit and NQS_query

keywords.

For more information about the llcancel command, see “llcancel - Cancel a

submitted job” on page 341.

Checkpointing a job

Checkpointing is a method of periodically saving the state of a job so that, if for

some reason, the job does not complete, it can be restarted from the saved state.

Checkpoints can be taken either under the control of the user application or

external to the application.

The LoadLeveler API ll_init_ckpt is used to initiate a serial checkpoint from the

user application. For initiating checkpoints from within a parallel application, the

API mpc_init_ckpt should be used. These APIs allow the writer of the application

to determine at what points in the application it would be appropriate save the

state of the job. To enable parallel applications to initiate checkpointing, you must

184 LoadLeveler: Using and Administering

|
|

|
|
|

|
|

use the APIs provided with the Parallel Environment (PE) program. For

information on parallel checkpointing, see IBM Parallel Environment for AIX:

Operation and Use, Volume 1.

It is also possible to checkpoint a program running under LoadLeveler outside the

control of the application. There are several ways to do this:

v Use the llckpt command to initiate checkpoint for a specific job step.

v Checkpoint from a program which invokes the ll_ckpt API to initiate checkpoint

of a specific job step.

v Have LoadLeveler automatically checkpoint all running jobs that have been

enabled for checkpoint.To enable this automatic checkpoint, specify checkpoint

= interval in the job command file.

v As the result of an llctl flush command.

Note: For interactive parallel jobs, the environment variable CHECKPOINT must

be set to yes in the environment prior to starting the parallel application or

the job will not be enabled for checkpoint. For more information see IBM

Parallel Environment for AIX: MPI Programming Guide.

Chapter 8. Managing submitted jobs 185

186 LoadLeveler: Using and Administering

Chapter 9. Example: Using commands to build, submit, and

manage jobs

The following procedure presents a series of simple tasks that a user might

perform using commands. For additional information about individual commands

noted in the procedure, see Chapter 15, “Commands,” on page 335.

1. Build your job command file by using a text editor to create a script file. Into

the file enter the name of the executable, other keywords designating such

things as output locations for messages, and the necessary LoadLeveler

statements, as shown in Figure 28:

2. You can optionally edit the job command file you created in step 1.

3. To submit the job command file that you created in step 1, use the llsubmit

command:

llsubmit longjob.cmd

LoadLeveler responds by issuing a message similar to:

submit: The job "wizard.22" has been submitted.

Where wizard is the name of the machine to which the job was submitted and

22 is the job identifier (ID). You may want to record the identifier for future use

(although you can obtain this information later if necessary).

4. To display the status of the job you just submitted, use the llq command. This

command returns information about all jobs in the LoadLeveler queue:

llq wizard.22

Where wizard is the machine name to which you submitted the job, and 22 is

the job ID. You can also query this job using the command llq wizard.22.0,

where 0 is the step ID.

5. To change the priority of a job, use the llprio command. To increase the priority

of the job you submitted by a value of 10, enter:

llprio +10 wizard.22.0

You can change the user priority of a job that is in the queue or one that is

running. This only affects jobs belonging to the same user and the same class. If

This job command file is called longjob.cmd. The

executable is called longjob, the input file is longjob.in,

the output file is longjob.out, and the error file is

longjob.err.

@ executable = longjob

@ input = longjob.in

@ output = longjob.out

@ error = longjob.err

@ queue

Figure 28. Building a job command file

 187

|

|

|
|
|

you change the priority of a job in the queue, the job’s priority increases or

decreases in relation to your other jobs in the queue. If you change the priority

of a job that is running, it does not affect the job while it is running. It only

affects the job if the job re-enters the queue to be dispatched again. For more

information, see “Setting and changing the priority of a job” on page 183.

6. To place a temporary hold on a job in a queue, use the llhold command. This

command only takes effect if jobs are in the Idle or NotQueued state. To place a

hold on wizard.22.0, enter:

llhold wizard.22.0

7. To release the hold you placed in step 6, use the llhold command:

llhold -r wizard.22.0

8. To display the status of the machine to which you submitted a job, use the

llstatus command:

llstatus -l wizard

9. To cancel wizard.22.0, use the llcancel command:

llcancel wizard.22.0

188 LoadLeveler: Using and Administering

Chapter 10. Using LoadLeveler’s GUI to build, submit, and

manage jobs

This section describes tasks a user may need to accomplish through the graphical

user interface (GUI). You do not have to perform the tasks in the order listed. You

may perform certain tasks before others without any difficulty; however, some

tasks must be performed prior to others for succeeding tasks to work. For example,

you cannot submit a job if you do not have a job command file that you built

using either the GUI or an editor.

The tasks included in this section are listed in Table 42.

 Table 42. User tasks available through the GUI

Subtask Associated information (see...)

Building and submitting

jobs

v “Building jobs”

v “Editing the job command file” on page 199

v “Submitting a job command file” on page 200

Obtaining job status v “Displaying and refreshing job status” on page 200

v “Specifying which jobs appear in the Jobs window” on page

206

v “Sorting the Jobs window” on page 201

Managing a submitted job v “Changing the priority of jobs in a queue” on page 202

v “Placing a job on hold” on page 202

v “Releasing the hold on a job” on page 202

v “Canceling a job” on page 203

Working with machines v “Displaying and refreshing machine status” on page 203

v “Specifying which machines appear in Machines window” on

page 206

v “Sorting the Machines window” on page 204

v “Finding the location of the central manager” on page 205

v “Finding the location of the public scheduling machines” on

page 205

Saving LoadLeveler

messages in a file

“Saving LoadLeveler messages in a file” on page 207

Building jobs

From the Jobs window:

SELECT File → Build a Job

 � The dialog box shown in Figure 29 on page 190 appears:

 189

|

|

|

|

||

||

|
|
|

|

|

||

|
|

|

||

|

|

|

||

|
|

|

|

|
|

|
|
|

|

|
|

Complete those fields for which you want to override what is

currently specified in your skel.cmd defaults file. A sample

skel.cmd file is found in /usr/lpp/LoadL/full/samples. You can

update this file to define defaults for your site, and then update

the *skelfile resource in Xloadl to point to your new skel.cmd file.

Figure 29. LoadLeveler build a job window

Using the GUI

190 LoadLeveler: Using and Administering

If you want a personal defaults file, copy skel.cmd to one of your

directories, edit the file, and update the *skelfile resource in

.Xdefaults.

 Field Input

Executable Name of the program to run. It must be an executable file.

Optional. If omitted, the command file is executed as if it were a shell

script.

Arguments Parameters to pass to the program.

Required only if the executable requires them.

Stdin Filename to use as standard input (stdin) by the program.

Optional. The default is /dev/null.

Stdout Filename to use as standard output (stdout) by the program.

Optional. The default is /dev/null.

Stderr Filename to use as standard error (stderr) by the program.

Optional. The default is /dev/null.

Initialdir Initial directory. LoadLeveler changes to this directory before running

the job.

Optional. The default is your current working directory.

Notify User User id of person to notify regarding status of submitted job.

Optional. The default is your userid.

StartDate Month, day, and year in the format mm/dd/yyyy. The job will not start

before this date.

Optional. The default is to run the job as soon as possible.

StartTime Hour, minute, second in the format hh:mm:ss. The job will not start

before this time.

Optional. The default is to run the job as soon as possible.

If you specify StartTime but not StartDate, the default StartDate is the

current day. If you specify StartDate but not StartTime, the default

StartTime is 00:00:00. This means that the job will start as soon as

possible on the specified date.

Priority Number between 0 and 100, inclusive.

Optional. The default is 50.

This is the user priority. For more information on this priority, refer to

“Setting and changing the priority of a job” on page 183.

Image size Number in kilobytes that reflects the maximum size you expect your

program to grow to as it runs.

Optional.

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 191

Field Input

Class Class name. The job will only run on machines that support the

specified class name. Your system administrator defines the class names.

Optional:

v Press the Choices button to get a list of available classes.

v Press the Details button under the class list to obtain long listing

information about classes.

Hold Hold status of the submitted job. Permitted values are:

user User hold

system System hold (only valid for LoadLeveler

administrators)

usersys User and system hold (only valid for LoadLeveler

administrators)

Note: The default is a no-hold state.

Account Number Number associated with the job. For use with the llacctmrg and

llsummary commands for acquiring job accounting data.

Optional. Required only if the ACCT keyword is set to A_VALIDATE in

the configuration file.

Environment Specifies your initial environment variables when your job starts.

Separate environment specifications with semicolons.

Optional.

Copy

Environment

Specifies whether the environment variables specified in the keyword

Environment are copied to all nodes or just to the master node of a

parallel job.

Optional.

Shell The name of the shell to use for the job.

Optional. If not specified, the shell used in the owner’s password file

entry is used. If none is specified, /bin/sh is used.

Group The LoadLeveler group name to which the job belongs.

Optional.

Step Name The name of this job step.

Optional.

Node Usage How the node is used. Permitted values are:

shared The node can be shared with other tasks of other job

steps. This is the default.

not shared The node cannot be shared.

slice not shared Has the same meaning as not shared. It is provided

for compatibility.

Dependency A Boolean expression defining the relationship between the job steps.

Optional.

Large Page Whether or not the job step requires Large Page memory.

yes Use Large Page memory if available, otherwise use

regular memory.

mandatory Use of Large Page memory is mandatory.

no Do not use Large Page memory.

Using the GUI

192 LoadLeveler: Using and Administering

|
|
|
|
|

|

|
|

Field Input

Bulk Transfer Indicates to the communication subsystem whether it should use the

bulk transfer mechanism to communicate between tasks.

yes Use bulk transfer.

no Do not use bulk transfer.

Optional.

Comments Comments associated with the job. These comments help to distinguish

one job from another job.

Optional.

Note: The fields that appear in this table are what you see when viewing the Build a Job

window. The text in these fields does not necessarily correspond with the keywords listed in

“Job command file keyword descriptions” on page 294.

 See “Job command file keyword descriptions” on page 294 for

information on the defaults associated with these keywords.

SELECT A Job Type if you want to change the job type.

 Your choices are:

Serial Specifies a serial job.

Parallel Specifies a parallel job.

 Note that the job type you select affects the choices that are active

on the Build A Job window.

SELECT a Notification option.

 Your choices are:

Always Notify you when the job starts, completes, and if it

incurs errors.

Complete Notify you when the job completes. This is the

default option as initially defined in the skel.cmd

file.

Error Notify you if the job cannot run because of an

error.

Never Do not notify you.

Start Notify you when the job starts.

SELECT a Restart option.

 Your choices are:

No This job is not restartable. This is the default.

Yes Restart the job.

SELECT To restart the job on the same nodes from which it was vacated.

 Your choices are:

No Restart the job on any available nodes.

Yes Restart the job on the same nodes it ran on

previously. This option is valid after a job has been

vacated.

Note that there is no default for the selection.

SELECT a Checkpoint option.

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 193

||
|
||
||

|

Your choices are:

No Do not checkpoint the job. This is the default.

Yes Yes, checkpoint the job at intervals you determine.

See 296 for more information.

Interval Yes, checkpoint the job at intervals determined by

LoadLeveler. See 296 for more information.

SELECT To start from a checkpoint file

 Your choices are:

No Do not start the job from a checkpoint file (start job from

beginning).

Yes Yes, restart the job from an existing checkpoint file when

you submit the job. The file name must be specified by the

job command file. The directory name may be specified by

the job command file, configuration file, or default location.

SELECT Nodes (available when the job type is parallel)

 � The Nodes dialog box appears.

 Complete the necessary fields to specify node information for a

parallel job. Depending upon which model you choose, different

fields will be available; any unavailable fields will be desensitized.

LoadLeveler will assign defaults for any fields that you leave

blank. For more information, see the appropriate job command file

keyword (listed in parentheses) in “Job command file keyword

descriptions” on page 294.

 Field Available in: Input

Min # of

Nodes

Tasks Per

Node Model

and Tasks

with Uniform

Blocking

Model

Minimum number of nodes required for

running the parallel job (node keyword).

Optional. The default is one.

Max # of

Nodes

Tasks Per

Node Model

Maximum number of nodes required for

running the parallel job (node keyword).

Optional. The default is the minimum

number of nodes.

Tasks per

Node

Tasks Per

Node Model

The number of tasks of the parallel job you

want to run per node (tasks_per_node

keyword).

Optional.

Total Tasks Tasks with

Uniform

Blocking

Model, and

Custom

Blocking

Model

The total number of tasks of the parallel

job you want to run on all available nodes

(total_tasks keyword).

Optional for Uniform, required for Custom

Blocking. The default is one.

Blocking Custom

Blocking

Model

The number of tasks assigned (as a block)

to each consecutive node until all of a job’s

tasks have been assigned (blocking

keyword)

Using the GUI

194 LoadLeveler: Using and Administering

|

|

|
|

|

|
|

Field Available in: Input

Task

Geometry

Custom

Geometry

Model

The task ids of each task that you want to

run on each node. You can use the ″Set

Geometry″ button for step-by-step

directions (task_geometry keyword).

SELECT Close to return to the Build a Job dialog box.

SELECT Network (available when the job type is parallel)

 � The Network dialog box appears.

 The Network dialog box consists of two parts: The top half of the

panel is for MPI, and the bottom half is for LAPI. Click on the

check box to the left of MPI or LAPI to activate the part of the

panel for which you want to specify network information. If you

want to use MPI with LAPI, click on both:

v The MPI check box.

v The check box for Share windows between MPI and LAPI.

Complete those fields for which you want to specify network

information. For more information, see the network keyword

description in “Job command file keyword descriptions” on page

294.

 Field Input

MPI (MPI/LAPI) Select:

v Only the MPI check box to use the Message Passing

Interface (MPI) protocol only.

v Both the MPI check box and the Share windows

between MPI and LAPI check box to use both MPI

and the Low-level Application Programming

Interface (LAPI) protocols. This selection

corresponds to setting the network keyword in the

job command file to MPI_LAPI.

Optional.

LAPI Select the LAPI check box to use Low-level

Application Programming Interface (LAPI) protocol

only.

Optional.

Adapter/Network Select an adapter name or a network type from the

list.

Required for each protocol you select.

Adapter Usage Specifies that the adapter is either shared or not

shared.

Optional. The default is shared.

Communication

Mode

Specifies the mode in which an SP switch adapter is

used, and can be either IP (internet Protocol) or US

(User Space).

Optional. The default is IP.

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 195

|

|
|
|
|
|
|
|

|
|
|

||

|
|

|
|
|
|
|
|

|

||
|
|

|

Field Input

Communication

Level

Implies the amount of memory to be allocated to each

window for User Space mode. Allocation can be Low,

Average, or High.

Instances Specifies the number of windows or IP addresses the

communication subsystem should allocate to this

protocol.

Optional. The default is 1 unless sn_all or csss is

specified for network and then the default is max.

SELECT Close to return to the Build a Job dialog box.

SELECT Requirements

 � The Requirements dialog box appears.

 Complete those fields for which you want to specify requirements.

Defaults are used for those fields that you leave blank.

LoadLeveler dispatches your job only to one of those machines

with resources that matches the requirements you specify.

 Field Input

Architecture

(see note 2)

Machine type. The job will not run on any other machine

type.

Optional. The default is the architecture of your current

machine.

Operating

System

(see note 2)

Operating system. The job will not run on any other

operating system.

Optional. The default is the operating system of your

current machine.

Disk Amount of disk space in the execute directory. The job

will only run on a machine with at least this much disk

space.

Optional. The default is defined in your local

configuration file.

Memory Amount of memory. The job will only run on a machine

with at least this much memory.

Optional. The default is defined in your local

configuration file.

Large Page

Memory

Amount of Large Page Memory, in megabytes. The job

step requires at least this much Large Page Memory to

run.

Optional.

Machines Machine names. The job will only run on the specified

machines.

Optional.

Total Memory Amount of total (regular and Large Page Memory) in

megabytes needed to run the job step.

Optional.

Using the GUI

196 LoadLeveler: Using and Administering

Field Input

Features Features. The job will only run on machines with specified

features.

Optional.

Pool Specifies the number associated with the pool you want to

use. All available pools listed in the administration file

appear as choices. The default is to select nodes from any

pool.

LoadLeveler

Version

Specifies the version of LoadLeveler, in dotted decimal

format, on the machine where you want the job to run.

For example: 2.1.0.0 specifies that your job will run on a

machine running LoadLeveler Version 2.1.0.0 or higher.

Optional.

Connectivity A number from 0.0 through 1.0, representing the average

connectedness of the node’s managed adapters.

Requirement Requirements. The job will only run if these requirements

are met.

Notes:

1. If you enter a resource that is not available, you will NOT receive a

message. LoadLeveler holds your job in the Idle state until the resource

becomes available. Therefore, make certain that the spelling of your

entry is correct. You can issue llq -s jobID to find out if you have a job

for which requirements were not met.

2. If you do not specify an architecture or operating system, LoadLeveler

assumes that your job can run only on your machine’s architecture and

operating system. If your job is not a shell script that can be run

successfully on any platform, you should specify a required

architecture and operating system.

SELECT Close to return to the Build a Job dialog box.

SELECT Resources

 � The Resources dialog box appears.

 This dialog box allows you to set the amount of defined

consumable resources required for a job step. Resources with an ″*″

appended to their names are not in the

SCHEDULE_BY_RESOURCES list. For more information, see 317.

SELECT Close to return to the Build a Job dialog box.

SELECT Preferences

 � The Preferences dialog box appears.

 This dialog box is similar to the Requirements dialog box, with the

exception of the Adapter choice, which is not supported as a

Preference. Complete the fields for those parameters that you want

to specify. These parameters are not binding. For any preferences

that you specify, LoadLeveler attempts to find a machine that

matches these preferences along with your requirements. If it

cannot find the machine, LoadLeveler chooses the first machine

that matches the requirements.

SELECT Close to return to the Build a Job dialog box.

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 197

||
|

SELECT Limits

 � The Limits dialog box appears.

 Complete the fields for those limits that you want to impose upon

your job. If you type copy in any field except wall_clock_limit or

job_cpu_limit, the limits in effect on the submit machine are used.

If you leave any field blank, the default limits in effect for your

userid on the machine that runs the job are used. For more

information, see “Using limit keywords” on page 83.

 Field Input

CPU Limit Maximum amount of CPU time that the submitted job can

use. Express the amount as:

[[hours:]minutes:]seconds[.fraction]

For example, 12:56:21 is 12 hours, 56 minutes, and 21

seconds.

Optional

Data Limit Maximum amount of the data segment that the submitted

job can use. Express the amount as:

integer[.fraction][units]

Optional

Core Limit Maximum size of a core file.

Optional

RSS Limit Maximum size of the resident set size. It is the largest

amount of physical memory a user’s process can allocate.

Optional

File Limit Maximum size of a file that is created.

Optional

Stack Limit Maximum size of the stack.

Optional

Job CPU Limit Maximum total CPU time to be used by all processes of a

serial job step or if a parallel job, then this is the total CPU

time for each LoadL_starter process and its descendants

for each job step of a parallel job.

Optional

Wall Clock

Limit

Maximum amount of elapsed time for which a job can

run.

Optional

SELECT Close to return to the Build a Job dialog box.

SELECT Checkpointing to specify checkpoint options (available when the

checkpoint option is set to Yes or Interval)

 � The checkpointing dialog box appears.

 Complete those fields for which you want to specify checkpoint

information. For detailed information on specific keywords, see

“Job command file keyword descriptions” on page 294.

Using the GUI

198 LoadLeveler: Using and Administering

Field Input

Ckpt File Specifies a checkpoint file. The serial default is :

$(job_name).$(host).$(domain).$(jobid).$(stepid).ckpt

Ckpt

Directory

Specifies a checkpoint directory name.

Ckpt Execute

Directory

Specifies a directory to use for staging the checkpoint

executable file.

Ckpt Time

Limits

Sets the limits for the elapsed time a job can take

checkpointing.

SELECT Close to return to the Build a Job dialog box.

Editing the job command file

There are several ways that you can edit the job command file that you just built:

1. Using the Jobs window:

SELECT File → Submit a Job

 � The Submit a Job dialog box appears.

SELECT The job file you want to edit from the file column.

SELECT Edit

 � Your job command file appears in a window. You can use any

editor to edit the job command file. The default editor is

specified in your .Xdefaults file.

 If you have an icon manager, an icon may appear. An icon

manager is a program that creates a graphic symbol, displayed

on a screen, that you can point to with a device such as a

mouse in order to select a particular function or application.

Select this icon to view your job command file.
2. Using the Tools Edit pull-down menus on the Build a Job window:

Using the Edit pull-down menu, you can modify the job command file. Your

choices appear in the following table:

 To Select

Add a step to the job command file Add a Step

Delete a step from the job command file Delete a Step

Clear the fields in the Build a Job window Clear Fields

Select defaults to use in the fields Set Field Defaults

Note: Other options include Go to Next Step, Go to Previous Step, and Go to Last Step

that allow you to edit various steps in the job command file.

Using the Tools pull-down menu, you can modify the job command file. Your

choices appear in the following table:

 To Select

Name the job Set Job Name

Open a window where you can enter a script file Append Script

Fill in the fields using another file Restore from File

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 199

|
|
|
|

|

To Select

View the job command file in a window View Entire Job

Determine which step you are viewing What is step #

Start a new job command file Start a new job

 To Do This

Save the information you

entered into a file which you

can submit later

SELECT Save

 � A window appears prompting you to

enter a job filename.

ENTER a job filename in the text entry field.

SELECT OK

 � The window closes and the information

you entered is saved in the file you

specified.

Submit the program

immediately and discard the

information you entered

SELECT Submit

Submitting a job command file

After building a job command file, you can submit it to one or more machines for

processing. In addition to scripts with LoadLeveler keywords, you can also submit

scripts that contain NQS options. You cannot, however, in this release of

LoadLeveler, combine NQS and LoadLeveler options.

To submit a job, from the Jobs window:

SELECT File → Submit a Job

 � The Submit a Job dialog box appears.

SELECT The job file that you want to submit from the file column.

 You can also use the filter field and the directories column to select

the file or you can type in the file name in the text entry field.

SELECT Submit

 � The job is submitted for processing.

 You can now submit another job or you can press Close to exit the

window.

Displaying and refreshing job status

When you submit a job, the status of the job is automatically displayed in the Jobs

window. You can update or refresh this status using the Jobs window and selecting

one of the following:

v Refresh → Refresh Jobs

v Refresh → Refresh All.

To change how often the amount of time should pass before the jobs window is

automatically refreshed, use the Jobs window.

Using the GUI

200 LoadLeveler: Using and Administering

|

|

SELECT Refresh → Set Auto Refresh

 � A window appears.

TYPE IN a value for the number of seconds to pass before the Jobs window

is updated.

 Automatic refresh can be expensive in terms of network usage and

CPU cycles. You should specify a refresh interval of 120 seconds or

more for normal use.

SELECT OK

 � The window closes and the value you specified takes effect.

To receive detailed information on a job:

SELECT Actions → Extended Status to receive additional information on the

job. Selecting this option is the same as typing llq -x command.

 You can also get information in the following way:

SELECT Actions → Extended Details

 Selecting this option is the same as typing llq -x -l command. You

can also double click on the job in the Jobs window to get details

on the job.

 Note: Obtaining extended status or details on multiple jobs can be

expensive in terms of network usage and CPU cycles.

SELECT Actions → Job Status

 You can also use the llq -s command to determine why a

submitted job remains in the Idle or Deferred state.

SELECT Actions → Resource Use

 Allows you to display resource use for running jobs. Selecting this

option is the same as entering the llq -w command.

For more information on requests for job information, see “llq - Query job status”

on page 386.

Sorting the Jobs window

You can specify up to two sorting options for the Jobs window. The options you

specify determine the order in which the jobs appear in the Jobs window.

From the Jobs window:

Select Sort → Set Sort Parameters

 � A window appears

Select A primary and secondary sort

 To: Select Sort

Sort jobs by the machine from which they were

submitted

Sort by Submitting Machine

Sort by owner Sort by Owner

Sort by the time the jobs were submitted Sort by Submission Time

Sort by the state of the job Sort by State

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 201

|

To: Select Sort

Sort jobs by their user priority (last job listed runs first) Sort by Priority

Sort by the class of the job Sort by Class

Sort by the group associated with the job Sort by Group

Sort by the machine running the job Sort by Running Machine

Sort by dispatch order Sort by Dispatch Order

Not specify a sort No Sort

You can select a sort type as either a Primary or Secondary sorting option. For

example, suppose you select Sort by Owner as the primary sorting option and Sort

by Class as the secondary sorting option. The Jobs window is sorted by owner

and, within each owner, by class.

Changing the priority of jobs in a queue

If your job has not yet begun to run and is still in the queue, you can change the

priority of the job in relation to your other jobs in the queue that belong to the

same class. This only affects the user priority of the job. For more information on

this priority, refer to “Setting and changing the priority of a job” on page 183. Only

the owner of a job or the LoadLeveler administrator can change the priority of a

job.

From the Jobs window:

SELECT a job by clicking on it with the mouse

SELECT Actions → Priority

 � A window appears.

TYPE IN a number between 0 and 100, inclusive, to indicate a new priority.

SELECT OK

 � The window closes and the priority of your job changes.

Placing a job on hold

Only the owner of a job or the LoadLeveler administrator can place a hold on a

job.

From the Jobs window:

SELECT The job you want to hold by clicking on it with the mouse

SELECT Actions → Hold

 � The job is put on hold and its status changes in the Jobs window.

Releasing the hold on a job

Only the owner of a job or the LoadLeveler administrator can release a hold on a

job.

From the Jobs window:

SELECT The job you want to release by clicking on it with the mouse

Using the GUI

202 LoadLeveler: Using and Administering

|

|

|

SELECT Actions → Release from Hold

 � The job is released from hold and its status is updated in the Jobs

window.

Canceling a job

Only the owner of a job or the LoadLeveler administrator can cancel a job.

From the Jobs window:

SELECT The job you want to cancel by clicking on it with the mouse

SELECT Actions → Cancel

 � LoadLeveler cancels the job and the job information disappears

from the Jobs window.

Modifying consumable resources and other job attributes

Modifies the consumable CPUs or memory requirements of a non-running job.

SELECT

Modify → Consumable CPUs

or

Modify → Consumable Memory

or

Modify → Class

or

Modify → Account number

 � A dialog box appears prompting you to enter a number representing the

new value for consumable CPUs or consumable memory, or a new class or

account number.

TYPE IN

The new value

SELECT

OK

 � The dialog box closes and the value you specified takes effect.

Taking a checkpoint

Checkpoints the selected job.

SELECT

One of the following actions to take when checkpoint has completed:

v Continue the step

v Terminate the step

v Hold the step

� A checkpoint monitor for this step appears.

Displaying and refreshing machine status

The status of the machines is automatically displayed in the Machines window.

You can update or refresh this status using the Machines window and selecting

one of the following:

v Refresh → Refresh Machines

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 203

|

|

|

|

v Refresh → Refresh All.

To specify an amount of time to pass before the Machines window is automatically

refreshed, from the Machines window:

SELECT Refresh → Set Auto Refresh

 � A window appears.

TYPE IN a value for the number of seconds to pass before the Machines

window is updated.

 Automatic refresh can be expensive in terms of network usage and

CPU cycles. You should specify a refresh interval of 120 seconds or

more for normal use.

SELECT OK

 � The window closes and the value you specified takes effect.

To receive detailed information on a machine:

SELECT

Actions → Details

 This displays status information about the selected machines. Selecting this

option has the same effect as typing the llstatus -l command

SELECT

Actions → Adapter Details

 This displays virtual and physical adapter information for each selected

machine. Selecting this option has the same effect as typing the llstatus -a

command

SELECT

Actions → Floating Resources

 This displays consumable resources for the LoadLeveler cluster. Selecting

this option has the same effect as typing the llstatus -R command

SELECT

Actions → Machine Resources

 This displays consumable resources defined for the selected machines or all

machines. Selecting this option has the same effect as typing the llstatus -R

command

Sorting the Machines window

You can specify up to two sorting options for the Machines window. The options

you specify determine the order in which machines appear in the window.

From the Machines window:

Select Sort → Set Sort Parameters

 � A window appears

Select A primary and secondary sort

 To: Select Sort →

Sort by machine name Sort by Name

Sort by schedd state Sort by Schedd

Using the GUI

204 LoadLeveler: Using and Administering

|

To: Select Sort →

Sort by total number of jobs scheduled Sort by InQ

Sort by number of running jobs scheduled by this machine Sort by Act

Sort by startd state Sort by Startd

Sort by the number of jobs running on this machine Sort by Run

Sort by load average Sort by LdAvg

Sort by keyboard idle time Sort by Idle

Sort by hardware architecture Sort by Arch

Sort by operating system type Sort by OpSys

Not specify a sort No Sort

You can select a sort type as either a Primary or Secondary sorting option. For

example, suppose you select Sort by Arch as the primary sorting option and Sort

by Name as the secondary sorting option. The Machines window is sorted by

hardware architecture, and within each architecture type, by machine name.

Finding the location of the central manager

The LoadLeveler administrator designates one of the nodes in the LoadLeveler

cluster as the central manager. When jobs are submitted at any node, the central

manager is notified and decides where to schedule the jobs. In addition, it keeps

track of the status of machines in the cluster and the jobs in the system by

communicating with each node. LoadLeveler uses this information to make the

scheduling decisions and to respond to queries.

To find the location of the central manager, from the Machines window:

SELECT Actions → Find Central Manager

 � A message appears in the message window declaring on which

machine the central manager is located.

Finding the location of the public scheduling machines

Public scheduling machines are those machines that participate in the scheduling

of LoadLeveler jobs on behalf of the submit-only machines.

To get a list of these machines in your cluster, use the Machines window:

SELECT Actions → Find Public Scheduler

 � A message appears displaying the names of these machines.

Finding the type of scheduler in use

The LoadLeveler administrator defines the scheduler used by the cluster. To

determine which scheduler is currently in use:

SELECT

Actions → Find Scheduler Type

 � A message appears displaying the type:

v ll_default

v Backfill

v Gang

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 205

|

|

|

v External (API)

Specifying which jobs appear in the Jobs window

Normally, only your jobs appear in the Jobs window. You can, however, specify

which jobs you want to appear by using the Select pull-down menu on the Jobs

window.

 To Display Select Select →

All jobs in the queue All

All jobs belonging to a specific

user (or users)

By User

� A window appears prompting you to enter the user IDs

whose jobs you want to view.

All jobs submitted to a specific

machine (or machines)

By Machine

� A window appears prompting you to enter the machine

names on which the jobs you want to view are running.

All jobs belonging to a specific

group (or groups)

By Group

� A window appears prompting you to enter the

LoadLeveler group names to which the jobs you want to

view belong.

All jobs having a particular ID By Job Id

A dialog box prompts you to enter the id of the job you

want to appear. This ID appears in the left column of the

Jobs window. Type in the ID and press OK.

Note:

When you choose By User, By Machines, or By Group, you can use a UNIX regular

expression enclosed in parenthesis. For example, you can enter (^k10) to display all

machines beginning with the characters “k10”.

SELECT Select → Show Selection to show the selection parameters.

Specifying which machines appear in Machines window

You can specify which machines will appear in the Machines window. The default

is to view all of the machines in the LoadLeveler pool.

From the Machines window:

 To Select Select →

View all of the machines All

View machines by operating

system

by OpSys

� A window appears prompting you to enter the

operating system of those machines you want to view.

View machines by hardware

architecture

by Arch

� A window appears prompting you to enter the

hardware architecture of those machines you want to

view.

Using the GUI

206 LoadLeveler: Using and Administering

|

|

To Select Select →

View machines by state by State

� A cascading pull-down menu appears prompting you

to select the state of the machines that you want to view.

SELECT Select → Show Selection to show the selection parameters.

Saving LoadLeveler messages in a file

Normally, all the messages that LoadLeveler generates appear in the Messages

window. If you would also like to have these messages written to a file, use the

Messages window.

SELECT Actions → Start logging to a file

 � A window appears prompting you to enter a filename in which

to log the messages.

TYPE IN The filename in the text entry field.

SELECT OK

 � The window closes.

Using the GUI

Chapter 10. Using LoadLeveler’s GUI to build, submit, and manage jobs 207

|

Using the GUI

208 LoadLeveler: Using and Administering

Part 4. LoadLeveler interfaces reference

The following topics provide the details you need to know to correctly use the

LoadLeveler interfaces.

 To learn about: Read the following:

Correctly specifying keywords in

the LoadLeveler control files

v Chapter 11, “Configuration file reference,” on page

211

v Chapter 12, “Administration file reference,” on page

263

v Chapter 13, “Job command file reference,” on page

289

Starting and customizing the

LoadLeveler GUI

Chapter 14, “Graphical user interface (GUI) reference,”

on page 327

Correctly coding the LoadLeveler

commands and APIs

v Chapter 15, “Commands,” on page 335

v Chapter 16, “Application programming interfaces

(APIs),” on page 437

 209

|
|

|||

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

210 LoadLeveler: Using and Administering

Chapter 11. Configuration file reference

The configuration file contains many parameters that you can set or modify to

control how LoadLeveler operates. You may control LoadLeveler’s operation either:

v Across the cluster, by modifying the global configuration file, LoadL_config , or

v Locally, by modifying the LoadL_config.local file on individual machines.

 Subtask Associated information (see . . .)

To find out what administrator tasks

you can accomplish by using the

configuration file

Part 2, “Configuring and managing the LoadLeveler

environment,” on page 29

To learn how to correctly specify the

contents of a configuration file

v “Configuration file syntax”

v “Configuration file keyword descriptions” on page

212

v “User-defined keywords” on page 254

v “LoadLeveler variables” on page 256

Configuration file syntax

The information in both the LoadL_config and the LoadL_config.local files is in

the form of a statement. These statements are made up of keywords and values.

There are three types of configuration file keywords:

v Keywords, described in “Configuration file keyword descriptions” on page 212.

v User-defined variables, described in “User-defined keywords” on page 254.

v LoadLeveler variables, described in “LoadLeveler variables” on page 256.

Configuration file statements take one of the following formats:

keyword=value

keyword:value

Statements in the form keyword=value are used primarily to customize an

environment. Statements in the form keyword:value are used by LoadLeveler to

characterize the machine and are known as part of the machine description. Every

machine in LoadLeveler has its own machine description which is read by the

central manager when LoadLeveler is started.

Keywords are not case sensitive. This means you can enter them in lower case,

upper case, or mixed case.

To continue configuration file statements, use the back-slash character (\).

In the configuration file, comments must be on a separate line from keyword

statements.

You can use the following types of constants and operators in the configuration

file.

Numerical and alphabetical constants

Constants may be represented as:

v Boolean expressions

 211

|

|

|

|||

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|

v Signed integers

v Floating point values

v Strings enclosed in double quotes (″ ″).

Mathematical operators

You can use the following C operators. The operators are listed in order of

precedence. All of these operators are evaluated from left to right:

v !

v * /

v - +

v < <= > >=

v == !=

v &&

v ||

64-bit support for configuration file keywords and expressions

Administrators can assign 64-bit integer values to selected keywords in the

configuration file.

floating_resources

Consumable resources associated with the floating_resources keyword may be

assigned 64-bit integer values. Fractional and unit specifications are not

allowed. The predefined ConsumableCpus, ConsumableMemory, and

ConsumableVirtualMemory may not be specified as floating resources.

 Example:

floating_resources = spice2g6(9876543210123) db2_license(1234567890)

MACHPRIO expression

The LoadLeveler variables Memory, VirtualMemory, FreeRealMemory, Disk,

ConsumableMemory, ConsumableVirtualMemory, ConsumableCpus,

PagesScanned, PagesFreed may be used in a MACHPRIO expression. They are

64-bit integers and 64-bit arithmetic is used to evaluate them.

 Example:

MACHPRIO: (Memory + FreeRealMemory) - (LoadAvg*1000 + PagesScanned)

Configuration file keyword descriptions

This section provides an alphabetical list of the keywords you can use in a

LoadLeveler configuration file. It also provides examples of statements that use

these keywords.

ACCT Turns the accounting function on or off.

 Syntax:

ACCT = flag ...

The available flags are:

A_DETAIL Enables extended accounting. Using this flag causes

LoadLeveler to record detail resource consumption by

machine and by events for each job step. This flag also

enables the -x flag of the llq command, permitting users to

view resource consumption for active jobs.

A_RES Turns reservation data recording on.

A_OFF Turns accounting data recording off.

Configuration file reference

212 LoadLeveler: Using and Administering

|

||

A_ON Turns accounting data recording on. If specified without

the A_DETAIL flag, the following is recorded:

v The total amount of CPU time consumed by the entire

job

v The maximum memory consumption of all tasks (or

nodes).

A_VALIDATE Turns account validation on.

 Default value: A_OFF

 Example: This example specifies that accounting should be turned on and

that extended accounting data should be collected and that the -x flag of

the llq command be enabled.

ACCT = A_ON A_DETAIL

ACCT_VALIDATION

Identifies the executable called to perform account validation.

 Syntax:

ACCT_VALIDATION = program

Where program is a validation program.

 Default value: $(BIN)/llacctval (the accounting validation program

shipped with LoadLeveler.

ACTION_ON_MAX_REJECT

Specifies the state in which jobs are placed when their rejection count has

reached the value of the MAX_JOB_REJECT keyword. HOLD specifies

that jobs are placed in User Hold status; SYSHOLD specifies that jobs are

placed in System Hold status; CANCEL specifies that jobs are canceled.

When a job is rejected, LoadLeveler sends a mail message stating why the

job was rejected.

 Syntax:

ACTION_ON_MAX_REJECT = HOLD | SYSHOLD | CANCEL

Default value: HOLD

ACTION_ON_SWITCH_TABLE_ERROR

Points to an administrator supplied program that will be run when

DRAIN_ON_SWITCH_TABLE_ERROR is set to true and a switch table

unload error occurs.

 Syntax:

ACTION_ON_SWITCH_TABLE_ERROR = program

Default value: The default is to not run a program.

ADMIN_FILE

Points to the administration file containing user, class, group, machine, and

adapter stanzas.

 Syntax:

ADMIN_FILE = directory

Default value: $(tilde)/admin_file

Configuration file reference

Chapter 11. Configuration file reference 213

|

|

|
|

|

AFS_GETNEWTOKEN

Specifies a filter that, for example, can be used to refresh an AFS token.

 Syntax:

AFS_GETNEWTOKEN = myprog

Where myprog is an administrator-supplied program that receives the AFS

authentication information on standard input and writes the new

information to standard output. The filter is run when the job is scheduled

to run and can be used to refresh a token which expired when the job was

queued.

 Default value: The default is to not run a program.

AGGREGATE_ADAPTERS

Allows an external scheduler to specify per-window adapter usages.

 Syntax:

AGGREGATE_ADAPTERS = YES | NO

When this keyword is set to YES, the resources from multiple switch

adapters on the same switch network are treated as one aggregate pool

available to each job. When this keyword is set to NO, the switch adapters

are treated individually and a job cannot use resources from multiple

adapters on the same network.

 Set this keyword to NO when you are using an external scheduler;

otherwise, set to YES (or accept the default).

 Default value: YES

ARCH

Indicates the standard architecture of the system. The architecture you

specify here must be specified in the same format in the requirements and

preferences statements in job command files. The administrator defines the

character string for each architecture.

 Syntax:

ARCH = string

Default value: Use the command llstatus -l to view the default.

 Example: To define a machine as an RS/6000, the keyword would look

like:

 ARCH = R6000

BIN Defines the directory where LoadLeveler binaries are kept.

 Syntax:

BIN = $(RELEASEDIR)/bin

Default value: $(tilde)/bin

CENTRAL_MANAGER_HEARTBEAT_INTERVAL

Specifies the amount of time, in seconds, that defines how frequently

primary and alternate central manager communicate with each other.

 Syntax:

CENTRAL_MANAGER_HEARTBEAT_INTERVAL = number

Configuration file reference

214 LoadLeveler: Using and Administering

|
|
|
|
|

|
|

|

|

|

Default value: The default is 300 seconds or 5 minutes.

CENTRAL_MANAGER_TIMEOUT

Specifies the number of heartbeat intervals that an alternate central

manager will wait before declaring that the primary central manager is not

operating.

 Syntax:

CENTRAL_MANAGER_TIMEOUT = number

Default value: The default is 6.

CKPT_CLEANUP_INTERVAL

Specifies the interval, in seconds, at which the schedd daemon will run the

program specified by the CKPT_CLEANUP_PROGRAM keyword.

 Syntax:

CKPT_CLEANUP_INTERVAL = number

number must be a positive integer.

 Default value: -1

CKPT_CLEANUP_PROGRAM

Identifies an administrator-provided program which is to be run at the

interval specified by the ckpt_cleanup_interval keyword. The intent of this

program is to delete old checkpoint files created by jobs running under

LoadLeveler during the checkpoint process.

 Syntax:

CKPT_CLEANUP_PROGRAM = program

Where program is the fully qualified name of the program to be run. The

program must be accessible and executable by LoadLeveler.

 A sample program to remove checkpoint files is provided in the

/usr/lpp/LoadL/full/samples/llckpt/rmckptfiles.c file.

 Default value: No default value is set.

CKPT_EXECUTE_DIR

Specifies the directory where the job step’s executable will be saved for

checkpointable jobs. You may specify this keyword in either the

configuration file or the job command file; different file permissions are

required depending on where this keyword is set. For additional

information, see “Planning considerations for checkpointing jobs” on page

126.

 Syntax:

CKPT_EXECUTE_DIR = directory

This directory cannot be the same as the current location of the executable

file, or LoadLeveler will not stage the executable. In this case, the user

must have execute permission for the current executable file.

 Default value: By default, the executable of a checkpointable job step is

not staged.

CLASS

Determines whether a machine will accept jobs of a certain job class. For

Configuration file reference

Chapter 11. Configuration file reference 215

|

|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|

parallel jobs, you must define a class instance for each task you want to

run on a node using one of two formats:

v The format, CLASS = class_name (count), defines the CLASS names

using a statement that names the classes and sets the number of tasks

for each class in parenthesis.

With this format, the following rules apply:

– Each class can have only one entry

– If a class has more than one entry or there is a syntax error, the entire

CLASS statement will be ignored

– If the CLASS statement has a blank value or is not specified, it will

be defaulted to No_Class (1)

– The number of instances for a class specified inside the parenthesis ()

must be an unsigned integer. If the number specified is 0, it is correct

syntactically, but the class will not be defined in LoadLeveler

– If the number of instances for all classes in the CLASS statement are

0, the default No_Class(1) will be used
v The format, CLASS = { "class1" "class2" "class2" "class2"}, defines the

CLASS names using a statement that names each class and sets the

number of tasks for each class based on the number of times that the

class name is used inside the {} operands.

Note: With both formats, the class names list is blank delimited.

For a LoadLeveler job to run on a machine, the machine must have a

vacancy for the class of that job. If the machine is configured for only one

No_Class job and a LoadLeveler job is already running there, then no

further LoadLeveler jobs are started on that machine until the current job

completes.

 You can have a maximum of 1024 characters in the class statement. You

cannot use allclasses as a class name, since this is a reserved LoadLeveler

keyword.

 You can assign multiple classes to the same machine by specifying the

classes in the LoadLeveler configuration file (called LoadL_config) or in

the local configuration file (called LoadL_config.local). The classes,

themselves, should be defined in the administration file. See “Setting up a

single machine to have multiple job classes” on page 542 and “Defining

classes” on page 83 for more information on classes.

 Syntax:

CLASS = { "class_name" ... } | {"No_Class"} | class_name (count) ...

Default value: {"No_Class"}

CLIENT_TIMEOUT

Specifies the maximum time, in seconds, that a daemon waits for a

response over TCP/IP from a process. If the waiting time exceeds the

specified amount, the daemon tries again to communicate with the process.

In general, you should use the default setting unless you are experiencing

delays due to an excessively loaded network. If so, you should try

increasing this value.

 Syntax:

CLIENT_TIMEOUT = number

Default value: The default is 30 seconds.

Configuration file reference

216 LoadLeveler: Using and Administering

|

COLLECTOR_DGRAM_PORT

Specifies the port number used when connecting to a daemon.

 Syntax:

CM_COLLECTOR_PORT = port number

Default value: The default is 9612.

COMM

Specifies a local directory where LoadLeveler keeps special files used for

UNIX domain sockets for communicating among LoadLeveler daemons

running on the same machine. This keyword allows the administrator to

choose a different file system other than /tmp for these files. If you change

the COMM option you must stop and then restart LoadLeveler using the

llctl command.

 Syntax:

COMM = local directory

Default value: The default location for the files is /tmp.

CONTINUE

Determines whether suspended jobs should continue execution.

 Syntax:

CONTINUE: expression that evaluates to T or F (true or false)

When T, suspended LoadLeveler jobs resume execution on the machine.

 Default value: No default value is set.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 260.

CUSTOM_METRIC

Specifies a machine’s relative priority to run jobs.

 Syntax:

CUSTOM_METRIC = number

This is an arbitrary number which you can use in the MACHPRIO

expression. Negative values are not allowed.

 Default value: If you specify neither CUSTOM_METRIC nor

CUSTOM_METRIC_COMMAND, CUSTOM_METRIC = 1 is assumed.

For more information, see “Setting negotiator characteristics and policies”

on page 36.

 For more information related to using this keyword, see “Defining a

LoadLeveler cluster” on page 34.

CUSTOM_METRIC_COMMAND

Specifies an executable and any required arguments. The exit code of this

command is assigned to CUSTOM_METRIC. If this command does not

exit normally, CUSTOM_METRIC is assigned a value of 1. This command

is forked every (POLLING_FREQUENCY * POLLS_PER_UPDATE)

period.

 Syntax:

CUSTOM_METRIC_COMMAND = command

Configuration file reference

Chapter 11. Configuration file reference 217

|

|
|

Default value: No default is set; LoadLeveler does not run any command

to determine CUSTOM_METRIC.

DCE_ADMIN_GROUP

Specifies the DCE group containing the DCE IDs of those users who will

have administrator authority for the current cluster.

 Restriction: DCE security is not supported by LoadLeveler for Linux. This

keyword is ignored.

 Syntax:

DCE_ADMIN_GROUP = group name

Default value: No default value is set.

 For more information related to using this keyword, see “Configuring

LoadLeveler to use DCE security services” on page 46.

DCE_AUTHENTICATION_PAIR

Specifies a pair of installation supplied programs that are used to

authenticate DCE security credentials.

 Restriction: DCE security is not supported by LoadLeveler for Linux.

 Syntax:

DCE_AUTHENTICATION_PAIR = program1, program2

Where program1 and program2 are LoadLeveler- or installation-supplied

programs that are used to authenticate DCE security credentials. program1

obtains a handle (an opaque credentials object), at the time the job is

submitted, which is used to authenticate to DCE. program2 uses the handle

obtained by program1 to authenticate to DCE before starting the job on the

executing machines.

 Default value: See “Handling DCE security credentials” on page 67 for

information about defaults.

DCE_ENABLEMENT

Activates the exploitation of DCE security.

Notes:

1. DCE security is not supported by LoadLeveler for Linux.

2. This keyword is mutually exclusive with the SEC_ENABLEMENT

keyword. Both keywords cannot be configured at the same time.

Syntax:

DCE_ENABLEMENT = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

LoadLeveler to use DCE security services” on page 46.

DCE_SERVICES_GROUP

Specifies the DCE group containing all of the principal names of the

LoadLeveler daemons that are authorized to run in the current cluster.

 Restriction: DCE security is not supported by LoadLeveler for Linux. This

keyword is ignored

Configuration file reference

218 LoadLeveler: Using and Administering

|
|

|

|

|

|
|

|

Syntax:

DCE_SERVICES_GROUP = group name

Default value: No default value is set.

 For more information related to using this keyword, see “Configuring

LoadLeveler to use DCE security services” on page 46.

DEFAULT_PREEMPT_METHOD

Specifies the default preemption method for LoadLeveler to use when a

preempt method is not specified in a PREEMPT_CLASS statement or in the

llpreempt command. LoadLeveler also uses this default preemption

method to preempt job steps that are running on reserved machines when

a reservation period begins.

 Restrictions:

v This keyword is valid only for the backfill scheduler.

v LoadLeveler for Linux does not support the suspend method of

preemption, which is the default method. If you want to preempt jobs

running on LoadLeveler for Linux, you must use this keyword to specify

a method other than suspend.

Syntax:

DEFAULT_PREEMPT_METHOD = rm | sh | su | vc | uh

Valid values are:

rm LoadLeveler preempts the jobs and removes them from the job

queue. To rerun the job, the user must resubmit the job to

LoadLeveler.

sh LoadLeveler ends the jobs and puts them into System Hold state.

They remain in that state on the job queue until an administrator

releases them. After being released, the jobs go into Idle state and

will be rescheduled to run as soon as resources for the job are

available.

su LoadLeveler suspends the jobs and puts them in Preempted state.

They remain in that state on the job queue until the preempting job

has terminated, and resources are available to resume the

preempted job on the same set of nodes. To use this value, process

tracking must be enabled.

vc LoadLeveler ends the jobs and puts them in Vacate state. They

remain in that state on the job queue and will be rescheduled to

run as soon as resources for the job are available.

uh LoadLeveler ends the jobs and puts them into User Hold state.

They remain in that state on the job queue until an administrator

releases them. After being released, the jobs go into Idle state and

will be rescheduled to run as soon as resources for the job are

available.

 Default value: su (suspend method)

 For more information related to using this keyword, see “Steps for

configuring a scheduler to preempt jobs” on page 115.

DRAIN_ON_SWITCH_TABLE_ERROR

Specifies whether the startd should be drained when the switch table fails

to unload. This will flag the administrator that intervention may be

required to unload the switch table. When

Configuration file reference

Chapter 11. Configuration file reference 219

|

|
|
|
|
|
|

|

|

|
|
|
|

|

|

|
||
|
|
||
|
|
|
|
||
|
|
|
|
||
|
|
||
|
|
|
|

|

|
|

DRAIN_ON_SWITCH_TABLE_ERROR is set to true, the startd will be

drained when the switch table fails to unload.

 Syntax:

DRAIN_ON_SWITCH_TABLE_ERROR = true | false

Default value: false

ENFORCE_RESOURCE_MEMORY

Specifies whether the AIX Workload Manager is configured to limit, as

precisely as possible, the real memory usage of a WLM class. For this

keyword to be valid, ConsumableMemory must be set through the

ENFORCE_RESOURCE_USAGE keyword.

 Syntax:

ENFORCE_RESOURCE_MEMORY = true | false

Default value: false

ENFORCE_RESOURCE_POLICY

Specifies what type of resource entitlements will be assigned to the AIX

Workload Manager classes. If the value specified is shares, it means a share

value is assigned to the class based on the job step’s requested resources

(one unit of resource equals one share). This is the default policy. If the

value specified is soft, it means a percentage value is assigned to the class

based on the job step’s requested resources and the total machine

resources. This percentage can be exceeded if there is no contention for the

resource. If the value specified is hard, it means a percentage value is

assigned to the class based on the job step’s requested resources and the

total machine resources. This percentage cannot be exceeded regardless of

the contention for the resource. If desired, this keyword can be used in the

LoadL_config.local file to set up a different policy for each machine. The

ENFORCE_RESOURCE_USAGE keyword must be set for this keyword to

be valid.

 Syntax:

ENFORCE_RESOURCE_POLICY = hard |soft | shares

Default value: shares

ENFORCE_RESOURCE_SUBMISSION = true | false

Indicates whether jobs submitted should be checked for the resources

keyword. If the value specified is true, LoadLeveler will check all jobs at

submission time for the resources keyword. The job command file

resources keyword needs to have at least the resources specified as the

ENFORCE_RESOURCE_USAGE keyword for the job to be submitted

successfully.

 If the value specified is false, no checking will be done and jobs submitted

without the resources keyword will not have resources enforced. In this

instance, those jobs may interfere with other jobs whose resources are

enforced.

 Syntax:

ENFORCE_RESOURCE_SUBMISSION = true | false

Default value: false

ENFORCE_RESOURCE_USAGE

Specifies that the AIX Workload Manager should be used to enforce CPU

Configuration file reference

220 LoadLeveler: Using and Administering

|
|
|
|
|

|

|

|

or real memory resources. This keyword accepts the predefined resources

ConsumableCpus and ConsumableMemory. Either memory or CPUs or

both can be enforced but the resources must also be specified on the

SCHEDULE_BY_RESOURCES keyword. If deactivate is specified,

LoadLeveler will deactivate AIX Workload Manager on all the nodes in the

LoadLeveler cluster.

 Restriction: WLM enforcement is ignored by LoadLeveler for Linux.

 Syntax:

ENFORCE_RESOURCE_USAGE = ConsumableCpus ConsumableMemory | deactivate

EXECUTE

Specifies the local directory to store the executables of jobs submitted by

other machines.

 Syntax:

EXECUTE = local directory/execute

Default value: $(tilde)/execute

FEATURE

Specifies an optional characteristic to use to match jobs with machines. You

can specify unique characteristics for any machine using this keyword.

When evaluating job submissions, LoadLeveler compares any required

features specified in the job command file to those specified using this

keyword. You can have a maximum of 1024 characters in the feature

statement.

 Syntax:

Feature = {"string" ...}

Default value: No default value is set.

 Example: If a machine has licenses for installed products ABC and XYZ, in

the local configuration file you can enter the following:

Feature = {"abc" "xyz"}

When submitting a job that requires both of these products, you should

enter the following in your job command file:

requirements = (Feature == "abc") && (Feature == "xyz")

FLOATING_RESOURCES

Specifies which consumable resources are available collectively on all of the

machines in the LoadLeveler cluster. The count for each resource must be

an integer greater than or equal to zero, and each resource can only be

specified once in the list. Any resource specified for this keyword that is

not already listed in the SCHEDULE_BY_RESOURCES keyword will not

affect job scheduling. If any resource is specified incorrectly with the

FLOATING_RESOURCES keyword, then all floating resources will be

ignored. ConsumableCpus, ConsumableMemory, and

ConsumableVirtualMemory may not be specified as floating resources.

 Syntax:

FLOATING_RESOURCES = name(count) name(count) ... name(count)

Default value: No default value is set.

Configuration file reference

Chapter 11. Configuration file reference 221

|

|

|

FS_INTERVAL

Defines the number of minutes used as the interval for checking free file

system space or inodes. If your file system receives many log messages or

copies large executables to the LoadLeveler spool, the file system will fill

up quicker and you should perform file size checking more frequently by

setting the interval to a smaller value. LoadLeveler will not check the file

system if the value of FS_INTERVAL is:

v Set to zero

v Set to a negative integer

Syntax:

FS_INTERVAL = minutes

Default value: If FS_INTERVAL is not specified but any of the other

file-system keywords (FS_NOTIFY, FS_SUSPEND, FS_TERMINATE,

INODE_NOTIFY, INODE_SUSPEND, INODE_TERMINATE) are specified,

the FS_INTERVAL value will default to 5 and the file system will be

checked. If no file-system or inode keywords are set, LoadLeveler does not

monitor file systems at all.

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

FS_NOTIFY

Defines the lower and upper amounts, in bytes, of free file-system space at

which LoadLeveler is to notify the administrator:

v If the amount of free space becomes less than the lower threshold value,

LoadLeveler sends a mail message to the administrator indicating that

logging problems may occur.

v When the amount of free space becomes greater than the upper

threshold value, LoadLeveler sends a mail message to the administrator

indicating that problem has been resolved.

Syntax:

FS_NOTIFY = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M or G

may precede the B. The valid range for both the lower and upper

thresholds are -1B and all positive integers. If the value is set to -1, the

transition across the threshold is not checked.

 Default value: In bytes: 1KB, -1B

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

FS_SUSPEND

Defines the lower and upper amounts, in bytes, of free file system space at

which LoadLeveler drains and resumes the schedd and startd daemons

running on a node.

v If the amount of free space becomes less than the lower threshold value,

then LoadLeveler drains the schedd and the startd daemons if they are

running on a node. When this happens, logging is turned off and mail

notification is sent to the administrator.

v When the amount of free space becomes greater than the upper

threshold value, LoadLeveler signals the schedd and the startd daemons

to resume. When this happens, logging is turned on and mail

notification is sent to the administrator.

Configuration file reference

222 LoadLeveler: Using and Administering

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|

|
|

|

|

Syntax:

FS_SUSPEND = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M or G

may precede the B. The valid range for both the lower and upper

thresholds are -1B and all positive integers. If the value is set to -1, the

transition across the threshold is not checked.

 Default value: In bytes: -1B, -1B

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

FS_TERMINATE

Defines the lower and upper amounts, in bytes, of free file system space at

which LoadLeveler is terminated. This keyword sends the SIGTERM signal

to the Master daemon which then terminates all LoadLeveler daemons

running on the node.

v If the amount of free space becomes less than the lower threshold value,

all LoadLeveler daemons are terminated.

v An upper threshold value is required for this keyword. However, since

LoadLeveler has been terminated at the lower threshold, no action

occurs.

Syntax:

FS_TERMINATE = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M or G

may precede the B. The valid range for the lower threshold is -1B and all

positive integers. If the value is set to -1, the transition across the threshold

is not checked.

 Default value: In bytes: -1B, -1B

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

GLOBAL_HISTORY

Identifies the directory that will contain the global history files produced

by llacctmrg command when no directory is specified as a command

argument.

 Syntax:

GLOBAL_HISTORY = directory

Default value: The default value is $(SPOOL) (the local spool directory).

 For more information related to using this keyword, see “Collecting the

accounting information and storing it into files” on page 59.

GSMONITOR

Location of the gsmonitor executable (LoadL_GSmonitor).

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR = directory

Default value: $(BIN)/LoadL_GSmonitor

Configuration file reference

Chapter 11. Configuration file reference 223

|
|
|

|

|

|

|
|

|

|

|

GSMONITOR_COREDUMP_DIR

Local directory for storing LoadL_GSmonitor core dump files.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

GSMONITOR_DOMAIN

Specifies the type of domain, PSSP or peer, on which the GSMONITOR

daemon will execute.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR_DOMAIN = PEER | PSSP

 Default value: No default value is set.

 For more information related to using this keyword, see “The gsmonitor

daemon” on page 13.

GSMONITOR_RUNS_HERE

Specifies whether the gsmonitor daemon will run on the host.

 Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

GSMONITOR_RUNS_HERE = TRUE | FALSE

Default value: FALSE

 For more information related to using this keyword, see “The gsmonitor

daemon” on page 13.

HISTORY

Defines the path name where a file containing the history of local

LoadLeveler jobs is kept.

 Syntax:

HISTORY = directory

Default value: $(SPOOL)/history

 For more information related to using this keyword, see “Collecting the

accounting information and storing it into files” on page 59.

HISTORY_PERMISSION

Specifies the owner, group, and world permissions of the history file

associated with a LoadL_schedd daemon.

 Syntax:

HISTORY_PERMISSION = permissions | rw-rw----

permissions must be a string with a length of nine characters and consisting

of the characters, r, w, x, or -.

Configuration file reference

224 LoadLeveler: Using and Administering

|
|

|

|

|

|

|
|

|

|

|

|

|

|

|

Default value: The default settings are 660 (rw-rw----). LoadL_schedd will

use the default setting if the specified permission are less than rw-------.

 Example: A specification such as HISTORY_PERMISSION = rw-rw-r-- will

result in permission settings of 664.

INODE_NOTIFY

Defines the lower and upper amounts, in inodes, of free file-system inodes

at which LoadLeveler is to notify the administrator:

v If the number of free inodes becomes less than the lower threshold

value, LoadLeveler sends a mail message to the administrator indicating

that logging problems may occur.

v When the number of free inodes becomes greater than the upper

threshold value, LoadLeveler sends a mail message to the administrator

indicating that problem has been resolved.

Syntax:

INODE_NOTIFY = lower threshold, upper threshold

The valid range for both the lower and upper thresholds are -1 and all

positive integers. If the value is set to -1, the transition across the threshold

is not checked.

 Default value: In inodes: 1000, -1

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

INODE_SUSPEND

Defines the lower and upper amounts, in inodes, of free file system inodes

at which LoadLeveler drains and resumes the schedd and startd daemons

running on a node.

v If the number of free inodes becomes less than the lower threshold

value, then LoadLeveler drains the schedd and the startd daemons if

they are running on a node. When this happens, logging is turned off

and mail notification is sent to the administrator.

v When the number of free inodes becomes greater than the upper

threshold value, LoadLeveler signals the schedd and the startd daemons

to resume. When this happens, logging is turned on and mail

notification is sent to the administrator.

Syntax:

INODE_SUSPEND = lower threshold, upper threshold

The valid range for both the lower and upper thresholds are -1 and all

positive integers. If the value is set to -1, the transition across the threshold

is not checked.

 Default value: In inodes: -1, -1

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

INODE_TERMINATE

Defines the lower and upper amounts, in inodes, of free file system inodes

at which LoadLeveler is terminated. This keyword sends the SIGTERM

signal to the Master daemon which then terminates all LoadLeveler

daemons running on the node.

Configuration file reference

Chapter 11. Configuration file reference 225

|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|

|
|
|
|
|

v If the number of free inodes becomes less than the lower threshold

value, all LoadLeveler daemons are terminated.

v An upper threshold value is required for this keyword. However, since

LoadLeveler has been terminated at the lower threshold, no action

occurs.

Syntax:

INODE_TERMINATE = lower threshold, upper threshold

The valid range for the lower threshold is -1 and all positive integers. If

the value is set to -1, the transition across the threshold is not checked.

 Default value: In inodes: -1, -1

 For more information related to using this keyword, see “Setting up file

system monitoring” on page 43.

JOB_ACCT_Q_POLICY

Specifies the amount of time, in seconds, that determines how often the

startd daemon updates the schedd daemon with accounting data of

running jobs. This controls the accuracy of the llq -x command.

 Syntax:

JOB_ACCT_Q_POLICY = number

Default value: 300 seconds

 For more information related to using this keyword, see “Gathering job

accounting data” on page 57.

JOB_EPILOG

Pathname of the epilog program.

 Syntax:

JOB_EPILOG = program name

 Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

JOB_LIMIT_POLICY

Specifies the amount of time, in seconds, that LoadLeveler checks to see if

job_cpu_limit has been exceeded. The smaller of JOB_LIMIT_POLICY

and JOB_ACCT_Q_POLICY is used to control how often the startd

daemon collects resource consumption data on running jobs, and how

often the job_cpu_limit is checked.

 Syntax:

JOB_LIMIT_POLICY = number

Default value: The default for JOB_LIMIT_POLICY is

POLLING_FREQUENCY multiplied by POLLS_PER_UPDATE.

JOB_PROLOG

Pathname of the prolog program.

 Syntax:

JOB_PROLOG = program name

Configuration file reference

226 LoadLeveler: Using and Administering

|
|
|
|
|

|

|

|
|

|

|
|

|

|

|

|

|

Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

JOB_USER_EPILOG

Pathname of the user epilog program.

 Syntax:

JOB_USER_EPILOG = program name

 Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

JOB_USER_PROLOG

Pathname of the user prolog program.

 Syntax:

JOB_USER_PROLOG = program name

 Default value: No default value is set.

 For more information related to using this keyword, see “Writing prolog

and epilog programs” on page 70.

KBDD

Location of kbdd executable (LoadL_Kbdd).

 Syntax:

KBDD = directory

Default value: $(BIN)/LoadL_kbdd

KBDD_COREDUMP_DIR

Local directory for storing LoadL_kbdd daemon core dump files.

 Syntax:

KBDD_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

KILL Determines whether or not vacated jobs should be sent the SIGKILL signal

and replaced in the queue. It is used to remove a job that is taking too

long to vacate.

 Syntax:

KILL: expression that evaluates to T or F (true or false)

When T, vacated LoadLeveler jobs are removed from the machine with no

attempt to take checkpoints.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 260.

LIB Defines the directory where LoadLeveler libraries are kept.

Configuration file reference

Chapter 11. Configuration file reference 227

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|
|

Syntax:

LIB = directory

Default value: $(RELEASEDIR)/lib

LOADL_ADMIN

List of LoadLeveler administrators.

 Syntax:

LOADL_ADMIN = list of user names

Where list of user names is a blank-delimited list of those individuals who

will have administrative authority. These users are able to invoke the

administrator-only commands such as llctl, llfavorjob, and llfavoruser.

These administrators can also invoke the administrator-only GUI functions.

For more information, see Chapter 6, “Using LoadLeveler’s GUI to perform

administrator tasks,” on page 135.

 Default value: No default value is set, which means no one has

administrator authority until this keyword is defined with one or more

user names.

 Example: To grant administrative authority to users bob and mary, enter the

following in the configuration file:

LOADL_ADMIN = bob mary

For more information related to using this keyword, see “Defining

LoadLeveler administrators” on page 34.

LOCAL_CONFIG

Specifies the path name of the optional local configuration file containing

information specific to a node in the LoadLeveler network.

 Syntax:

LOCAL_CONFIG = directory

Default value: No default value is set.

 Examples:

v If you are using a distributed file system like NFS, some examples are:

LOCAL_CONFIG = $(tilde)/$(host).LoadL_config.local

LOCAL_CONFIG = $(tilde)/LoadL_config.$(host).$(domain)

LOCAL_CONFIG = $(tilde)/LoadL_config.local.$(hostname)

See “LoadLeveler variables” on page 256 for information about the tilde,

host, and domain variables.

v If you are using a local file system, an example is:

LOCAL_CONFIG = /var/LoadL/LoadL_config.local

LOG Defines the local directory to store log files. It is not necessary to keep all

the log files created by the various LoadLeveler daemons and programs in

one directory, but you will probably find it convenient to do so.

 Syntax:

LOG = local directory/log

Default value: $(tilde)/log

Configuration file reference

228 LoadLeveler: Using and Administering

|
|
|

|

|

MACHINE_AUTHENTICATE

Specifies whether machine validation is performed. When set to true,

LoadLeveler only accepts connections from machines specified in the

administration file. When set to false, LoadLeveler accepts connections

from any machine.

 When set to true, every communication between LoadLeveler processes

will verify that the sending process is running on a machine which is

identified via a machine stanza in the administration file. The validation is

done by capturing the address of the sending machine when the accept

function call is issued to accept a connection. The gethostbyaddr function

is called to translate the address to a name, and the name is matched with

the list derived from the administration file.

Note: MACHINE_AUTHENTICATE must be set as ″true″ for Gang

scheduling to work. For more information see “Planning to preempt

jobs” on page 113.

Syntax:

MACHINE_AUTHENTICATE = true | false

Default value: false

 For more information related to using this keyword, see “Defining a

LoadLeveler cluster” on page 34.

MACHINE_UPDATE_INTERVAL

Specifies the time, in seconds, during which machines must report to the

central manager.

 Syntax:

MACHINE_UPDATE_INTERVAL = number

Where number specifies the time period, in seconds, during which

machines must report to the central manager. Machines that do not report

in this number of seconds are considered down. number must be a

numerical value and cannot be an arithmetic expression.

 Default value: The default is 300 seconds.

 For more information related to using this keyword, see “Setting negotiator

characteristics and policies” on page 36.

MACHPRIO

Machine priority expression.

 Syntax:

MACHPRIO = expression

You can use the following LoadLeveler variables in the MACHPRIO

expression:

v LoadAvg

v Connectivity

v Cpus

v Speed

v Memory

v VirtualMemory

v Disk

Configuration file reference

Chapter 11. Configuration file reference 229

v CustomMetric

v MasterMachPriority

v ConsumableCpus

v ConsumableMemory

v ConsumableVirtualMemory

v PagesFreed

v PagesScanned

v FreeRealMemory

For detailed descriptions of these variables, see “LoadLeveler variables” on

page 256.

 Default value: (0 - LoadAvg)

 Examples:

v Example 1

This example orders machines by the Berkeley one-minute load average.

MACHPRIO : 0 - (LoadAvg)

Therefore, if LoadAvg equals .7, this example would read:

MACHPRIO : 0 - (.7)

The MACHPRIO would evaluate to -.7.

v Example 2

This example orders machines by the Berkeley one-minute load average

normalized for machine speed:

MACHPRIO : 0 - (1000 * (LoadAvg / (Cpus * Speed)))

Therefore, if LoadAvg equals .7, Cpus equals 1, and Speed equals 2, this

example would read:

MACHPRIO : 0 - (1000 * (.7 / (1 * 2)))

This example further evaluates to:

MACHPRIO : 0 - (350)

The MACHPRIO would evaluate to -350.

Notice that if the speed of the machine were increased to 3, the equation

would read:

MACHPRIO : 0 - (1000 * (.7 / (1 * 3)))

The MACHPRIO would evaluate to approximately -233. Therefore, as

the speed of the machine increases, the MACHPRIO also increases.

v Example 3

This example orders machines accounting for real memory and available

swap space (remembering that Memory is in Mbytes and VirtualMemory

is in Kbytes):

MACHPRIO : 0 - (10000 * (LoadAvg / (Cpus * Speed))) +

(10 * Memory) + (VirtualMemory / 1000)

v Example 4

This example sets a relative machine priority based on the value of the

CUSTOM_METRIC keyword.

MACHPRIO : CustomMetric

Configuration file reference

230 LoadLeveler: Using and Administering

|
|

|

To do this, you must specify a value for the CUSTOM_METRIC

keyword or the CUSTOM_METRIC_COMMAND keyword in either the

LoadL_config.local file of a machine or in the global LoadL_config file.

To assign the same relative priority to all machines, specify the

CUSTOM_METRIC keyword in the global configuration file. For

example:

CUSTOM_METRIC = 5

You can override this value for an individual machine by specifying a

different value in that machine’s LoadL_config.local file.

v Example 5

This example gives master nodes the highest priority:

MACHPRIO : (MasterMachPriority * 10000)

v Example 6

This example gives nodes the with highest percentage of switch adapters

with connectivity the highest priority:

MACHPRIO : Connectivity

For more information related to using this keyword, see “Setting negotiator

characteristics and policies” on page 36.

MAIL Name of a local mail program used to override default mail notification.

 Syntax:

MAIL = program name

Default value: No default value is set.

 For more information related to using this keyword, see “Using your own

mail program” on page 75.

MASTER

Location of the master executable (LoadL_master).

 Syntax:

MASTER = directory

Default value: $(BIN)/LoadL_master

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

MASTER_COREDUMP_DIR

Local directory for storing LoadL_master core dump files.

 Syntax:

MASTER_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

MASTER_DGRAM_PORT

The port number used when connecting to the daemon.

 Syntax:

MASTER_DGRAM_PORT = port number

Configuration file reference

Chapter 11. Configuration file reference 231

|

|
|

|

|

|

|
|

Default value: The default is 9617.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

MASTER_STREAM_PORT

Specifies the port number to be used when connecting to the daemon.

 Syntax:

MASTER_STREAM_PORT = port number

Default value: The default is 9616.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

MAX_CKPT_INTERVAL

The maximum number of seconds between checkpoints for running jobs.

 Syntax:

MAX_CKPT_INTERVAL = number

Default value: 7200 (2 hours)

 For more information related to using this keyword, see “Checkpointing

jobs” on page 125.

MAX_JOB_REJECT

Determines the number of times a job is rejected before it is canceled or

put in User Hold or System Hold status.

 Syntax:

MAX_JOB_REJECT = number

number must be a numerical value and cannot be an arithmetic expression.

MAX_JOB_REJECT may be set to unlimited rejects by specifying a value

of –1.

 Default value: The default value is 0, which indicates a rejected job will

immediately be canceled or placed on hold.

 For related information, see the NEGOTIATOR_REJECT_DEFER keyword.

MAX_RESERVATIONS

Specifies the maximum number of reservations that this LoadLeveler

cluster may have. Only reservations in waiting and in use are counted

toward this limit; LoadLeveler does not count reservations that already

have ended or are in the process of being canceled.

 Syntax:

MAX_RESERVATIONS = number

The maximum value for number is 10; if you specify a greater value,

LoadLeveler will use 10.

 Default value: 10

MAX_STARTERS

Specifies the maximum number of tasks that can run simultaneously on a

machine. In this case, a task can be a serial job step or a parallel task.

Configuration file reference

232 LoadLeveler: Using and Administering

|
|
|
|
|

|

|

|
|

|

|

MAX_STARTERS defines the number of initiators on the machine (the

number of tasks that can be initiated from a startd).

 Syntax:

MAX_STARTERS = number

Default value: If this keyword is not specified, the default is the number

of elements in the Class statement.

 For more information related to using this keyword, see “Specifying how

many jobs a machine can run” on page 45.

MIN_CKPT_INTERVAL

The minimum number of seconds between checkpoints for running jobs.

 Syntax:

MIN_CKPT_INTERVAL = number

Default value: 900 (15 minutes)

 For more information related to using this keyword, see “Checkpointing

jobs” on page 125.

NEGOTIATOR

Location of the negotiator executable (LoadL_negotiator).

 Syntax:

NEGOTIATOR = directory

Default value: $(BIN)/LoadL_negotiator

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

NEGOTIATOR_COREDUMP_DIR

Local directory for storing LoadL_negotiator core dump files.

 Syntax:

NEGOTIATOR_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

NEGOTIATOR_CYCLE_DELAY

Specifies the minimum time, in seconds, the negotiator delays between

periods when it attempts to schedule jobs. This time is used by the

negotiator daemon to respond to queries, reorder job queues, collect

information about changes in the states of jobs, and so on. Delaying the

scheduling of jobs might improve the overall performance of the negotiator

by preventing it from spending excessive time attempting to schedule jobs.

 Syntax:

NEGOTIATOR_CYCLE_DELAY = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 0 seconds

Configuration file reference

Chapter 11. Configuration file reference 233

|
|

|

|

|

|
|

|

NEGOTIATOR_CYCLE_TIME_LIMIT

Specifies the maximum amount of time, in seconds, that LoadLeveler will

allow the negotiator to spend in one cycle trying to schedule jobs. The

negotiator cycle will end, after the specified number of seconds, even if

there are additional jobs waiting for dispatch. Jobs waiting for dispatch

will be considered at the next negotiator cycle. The

NEGOTIATOR_CYCLE_TIME_LIMIT keyword applies only to the

backfill and gang schedulers.

 Syntax:

NEGOTIATOR_CYCLE_TIME_LIMIT = number

Where number must be a positive integer or zero and cannot be an

arithmetic expression.

 Default value: If the keyword value is not specified or a value of zero is

used, the negotiator cycle will be unlimited.

NEGOTIATOR_INTERVAL

The time interval, in seconds, at which the negotiator daemon updates the

status of jobs in the LoadLeveler cluster and negotiates with machines that

are available to run jobs.

 Syntax:

NEGOTIATOR_INTERVAL = number

Where number specifies the interval, in seconds, at which the negotiator

daemon performs a “negotiation loop” during which it attempts to assign

available machines to waiting jobs. A negotiation loop also occurs

whenever job states or machine states change. number must be a numerical

value and cannot be an arithmetic expression.

 When this keyword is set to zero, the central manager’s automatic

scheduling activity is been disabled, and LoadLeveler will not attempt to

schedule any jobs unless instructed to do so through the llrunscheduler

command or ll_run_scheduler subroutine.

 Default value: The default is 30 seconds.

 For more information related to using this keyword, see “Controlling the

central manager scheduling cycle” on page 66.

NEGOTIATOR_LOADAVG_INCREMENT

Specifies the value the negotiator adds to the startd machine’s load average

whenever a job in the Pending state is queued on that machine. This value

is used to compensate for the increased load caused by starting another

job.

 Syntax:

NEGOTIATOR_LOADAVG_INCREMENT = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default value is .5

NEGOTIATOR_PARALLEL_DEFER

Specifies the amount of time, in seconds, that defines how long a job stays

out of the queue after it fails to get the correct number of processors. This

Configuration file reference

234 LoadLeveler: Using and Administering

|
|
|
|

keyword applies only to the default LoadLeveler scheduler. This keyword

must be greater than the NEGOTIATOR_INTERVAL. value; if it is not, the

default is used.

 Syntax:

NEGOTIATOR_PARALLEL_DEFER = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_PARALLEL_HOLD

Specifies the amount of time, in seconds, that defines how long a job is

given to accumulate processors. This keyword applies only to the default

LoadLeveler scheduler. This keyword must be greater than the

NEGOTIATOR_INTERVAL value; if it is not, the default is used.

 Syntax:

NEGOTIATOR_PARALLEL_HOLD = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

Specifies the amount of time, in seconds, between calculation of the

SYSPRIO values for waiting jobs. Recalculating the priority can be

CPU-intensive; specifying low values for the

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword may

lead to a heavy CPU load on the negotiator if a large number of jobs are

running or waiting for resources. A value of 0 means the SYSPRIO values

are not recalculated.

 You can use this keyword to base the order in which jobs are run on the

current number of running, queued, or total jobs for a user or a group.

 Syntax:

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 120 seconds.

NEGOTIATOR_REJECT_DEFER

Specifies the amount of time in seconds the negotiator waits before it

considers scheduling a job to a machine that recently rejected the job.

 Syntax:

NEGOTIATOR_REJECT_DEFER = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 120 seconds.

 For related information, see the MAX_JOB_REJECT keyword.

NEGOTIATOR_REMOVE_COMPLETED

Specifies the amount of time, in seconds, that you want the negotiator to

keep information regarding completed and removed jobs so that you can

query this information using the llq command.

Configuration file reference

Chapter 11. Configuration file reference 235

Syntax:

NEGOTIATOR_REMOVE_COMPLETED = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 0 seconds.

NEGOTIATOR_RESCAN_QUEUE

specifies the amount of time in seconds that defines how long the

negotiator waits to rescan the job queue for machines which have bypassed

jobs which could not run due to conditions which may change over time.

This keyword must be greater than the NEGOTIATOR_INTERVAL value;

if it is not, the default is used.

 Syntax:

NEGOTIATOR_RESCAN_QUEUE = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 900 seconds.

NEGOTIATOR_STREAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

NEGOTIATOR_STREAM_PORT = port number

Default value: The default is 9614.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

NQS_DIR

Defines the directory where NQS commands qsub, qstat, and qdel reside.

 Restriction: NQS is not supported by LoadLeveler for Linux.

 Syntax:

NQS_DIR = NQS directory

Default value: The default is /usr/bin

OBITUARY_LOG_LENGTH

Specifies the number of lines from the end of the file that are appended to

the mail message. The master daemon mails this log to the LoadLeveler

administrators when one of the daemons dies.

 Syntax:

OBITUARY_LOG_LENGTH = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 25.

POLLING_FREQUENCY

Specifies the interval, in seconds, with which the startd daemon evaluates

the load on the local machine and decides whether to suspend, resume, or

abort jobs. This time is also the minimum interval at which the kbdd

daemon reports keyboard or mouse activity to the startd daemon.

 Syntax:

Configuration file reference

236 LoadLeveler: Using and Administering

|

POLLING_FREQUENCY = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 5.

POLLS_PER_UPDATE

Specifies how often, in POLLING_FREQUENCY intervals, startd daemon

updates the central manager. Due to the communication overhead, it is

impractical to do this with the frequency defined by the

POLLING_FREQUENCY keyword. Therefore, the startd daemon only

updates the central manager every nth (where n is the number specified

for POLLS_PER_UPDATE) local update. Change POLLS_PER_UPDATE

when changing the POLLING_FREQUENCY.

 Syntax:

POLLS_PER_UPDATE = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 24.

PRESTARTED_STARTERS

Specifies how many prestarted starter processes LoadLeveler will maintain

on an execution node to manage jobs when they arrive. The startd daemon

starts the number of starter processes specified by this keyword. You may

specify this keyword in either the global or local configuration file.

 Syntax:

PRESTARTED_STARTERS = number

number must be less than or equal to the value specified through the

MAX_STARTERS keyword. If the value of PRESTARTED_STARTERS

specified is greater then MAX_STARTERS, LoadLeveler records a warning

message in the startd log and assigns PRESTARTED_STARTERS the same

value as MAX_STARTERS.

 If the value PRESTARTED_STARTERS is zero, no starter processes will be

started before jobs arrive on the execution node.

 Default value: The default is 1.

PREEMPT_CLASS

Defines the preemption rule for a job class.

 Syntax: The following forms illustrate correct syntax.

PREEMPT_CLASS[incoming_class] = ALL[:preempt_method] {

outgoing_class1 [outgoing_class2 ...] }

Using this form, ALL indicates that job steps of incoming_class have

priority and will not share nodes with job steps of outgoing_class1,

outgoing_class2, or other outgoing classes. If a job step of the

incoming_class is to be started on a set of nodes, all job steps of

outgoing_class1, outgoing_class2, or other outgoing classes running

on those nodes will be preempted.

PREEMPT_CLASS[incoming_class] = ENOUGH[:preempt_method] {

outgoing_class1 [outgoing_class2 ...] }

Using this form, ENOUGH indicates that job steps of

incoming_class will share nodes with job steps of outgoing_class1,

Configuration file reference

Chapter 11. Configuration file reference 237

|
|
|
|
|

|

|

|
|
|
|
|

|
|

|

|

|

outgoing_class2, or other outgoing classes if there are sufficient

resources. If a job step of the incoming_class is to be started on a set

of nodes, one or more job steps of outgoing_class1, outgoing_class2,

or other outgoing classes running on those nodes may be

preempted to get needed resources.

Combinations of these forms are also allowed.

Notes:

 1. The optional specification preempt_method indicates which method

LoadLeveler is to use to preempt the jobs; this specification is valid

only for the backfill scheduler. Valid values for this specification in

keyword syntax are the highlighted abbreviations in parentheses:

v Remove (rm)

v System hold (sh)

v Suspend (su)

v Vacate (vc)

v User hold (uh)

LoadLeveler for Linux does not support the suspend method of

preemption. For more information about preemption methods, see

“Steps for configuring a scheduler to preempt jobs” on page 115.

 2. Using the ″ALL″ value in the PREEMPT_CLASS keyword places

implied restrictions on when a job can start. See “Planning to preempt

jobs” on page 113 for more information.

 3. The incoming class is designated inside [] brackets.

 4. Outgoing classes are designated inside { } curly braces.

 5. The job classes on the right hand (outgoing) side of the statement

must be different from incoming class, or it may be allclasses. If the

outgoing side is defined as allclasses then all job classes are

preemptable with the exception of the incoming class specified within

brackets.

 6. A class name or allclasses should not be in both the ALL list and the

ENOUGH list. If you do so, the entire statement will be ignored. An

example of this is:

PREEMPT_CLASS[Class_A]=ALL{allclasses} ENOUGH {allclasses}

 7. If you use allclasses as an outgoing (preemptable) class, then no other

class names should be listed at the right hand side as the entire

statement will be ignored. An example of this is:

PREEMPT_CLASS[Class_A]=ALL{Class_B} ENOUGH {allclasses}

 8. More than one ALL statement and more than one ENOUGH statement

may appear at the right hand side. Multiple statements have a

cumulative effect.

 9. Each ALL or ENOUGH statement can have multiple class names

inside the curly braces. However, a blank space delimiter is required

between each class name.

10. Both the ALL and ENOUGH statements can include an optional

specification indicating the method LoadLeveler will use to preempt

the jobs. Valid values for this specification are listed in the description

of the DEFAULT_PREEMPT_METHOD keyword on page 219. If a

value is specified on the PREEMPT_CLASS ALL or ENOUGH

statement, that value overrides the value set on the

DEFAULT_PREEMPT_METHOD keyword, if any.

11. ALL and ENOUGH may be in mixed cases.

Configuration file reference

238 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

12. Spaces are allowed around the brackets and curly braces.

13. PREEMPT_CLASS [allclasses] will be ignored.

Default value: No default value is set.

 Examples:

PREEMPT_CLASS[Class_B]=ALL{Class_E Class_D} ENOUGH {Class_C}

This indicates that all Class_E jobs and all Class_D jobs and

enough Class_C jobs will be preempted to enable an incoming

Class_B job to run.

PREEMPT_CLASS[Class_D]=ENOUGH:VC {Class_E}

This indicates that zero, one, or more Class_E jobs will be

preempted using the vacate method to enable an incoming Class_D

job to run.

PREEMPTION_SUPPORT

For the gang, backfill, or API schedulers only, specifies the level of

preemption support for a cluster.

 Syntax:

PREEMPTION_SUPPORT= full | no_adapter | none

v When set to full, preemption is fully supported.

v When set to no_adapter, preemption is supported but the adapter

resources are not released by preemption.

v When set to none, preemption is not supported, and preemption

requests will be rejected.

Notes:

1. If the value of this keyword is set to any value other than none for the

default scheduler, LoadLeveler will not start.

2. For the gang scheduler only, when this keyword is set to full or

no_adapter, LoadLeveler checks to ensure that:

v MACHINE_AUTHENTICATE = TRUE and PROCESS_TRACKING

= TRUE are specified in the configuration file, and

v Only supported adapters are defined in the administration file.

Default value: The default value for the gang scheduler is full. The default

value for all other schedulers is none; if you want to enable preemption

under these schedulers, you must set a value for this keyword.

PROCESS_TRACKING

Specifies whether or not LoadLeveler will cancel any processes (throughout

the entire cluster), left behind when a job terminates.

 Restriction: Process tracking is ignored by LoadLeveler for Linux.

 Syntax:

PROCESS_TRACKING = TRUE | FALSE

When TRUE ensures that when a job is terminated, no processes created

by the job will continue running.

 Default value: FALSE

PROCESS_TRACKING_EXTENSION

Specifies the directory containing the kernel extension binary LoadL_pt_ke.

Configuration file reference

Chapter 11. Configuration file reference 239

|

|
|
|
|

|

|
|

|
|

|
|

|

|

Restriction: Process tracking is ignored by LoadLeveler for Linux.

 Syntax:

PROCESS_TRACKING_EXTENSION = directory

Default value: The directory $HOME/bin

 For more information related to using this keyword, see “Tracking job

processes” on page 64.

PUBLISH_OBITUARIES

Specifies whether or not the master daemon sends mail to the

administrator when any daemon it manages ends abnormally. When set to

true, this keyword specifies that the master daemon sends mail to the

administrators identified by LOADL_ADMIN keyword.

 Syntax:

PUBLISH_OBITUARIES = true | false

Default value: true

REJECT_ON_RESTRICTED_LOGIN

Specifies whether the user’s account status will be checked on every node

where the job will be run by calling the AIX loginrestrictions function

with the S_DIST_CLNT flag.

 Restriction: Login restriction checking is ignored by LoadLeveler for Linux.

 Login restriction checking includes:

v Does the account still exist?

v Is the account locked?

v Has the account expired?

v Do failed login attempts exceed the limit for this account?

v Is login disabled via /etc/nologin?

If the AIX loginrestrictions function indicates a failure then the user’s job

will be rejected and will be processed according to the LoadLeveler

configuration parameters MAX_JOB_REJECT and

ACTION_ON_MAX_REJECT.

 Syntax:

REJECT_ON_RESTRICTED_LOGIN = true | false

Default value: false

RELEASEDIR

Defines the directory where all the LoadLeveler software resides.

 Syntax:

RELEASEDIR = release directory

Default value: $(RELEASEDIR)

RESERVATION_CAN_BE_EXCEEDED

Specifies whether LoadLeveler will schedule job steps that are bound to a

reservation when their end times (based on hard wall-clock limits) exceed

the reservation end time.

 Syntax:

RESERVATION_CAN_BE_EXCEEDED = true | false

Configuration file reference

240 LoadLeveler: Using and Administering

|

|

|
|
|
|

|

|

When this keyword is set to false, LoadLeveler schedules only those job

steps that will complete before the reservation ends. When set to true,

LoadLeveler schedules job steps to run under a reservation even if their

end times are expected to exceed the reservation end time. When the

reservation ends, however, the reserved nodes no longer belong to the

reservation, and so these nodes might not be available for the jobs to

continue running. In this case, LoadLeveler might preempt the running

jobs.

 Note that this keyword setting does not change the actual end time of the

reservation. It only affects how LoadLeveler manages job steps whose end

times exceed the end time of the reservation.

 Default value: true

RESERVATION_HISTORY

Defines the name of a file that is to contain the local history of

reservations.

 Syntax:

RESERVATION_HISTORY = file name

LoadLeveler appends a single line to the reservation history file for each

reservation. For an example, see “Collecting accounting data for

reservations” on page 122.

 Default value: $(SPOOL)/reservation_history

RESERVATION_MIN_ADVANCE_TIME

Specifies the minimum time, in minutes, between the time at which a

reservation is created and the time at which the reservation is to start.

 Syntax:

RESERVATION_MIN_ADVANCE_TIME = number of minutes

By default, the earliest time at which a reservation may start is the current

time plus the value set for the RESERVATION_SETUP_TIME keyword.

 Default value: 0 (zero)

RESERVATION_PRIORITY

Specifies whether LoadLeveler administrators may reserve nodes on which

running jobs are expected to end after the reservation start time. This

keyword value applies only for LoadLeveler administrators; other

reservation owners do not have this capability.

 Syntax:

RESERVATION_PRIORITY = NONE | HIGH

When you set this keyword to HIGH, before activating the reservation,

LoadLeveler preempts the job steps running on the reserved nodes. The

only exceptions are non-preemptable jobs; LoadLeveler will not preempt

those jobs because of any reservations.

 Default value: NONE

RESERVATION_SETUP_TIME

Specifies how much time, in seconds, that LoadLeveler may use to prepare

for a reservation before it is to start. The tasks that LoadLeveler performs

Configuration file reference

Chapter 11. Configuration file reference 241

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|

|

|
|
|

|

|
|
|

|

|

|
|

|

|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

during this time include checking and reporting node conditions, and

preempting job steps still running on the reserved nodes.

 For a given reservation, LoadLeveler uses the

RESERVATION_SETUP_TIME keyword value that is set at the time that

the reservation is created, not whatever value might be set when the

reservation starts. If the start time of the reservation is modified, however,

LoadLeveler uses the RESERVATION_SETUP_TIME keyword value that

is set at the time of the modification.

 Syntax:

RESERVATION_SETUP_TIME = number of seconds

Default value: 60

RESTARTS_PER_HOUR

Specifies how many times the master daemon attempts to restart a daemon

that dies abnormally. Because one or more of the daemons may be unable

to run due to a permanent error, the master only attempts

$(RESTARTS_PER_HOUR) restarts within a 60 minute period. Failing

that, it sends mail to the administrators identified by the LOADL_ADMIN

keyword and exits.

 Syntax:

RESTARTS_PER_HOUR = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 12.

RESUME_ON_SWITCH_TABLE_ERROR_CLEAR

Specifies whether or not the startd that was drained when the switch table

failed to unload will automatically resume once the unload errors are

cleared. The unload error is considered cleared after LoadLeveler can

successfully unload the switch table. For this keyword to work, the

DRAIN_ON_SWITCH_TABLE_ERROR option in the configuration file

must be turned on and not disabled. Flushing, suspending, or draining of

a startd manually or automatically will disable this option until the startd

is manually resumed.

 Syntax:

RESUME_ON_SWITCH_TABLE_ERROR_CLEAR = true | false

Default value: false

SAVELOGS

Specifies the directory in which log files are archived.

 Syntax:

SAVELOGS = directory

Where directory is the directory in which log files will be archived.

 Default value: No default value is set.

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

SCHEDD

Location of the schedd executable (LoadL_schedd).

Configuration file reference

242 LoadLeveler: Using and Administering

|
|

|
|
|
|
|
|

|

|

|

|

Syntax:

SCHEDD = directory

Default value: $(BIN)/LoadL_schedd

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

SCHEDD_COREDUMP_DIR

Specifies the local directory for storing LoadL_schedd core dump files.

 Syntax:

SCHEDD_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

SCHEDD_INTERVAL

Specifies the interval, in seconds, at which the schedd daemon checks the

local job queue and updates the negotiator daemon.

 Syntax:

SCHEDD_INTERVAL = number

number must be a numerical value and cannot be an arithmetic expression.

 Default value: The default is 60 seconds.

SCHEDD_RUNS_HERE

Specifies whether the schedd daemon runs on the host. If you do not want

to run the schedd daemon, specify false.

 This keyword does not designate a machine as a public scheduling

machine. Unless configured as a public scheduling machine, a machine

configured to run the schedd daemon will only accept job submissions

from the same machine running the schedd daemon. A public scheduling

machine accepts job submissions from other machines in the LoadLeveler

cluster. To configure a machine as a public scheduling machine, see the

schedd_host keyword description in “Administration file keyword

descriptions” on page 267.

 Syntax:

SCHEDD_RUNS_HERE = true | false

Default value: true

SCHEDD_SUBMIT_AFFINITY

Specifies whether job submissions are directed to a locally running schedd

daemon. When the keyword is set to true, job submissions are directed to a

schedd daemon running on the same machine where the submission takes

place, provided there is a schedd daemon running on that machine. In this

case the submission is said to have ″affinity″ for the local schedd daemon.

If there is no schedd daemon running on the machine where the

submission takes place, or if this keyword is set to false, the job

submission will only be directed to a schedd daemon serving as a public

scheduling machine. In this case, if there are no public scheduling

machines configured the job cannot be submitted. A public scheduling

Configuration file reference

Chapter 11. Configuration file reference 243

|
|

|

|

|

|
|

machine accepts job submissions from other machines in the LoadLeveler

cluster. To configure a machine as a public scheduling machine, see the

schedd_host keyword description in “Administration file keyword

descriptions” on page 267.

 Installations with a large number of nodes should consider setting this

keyword to false to more evenly distribute dispatching of jobs among the

schedd daemons. For more information, see “Scaling considerations” on

page 539.

 Syntax:

SCHEDD_SUBMIT_AFFINITY = true | false

Default value: true

SCHEDD_STATUS_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

SCHEDD_STATUS_PORT = port number

Default value: The default is 9606.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

SCHEDD_STREAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

SCHEDD_STREAM_PORT = port number

Default value: The default is 9605.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

SCHEDULE_BY_RESOURCES

Specifies which consumable resources are considered by the LoadLeveler

schedulers. Each consumable resource name may be an

administrator-defined alphanumeric string, or may be one of the following

predefined resources:

v ConsumableCpus

v ConsumableMemory

v ConsumableVirtualMemory

v RDMA

Each string may only appear in the list once. These resources are either

floating resources, or machine resources. If any resource is specified

incorrectly with the SCHEDULE_BY_RESOURCES keyword, then all

scheduling resources will be ignored.

 Syntax:

SCHEDULE_BY_RESOURCES = name name ... name

Default value: No default value is set.

SCHEDULER_TYPE

Specifies the LoadLeveler scheduling algorithm:

Configuration file reference

244 LoadLeveler: Using and Administering

|

|

LL_DEFAULT

Specifies the default LoadLeveler scheduling algorithm. If

SCHEDULER_TYPE has not been defined, LoadLeveler will use

the default scheduler (LL_DEFAULT).

BACKFILL

Specifies the LoadLeveler backfill scheduler. When you specify this

keyword, you should use only the default settings for the START

expression and the other job control expressions described in

“Managing job status through control expressions” on page 62.

API Specifies that you will use an external scheduler. External

schedulers communicate to LoadLeveler through the job control

API. For more information on setting an external scheduler, see

“Using an external scheduler” on page 101.

GANG

Specifies that you will use the LoadLeveler gang scheduling

algorithm. For more information, see “Using the gang scheduler”

on page 97.

 Restriction: Gang scheduling is not supported by LoadLeveler for

Linux.

Syntax:

SCHEDULER_TYPE = LL_DEFAULT | BACKFILL | API | GANG

Default value: LL_DEFAULT

Notes:

1. If a scheduler type is not set, LoadLeveler will start, but it will use the

default scheduler.

2. If you have set SCHEDULER_TYPE with an option that is not valid,

LoadLeveler will not start.

3. If you change the scheduler option specified by SCHEDULER_TYPE,

you must stop and restart LoadLeveler using llctl or recycle using llctl.

For more information related to using this keyword, see “Defining a

LoadLeveler cluster” on page 34.

SEC_ADMIN_GROUP

When security services are enabled, this keyword points to the name of the

UNIX group that contains the local identities of the LoadLeveler

administrators.

 Restriction: Neither DCE nor CtSec security are supported on LoadLeveler

for Linux.

 Syntax:

SEC_ADMIN_GROUP = name of lladmin group

Default value: No default value is set.

 For more information related to using this keyword, see “Configuring

LoadLeveler to use cluster security services” on page 52.

SEC_ENABLEMENT

Specifies the security mechanism to be used.

Configuration file reference

Chapter 11. Configuration file reference 245

|

|

|

|

Restriction: Do not set this keyword to DCE or CtSec in the configuration

file for a Linux machine. Neither DCE nor CtSec security are supported on

LoadLeveler for Linux.

 Syntax:

SEC_ENABLEMENT = COMPAT | DCE | CTSEC

Default value: If the keyword DCE_ENABLEMENT is set to true, the

default value for SEC_ENABLEMENT is DCE; otherwise, no default value

is set.

SEC_SERVICES_GROUP

When security services are enabled, this keyword specifies the name of the

LoadLeveler services group.

 Restriction: Neither DCE nor CtSec security are supported on LoadLeveler

for Linux.

 Syntax:

SEC_SERVICES_GROUP=group name

Where group name defines the identities of the LoadLeveler daemons.

 Default value: No default value is set.

SEC_IMPOSED_MECHS

Specifies a blank-delimited list of LoadLeveler’s permitted security

mechanisms when Cluster Security (CtSec) services are enabled.

 Restriction: CtSec security is not supported on LoadLeveler for Linux.

 Syntax: Specify a blank delimited list containing combinations of the

following values:

none If this is the only value specified, then users will run

unauthenticated and, if authorization is necessary, the job will fail.

If this is not the only value specified, then users may run

unauthenticated and, if authorization is necessary, the job will fail.

unix If this is the only value specified, then UNIX host-based

authentication will be used; otherwise, other mechanisms may be

used.

 Default value: No default value is set.

 Example:

SEC_IMPOSED_MECHS = none unix

SPOOL

Defines the local directory where LoadLeveler keeps the local job queue

and checkpoint files

 Syntax:

SPOOL = local directory/spool

Default value: $(tilde)/spool

START

Determines whether a machine can run a LoadLeveler job.

 Syntax:

START: expression that evaluates to T or F (true or false)

Configuration file reference

246 LoadLeveler: Using and Administering

|

|
|
|

|

|

|
|
|

|

|
|

||
|
|
|

||
|
|

|

|

|

|

|

When the expression evaluates to T, LoadLeveler considers dispatching a

job to the machine. When you use a START expression that is based on the

CPU load average, the negotiator may evaluate the expression as F even

though the load average indicates the machine is Idle. This is because the

negotiator adds a compensating factor to the startd machine’s load average

every time the negotiator assigns a job. For more information, see “the

NEGOTIATOR_INTERVAL keyword” on page 234.

 Default value: No default value is set, which means that no jobs will be

started.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 260.

START_CLASS

Specifies the rule for starting a job of the incoming_class. The

START_CLASS rule is applied whenever the backfill or gang scheduler

decides whether a job step of the incoming_class should start or not.

 Syntax:

START_CLASS[incoming_class] = (start_class_expression) [&& (start_class_expression) ...]

Where start_class_expression takes the form:

run_class < number_of_tasks

Which indicates that a job step of the incoming_class is only

allowed to run on a node when the number of tasks of run_class

running on that node is less than number_of_tasks.

Notes:

1. START_CLASS [allclasses] will be ignored.

2. The job class specified by run_class may be the same as or different

from the class specified by incoming_class.

3. You can also define run_class as allclasses. If you do, the total number

of all job tasks running on that node cannot exceed the value specified

by number_of_tasks.

4. A class name or allclasses should not appear twice on the right-hand

side of the keyword statement. However, you can use other class names

with allclasses on the right hand side of the statement.

5. If there is more than one start_class_expression, you must use &&

between adjacent start_class_expressions.

6. Both the START keyword and the START_CLASS keyword have to be

true before a new job can start.

7. Parenthesis () are optional around start_class_expression.

For information related to using this keyword, see “Planning to preempt

jobs” on page 113.

 Default value: No default value is set.

 Examples:

START_CLASS[Class_A] = (Class_A < 1)

This statement indicates that a Class_A job can only start on nodes

that do not have any Class_A jobs running.

Configuration file reference

Chapter 11. Configuration file reference 247

|
|

|
|

|

|
|

|

START_CLASS[Class_B] = allclasses < 5

This statement indicates that a Class_B job can only start on nodes

with maximum 4 tasks running.

START_DAEMONS

Specifies whether to start the LoadLeveler daemons on the node.

 Syntax:

START_DAEMONS = true | false

Default value: true

 When true, the daemons are started. In most cases, you will probably want

to set this keyword to true. An example of why this keyword would be set

to false is if you want to run the daemons on most of the machines in the

cluster but some individual users with their own local configuration files

do not want their machines to run the daemons. The individual users

would modify their local configuration files and set this keyword to false.

Because the global configuration file has the keyword set to true, their

individual machines would still be able to participate in the LoadLeveler

cluster.

 Also, to define the machine as strictly a submit-only machine, set this

keyword to false.

STARTD

Location of the startd executable (LoadL_startd).

 Syntax:

STARTD = directory

Default value: $(BIN)/LoadL_startd

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

STARTD_COREDUMP_DIR

Local directory for storing LoadL_startd core dump files.

 Syntax:

STARTD_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

STARTD_DGRAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

STARTD_DGRAM_PORT = port number

Default value: The default is 9615.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

Configuration file reference

248 LoadLeveler: Using and Administering

|
|

|

|

|

|
|

STARTD_RUNS_HERE = true | false

Specifies whether the startd daemon runs on the host. If you do not want

to run the startd daemon, specify false.

 Syntax:

TARTD_RUNS_HERE = true | false

Default value: true

STARTD_STREAM_PORT

Specifies the port number used when connecting to the daemon.

 Syntax:

STARTD_STREAM_PORT = port number

Default value: The default is 9611.

 For more information related to using this keyword, see “Defining network

characteristics” on page 38.

STARTER

Location of the starter executable (LoadL_starter).

 Syntax:

STARTER = directory

Default value: $(BIN)/LoadL_starter

 For more information related to using this keyword, see “How

LoadLeveler daemons process jobs” on page 7.

STARTER_COREDUMP_DIR

Local directory for storing LoadL_starter coredump files.

 Syntax:

STARTER_COREDUMP_DIR = directory

Default value: The /tmp directory.

 For more information related to using this keyword, see “Specifying file

and directory locations” on page 38.

SUBMIT_FILTER

Specifies the program you want to run to filter a job script when the job is

submitted.

 Syntax:

SUBMIT_FILTER = myprog

Where myprog is called with the job file as the standard input. The

standard output is submitted to LoadLeveler. If the program returns with a

nonzero exit code, the job submission is canceled. A submit filter can only

make changes to LoadLeveler job command file keyword statements.

 Default value: No default value is set.

 For more information related to using this keyword, see “Filtering a job

script” on page 70.

Configuration file reference

Chapter 11. Configuration file reference 249

|
|

|

|

|

|
|

|

SUSPEND

Determines whether running jobs should be suspended.

 Syntax:

SUSPEND: expression that evaluates to T or F (true or false)

When T, LoadLeveler temporarily suspends jobs currently running on the

machine. Suspended LoadLeveler jobs will either be continued or vacated.

This keyword is not supported for parallel jobs.

 Default value: No default value is set.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 260.

SYSPRIO

System priority expression.

 Syntax:

SYSPRIO = expression

You can use the following LoadLeveler variables to define the SYSPRIO

expression:

v ClassSysprio

v GroupQueuedJobs

v GroupRunningJobs

v GroupSysprio

v GroupTotalJobs

v QDate

v UserPrio

v UserQueuedJobs

v UserRunningJobs

v UserSysprio

v UserTotalJobs

For detailed descriptions of these variables, see “LoadLeveler variables” on

page 256.

 Default value: 0 (zero)

Notes:

1. The SYSPRIO keyword is valid only on the machine where the central

manager is running. Using this keyword in a local configuration file

has no effect.

2. It is recommended that you do not use UserPrio in the SYSPRIO

expression, since user jobs are already ordered by UserPrio.

3. You can use the UserRunningJobs, GroupRunningJobs,

UserQueuedJobs, GroupQueuedJobs, UserQueuedJobs,

GroupQueuedJobs UserTotalJobs, and GroupTotalJobs parameters to

prioritize the queue based on current usage. You should also set

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL so that the

priorities are adjusted according to current usage rather than usage

only at submission time.

Examples:

v Example 1

This example creates a FIFO job queue based on submission time:

Configuration file reference

250 LoadLeveler: Using and Administering

|

|
|

|
|

|

SYSPRIO : 0 - (QDate)

v Example 2

This example accounts for Class, User, and Group system priorities:

SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

v Example 3

This example orders the queue based on the number of jobs a user is

currently running. The user who has the fewest jobs running is first in

the queue. You should set

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL in conjunction

with this SYSPRIO expression.

SYSPRIO : 0 - UserRunningJobs

For more information related to using this keyword, see “Setting negotiator

characteristics and policies” on page 36.

SYSPRIO_THRESHOLD_TO_IGNORE_STEP

Specifies a threshold value for system priority. When the system priority

assigned to a job step is less than the value set for this keyword, the

scheduler ignores the job, which will remain in Idle state.

 Syntax:

SYSPRIO_THRESHOLD_TO_IGNORE_STEP = integer

Any integer is a valid value.

 Default value: INT_MIN

 For more information related to using this keyword, see “Controlling the

central manager scheduling cycle” on page 66.

TRUNC_GSMONITOR_LOG_ON_OPEN

When true, specifies that the log file is restarted with every invocation of

the daemon.

 Syntax:

TRUNC_GSMONITOR_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

TRUNC_KBDD_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_KBDD_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

TRUNC_MASTER_LOG_ON_OPEN

When true, specifies the log file is re started with every invocation of the

daemon.

Configuration file reference

Chapter 11. Configuration file reference 251

|
|
|
|

|

|

|

|

|
|

Syntax:

TRUNC_MASTER_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

TRUNC_NEGOTIATOR_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_NEGOTIATOR_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

TRUNC_SCHEDD_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_SCHEDD_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

TRUNC_STARTD_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_STARTD_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

TRUNC_STARTER_LOG_ON_OPEN

When true, specifies the log file is restarted with every invocation of the

daemon.

 Syntax:

TRUNC_STARTER_LOG_ON_OPEN = true | false

Default value: false

 For more information related to using this keyword, see “Configuring

recording activity and log files” on page 40.

UPDATE_ON_POLL_INTERVAL_ONLY

Specifies whether or not the LoadLeveler startd daemons will send

machine update transactions to the Central Manager. Normally the

LoadLeveler startd daemons running on executing nodes will send

Configuration file reference

252 LoadLeveler: Using and Administering

transactions to the Central Manager to provide updates of machine

information at various times. An update is sent every polling interval. The

polling interval is calculated by multiplying the values for the two

keywords, POLLING_FREQUENCY and POLLS_PER_UPDATE, specified

in the LoadLeveler configuration file.

 In addition, updates are sent at other times such as when new jobs are

started and when jobs terminate on the executing node. If you have a large

and highly active cluster (the workload consists of a large number of short

running jobs), the normal method for updating the central manager can

add excessive network traffic. UPDATE_ON_POLL_INTERVAL_ONLY can

help reduce this source of network traffic.

 When true is specified, the LoadLeveler startd daemon will only send

machine updates to the Central Manager at every polling interval and not

at other times.

 Syntax:

UPDATE_ON_POLL_INTERVAL_ONLY = false | true

Default value: false

VACATE

Determines whether suspended jobs should be vacated.

 Syntax:

VACATE: expression that evaluates to T or F (true or false)

When T, suspended LoadLeveler jobs are removed from the machine and

placed back into the queue (provided you specify restart=yes in the job

command file). If a checkpoint was taken, the job restarts from the

checkpoint. Otherwise, the job restarts from the beginning.

 Default value: No default value is set.

 For information about time-related variables that you may use for this

keyword, see “Variables to use for setting times” on page 260.

VM_IMAGE_ALGORITHM

Specifies the virtual memory algorithm, which is used for checking the

image_size requirement. This keyword is used together with the

large_page job command file keyword to specify which algorithm the

Central Manager uses to decide whether a machine has enough virtual

memory to run a job step.

 This keyword is critical for job steps that must use Large Page memory

(specified by the job command file keyword large_page=M). If the

VM_IMAGE_ALGORITHM keyword is set to FREE_PAGING_SPACE,

the Large Page job step will never be scheduled to run. This keyword must

be set to FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY to run

Large Page jobs.

 When FREE_PAGING_SPACE is specified, LoadLeveler considers only

free paging space when determining if a machine has enough virtual

memory to run a job step.

 When FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY is specified

and the job step specifies:

Configuration file reference

Chapter 11. Configuration file reference 253

|

|
|

v large_page=N (does not use Large Page memory), LoadLeveler

considers free paging space and free regular memory when determining

if a machine has enough virtual memory to run a job step.

v large_page=Y (uses Large Page memory, if available), LoadLeveler

considers free paging space, free regular memory, and free Large Page

memory when determining if a machine has enough virtual memory to

run a job step, although Large Page memory is only considered for

machines configured to exploit the Large Page feature.

v large_page=M (must use Large Page memory), LoadLeveler considers

only Large Page memory when determining if a machine has enough

virtual memory to run a job step. Only machines configured to exploit

the Large Page feature are considered.

IBM suggests that you set this keyword to the value

FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY since more types

of virtual memory are considered, increasing the chances of finding a

machine with enough virtual memory to run the job step.

 Syntax:

VM_IMAGE_ALGORITHM = FREE_PAGING_SPACE | FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY

Default value: FREE_PAGING_SPACE

WALLCLOCK_ENFORCE

Specifies whether the job command file keyword wall_clock_limit will be

enforced for this job. The WALLCLOCK_ENFORCE keyword is valid only

when an external scheduler is enabled.

 Syntax:

WALLCLOCK_ENFORCE = true | false

Default value: true

X_RUNS_HERE

Specifies whether the kbdd (keyboard) daemon runs on the host. If you do

not want to run the kbdd daemon, specify false.

 Syntax:

X_RUNS_HERE = true | false

Default value: true

User-defined keywords

This type of variable, which is generally created and defined by the user, can be

named using any combination of letters and numbers. A user-defined variable is

set equal to values, where the value defines conditions, names files, or sets numeric

values. For example, you can create a variable named MY_MACHINE and set it

equal to the name of your machine named iron as follows:

 MY_MACHINE = iron.ore.met.com

You can then identify the keyword using a dollar sign ($) and parenthesis. For

example, the literal $(MY_MACHINE) following the definition in the previous

example results in the automatic substitution of iron.ore.met.com in place of

$(MY_MACHINE).

Configuration file reference

254 LoadLeveler: Using and Administering

|

|
|

User-defined definitions may contain references, enclosed in parenthesis, to

previously defined keywords. Therefore:

 A = xxx

 C = $(A)

is a valid expression and the resulting value of C is xxx. Note that C is actually

bound to A, not to its value, so that

 A = xxx

 C = $(A)

 A = yyy

is also legal and the resulting value of C is yyy.

The sample configuration file shipped with the product defines and uses the

following “user-defined” variables.

BackgroundLoad

Defines the variable BackgroundLoad and assigns to it a floating point

constant. This might be used as a noise factor indicating no activity.

CPU_Busy

Defines the variable CPU_Busy and reassigns to it at each evaluation the

Boolean value True or False, depending on whether the Berkeley one-minute

load average is equal to or greater than the saturation level of 1.5.

CPU_Idle

Defines the variable CPU_Idle and reassigns to it at each evaluation the

Boolean value True or False, depending on whether the Berkeley one-minute

load average is equal or less than 0.7.

HighLoad

Is a keyword that the user can define to use as a saturation level at which no

further jobs should be started.

HOUR

Defines the variable HOUR and assigns to it a constant integer value.

JobLoad

Defines the variable JobLoad which defines the load on the machine caused by

running the job.

KeyboardBusy

Defines the variable KeyboardBusy and reassigns to it at each evaluation the

Boolean value True or False, depending on whether the keyboard and mouse

have been idle for fifteen minutes.

LowLoad

Defines the variable LowLoad and assigns to it the value of BackgroundLoad.

This might be used as a restart level at which jobs can be started again and

assumes only running 1 job on the machine.

mail

Specifies a local program you want to use in place of the LoadLeveler default

mail notification method.

MINUTE

Defines the variable MINUTE and assigns to it a constant integer value.

StateTimer

Defines the variable StateTimer and reassigns to it at each evaluation the

number of seconds since the current state was entered.

Configuration file reference

Chapter 11. Configuration file reference 255

|
|

LoadLeveler variables

LoadLeveler provides the following variables that you can use in your

configuration file statements. LoadLeveler variables are evaluated by the

LoadLeveler daemons at various stages. They do not require you to use any special

characters (such as a parenthesis or a dollar sign) to identify them.

Arch

Indicates the system architecture. Note that Arch is a special case of a

LoadLeveler variable called a machine variable. You specify a machine variable

using the following format:

 variable : $(value)

ClassSysprio

The priority for the class of the job step, defined in the class stanza in the

administration file.

 Default: 0

 For additional information about using this variable, see the SYSPRIO

keyword description.

Connectivity

The ratio of the number of active switch adapters on a node to the total

number of switch adapters on the node. The value ranges from 0.0 (all switch

adapters are down) to 1.0 (all switch adapters are active). A node with no

switch adapters has a connectivity of 0.0. Connectivity can be used in a

MACHPRIO expression to favor nodes that do not have any down switch

adapters or in a job’s REQUIREMENTS to require only nodes with a certain

connectivity.

 For additional information about using this variable, see the MACHPRIO

keyword description.

ConsumableCpus

The number of ConsumableCpus currently available on the machine, if

ConsumableCpus is defined in the configuration file keyword,

SCHEDULE_BY_RESOURCES. If it is not defined in

SCHEDULE_BY_RESOURCES, then it is equivalent to Cpus.

 For additional information about using this variable, see the MACHPRIO

keyword description.

ConsumableMemory

The amount of ConsumableMemory, in megabytes, currently available on the

machine, if ConsumableMemory is defined in the configuration file keyword,

SCHEDULE_BY_RESOURCES. If it is not defined in

SCHEDULE_BY_RESOURCES, then it is equivalent to Memory.

 For additional information about using this variable, see the MACHPRIO

keyword description.

ConsumableVirtualMemory

The amount of ConsumableVirtualMemory, in megabytes, currently available

on the machine, if ConsumableVirtualMemory is defined in the configuration

file keyword, SCHEDULE_BY_RESOURCES. If it is not defined in

SCHEDULE_BY_RESOURCES, then it is equivalent to VirtualMemory.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Configuration file reference

256 LoadLeveler: Using and Administering

|
|

|
|

|
|

|

|
|

|

|
|

Cpus

The number of processors of the machine, reported by the startd daemon.

 For additional information about using this variable, see the MACHPRIO

keyword description.

CurrentTime

The UNIX date; the current system time, in seconds, since January 1, 1970, as

returned by the time() function.

CustomMetric

Sets a relative priority number for one or more machines, based on the value

of the CUSTOM_METRIC keyword.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Disk

The free disk space in kilobytes on the file system where the executables for

the LoadLeveler jobs assigned to this machine are stored. This refers to the file

system that is defined by the execute keyword.

 For additional information about using this variable, see the MACHPRIO

keyword description.

domain or domainname

Dynamically indicates the official name of the domain of the current host

machine where the program is running. Whenever a machine name can be

specified or one is assumed, a domain name is assigned if none is present.

EnteredCurrentState

The value of CurrentTime when the current state (START, SUSPEND, etc) was

entered.

FreeRealMemory

The amount of free real memory, in megabytes, on the machine. This value

should track very closely with the ″fre″ value of the vmstat command and the

″free″ value of the svmon -G command (units are 4K blocks).

 For additional information about using this variable, see the MACHPRIO

keyword description.

GroupQueuedJobs

The number of job steps associated with a LoadLeveler group which are either

running or queued. (That is, job steps which are in one of these states:

Checkpointing, Preempted, Preempt Pending, Resume Pending, Running,

Starting, Pending, or Idle.)

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupRunningJobs

The number of job steps for the LoadLeveler group which are in one of these

states: Checkpointing, Preempted, Preempt Pending, Resume Pending,

Running, Starting, or Pending.

 For additional information about using this variable, see the SYSPRIO

keyword description.

GroupSysprio

The priority for the group of the job step, defined in the group stanza in the

administration file.

 Default: 0

Configuration file reference

Chapter 11. Configuration file reference 257

|

|
|

|

|
|

|
|

|
|

|
|

|
|

For additional information about using this variable, see the SYSPRIO

keyword description.

GroupTotalJobs

The total number of job steps associated with this LoadLeveler group. Total job

steps are all job steps reported by the llq command.

 For additional information about using this variable, see the SYSPRIO

keyword description.

host or hostname

Dynamically indicates the standard host name as returned by gethostname()

for the machine where the program is running. host and hostname are

equivalent, and contain the name of the machine without the domain name

appended to it. If administrators need to specify the domain name in the

configuration file, they may use domain or domainname along with host or

hostname. For example:

$(host).$(domain)

KeyboardIdle

The number of seconds since the keyboard or mouse was last used. It also

includes any telnet or interactive activity from any remote machine.

LoadAvg

The Berkely one-minute load average, a measure of the CPU load on the

system. The load average is the average of the number of processes ready to

run or waiting for disk I/O to complete. The load average does not map to

CPU time.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Machine

Indicates the name of the current machine. Note that Machine is a special case

of a LoadLeveler variable called a machine variable. See the description of the

Arch variable for more information.

MasterMachPriority

A value that is equal to 1 for nodes which are master nodes (those with

master_node_exclusive = true); this value is equal to 0 for nodes which are not

master nodes. Assigning a high priority to master nodes may help job

scheduling performance for parallel jobs which require master node features.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Memory

The size of real memory, in megabytes, of the machine, reported by the startd

daemon.

 For additional information about using this variable, see the MACHPRIO

keyword description.

OpSys

Indicates the operating system on the host where the program is running. This

value is automatically determined and need not be defined in the configuration

file. Note that OpSys is a special case of a LoadLeveler variable called a

machine variable. See the description of the Arch variable for more

information.

Configuration file reference

258 LoadLeveler: Using and Administering

|
|

|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

PagesFreed

The number of pages freed per second by the page replacement algorithm of

the virtual memory manager.

 For additional information about using this variable, see the MACHPRIO

keyword description.

PagesScanned

The number of pages scanned per second by the page replacement algorithm

of the virtual memory manager.

 For additional information about using this variable, see the MACHPRIO

keyword description.

QDate

The difference in seconds between the UNIX date when the job step enters the

queue and the UNIX date when the negotiator daemon starts up.

 For additional information about using this variable, see the SYSPRIO

keyword description.

Speed

The relative speed of the machine, defined in a machine stanza in the

administration file.

 Default: 1

 For additional information about using this variable, see the MACHPRIO

keyword description.

State

The state of the startd daemon.

tilde

The home directory for the LoadLeveler user ID.

UserPrio

The user defined priority of the job step, specified in the job command file

with the user_priority keyword. The priority ranges from 0 to 100, with higher

numbers corresponding to greater priority.

 Default: 50

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserQueuedJobs

The number of job steps either running or queued for the user. (That is, job

steps that are in one of these states: Checkpointing, Preempted, Preempt

Pending, Resume Pending, Running, Starting, Pending, or Idle.)

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserRunningJobs

The number of job step steps for the user which are in one of these states:

Checkpointing, Preempted, Preempt Pending, Resume Pending, Running,

Starting, or Pending.

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserSysprio

The priority of the user who submitted the job step, defined in the user stanza

in the administration file.

Configuration file reference

Chapter 11. Configuration file reference 259

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Default: 0

 For additional information about using this variable, see the SYSPRIO

keyword description.

UserTotalJobs

The total number of job steps associated with this user. Total job steps are all

job steps reported by the llq command.

 For additional information about using this variable, see the SYSPRIO

keyword description.

VirtualMemory

The size of available swap space (free paging space) on the machine, in

kilobytes, reported by the startd daemon.

 For additional information about using this variable, see the MACHPRIO

keyword description.

Variables to use for setting dates

You can use the following date variables:

tm_mday

The number of the day of the month (1-31).

tm_mon

Number of months since January (0-11).

tm_wday

Number of days since Sunday (0-6).

tm_yday

Number of days since January 1 (0-365).

tm_year

The number of years since 1900 (0-9999). For example:

tm_year == 100

Denotes the year 2000.

tm4_year

The integer representation of the current year. For example:

tm4_year == 2010

Denotes the year 2010.

Variables to use for setting times

You can use the following time variables in the START, SUSPEND, CONTINUE,

VACATE, and KILL expressions. If you use these variables in the START

expression and you are operating across multiple time zones, unexpected results

may occur. This is because the negotiator daemon evaluates the START expressions

and this evaluation is done in the time zone in which the negotiator resides. Your

executing machine also evaluates the START expression and if your executing

machine is in a different time zone, the results you may receive may be

inconsistent. To prevent this inconsistency from occurring, ensure that both your

negotiator daemon and your executing machine are in the same time zone.

tm_hour

The number of hours since midnight (0-23).

Configuration file reference

260 LoadLeveler: Using and Administering

|
|

|
|

|

|
|

|

|

|

tm_isdst

Daylight Savings Time flag: positive when in effect, zero when not in effect,

negative when information is unavailable. For example, to start jobs between 5

PM and 8 AM during the month of October, factoring in an adjustment for

Daylight Savings Time, you can issue:

START: (tm_mon == 9) && (tm_hour < 8) && (tm_hour > 17) && (tm_isdst = 1)

tm_min

Number of minutes after the hour (0-59).

tm_sec

Number of seconds after the minute (0-59).

Configuration file reference

Chapter 11. Configuration file reference 261

Configuration file reference

262 LoadLeveler: Using and Administering

Chapter 12. Administration file reference

The administration file lists and defines the machines in the LoadLeveler cluster, as

well as and the characteristics of classes, users, and groups. LoadLeveler does not

prevent you from having multiple copies of administration files, but having only

one administration file prevents confusion and avoids potential problems that

might arise from having multiple files to update. To use only one administration

file that is available to all machines in a cluster, you must place the file in a shared

file system.

 Subtask Associated information (see . . .)

To find out what administrator tasks

you can accomplish by using the

administration file

Part 2, “Configuring and managing the LoadLeveler

environment,” on page 29

To learn how to correctly specify the

contents of an administration file

v “Administration file structure and syntax”

v “Administration file keyword descriptions” on

page 267

Administration file structure and syntax

The administration file is called LoadL_admin and it lists and defines the machine,

user, class, group, and adapter stanzas.

Machine stanza

Defines the roles that the machines in the LoadLeveler cluster play. See

“Defining machines” on page 78 for more information.

User stanza

Defines LoadLeveler users and their characteristics. See “Defining users”

on page 87 for more information.

Class stanza

Defines the characteristics of the job classes. See “Defining classes” on page

83 for more information.

Group stanza

Defines the characteristics of a collection of users that form a LoadLeveler

group. See “Defining groups” on page 89 for more information.

Adapter stanza

Defines the network adapters available on the machines in the LoadLeveler

cluster. See “Defining adapters” on page 81 for more information.

Stanzas have the following general format:

 Keywords are not case sensitive. This means you can enter them in lower case,

upper case, or mixed case.

label: type = type_of_stanza

keyword1 = value1

keyword2 = value2

 ...

Figure 30. Format of administration file stanzas

 263

|
|
|
|

|||

|
|
|

|
|

|
|
|

|
|
|

|
|

The following is a simple example of an administration file illustrating several

stanzas:

Stanza characteristics

The characteristics of a stanza are:

v Every stanza has a label associated with it. The label specifies the name you give

to the stanza.

v Every stanza has a type field that specifies it as a user, class, machine, group, or

adapter stanza.

v New line characters are ignored. This means that separate parts of a stanza may

be included on the same line. However, it is not recommended to have parts of a

stanza cross line boundaries.

v White space is ignored, other than to delimit keyword identifiers. This eliminates

confusion between tabs and spaces at the beginning of lines.

v A crosshatch sign (#) identifies a comment and may appear anywhere on the

line. All characters following this sign on that line are ignored.

v Multiple stanzas of the same label are allowed, but only the first label is used.

v Default stanzas specify the default values for any keywords which are not

otherwise specified. Each stanza type can have an associated default stanza. A

default stanza must appear in the administration file ahead of any specific

stanza entries of the same type. For example, a default class stanza must appear

ahead of any specific class stanzas you enter.

Syntax for limit keywords

The syntax for setting a limit is:

limit_type = hardlimit,softlimit

For example:

core_limit = 120kb,100kb

To specify only a hard limit, you can enter, for example:

core_limit = 120kb

To specify only a soft limit, you can enter, for example:

core_limit = ,100kb

machine_a: type = machine

 central_manager = true # defines this machine as the central manager

 adapter_stanzas = adapter_a # identifies an adapter stanza

class_a: type = class

 priority = 50 # priority of this class

user_a: type = user

 priority = 50 # priority of this user

group_a: type = group

 priority = 50 # priority of this group

adapter_a: type = adapter

 adapter_name = en0 #defines an adapter

Figure 31. Sample administration file stanzas

Administration file reference

264 LoadLeveler: Using and Administering

|

|

In a keyword statement, you cannot have any blanks between the numerical value

(100 in the above example) and the units (kb). Also, you cannot have any blanks to

the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit, core_limit,

file_limit, stack_limit, and rss_limit — the hard limit and the soft limit are

expressed as:

integer[.fraction][units]

The allowable units for these limits are:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

If no units are specified for data limits, then bytes are assumed.

For limit keywords that refer to a time limit — such as ckpt_time_limit, cpu_limit,

job_cpu_limit, and wall_clock_limit — the hard limit and the soft limit are

expressed as:

[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

You can use the following character strings with all limit keywords except the copy

keyword for wall_clock_limit, job_cpu_limit and ckpt_time_limit:

rlim_infinity Represents the largest positive number.

unlimited Has same effect as rlim_infinity.

copy Uses the limit currently active when the job is

submitted.

64-bit support for administration file keywords

Administrators can assign 64-bit integer values to selected keywords in the

administration file. System resource limits, with the exception of CPU limits, are

treated by LoadLeveler daemons and commands as 64-bit limits.

Table 43 on page 266 describes 64-bit support for specific administration file

keywords.

Administration file reference

Chapter 12. Administration file reference 265

|
|

Table 43. Notes on 64-bit support for administration file keywords

Keyword Stanza Notes

core_limit Class 64-bit integer values may be assigned to these limits.

Fractional specifications are allowed and will be converted to

64-bit integer values. Unit specifications are accepted and may

be one of the following: b, w, kb, kw, mb, mw, gb, gw, tb, tw,

pb, pw, eb, ew.

Example:

core_limit = 8gb,4.25gb

data_limit

default_resources Class Consumable resources associated with the default_resources

keyword may be assigned 64-bit integer values. Fractional

specifications are not allowed. Unit specifications are valid

only when specifying the values of the predefined

ConsumableMemory and ConsumableVirtualMemory

resources.

Example:

default_resources = ConsumableVirtualMemory(12 gb) db2_license(112)

file_limit Class See the notes for core_limit and data_limit, above.

resources Machine Consumable resources associated with the resources keyword

can be assigned 64-bit integer values. Fractional specifications

are not allowed. Unit specifications are valid only when

specifying the values of the predefined ConsumableMemory

and ConsumableVirtualMemory resources.

Examples:

resources = spice2g6(9123456789012) ConsumableMemory(10 gw)

resources = ConsumableVirtualMemory(15 pb) db2_license(1234567890)

rss_limit Class See the notes for core_limit and data_limit, above.

Example:

rss_limit = 1.25eb,3.33pw

stack_limit

64-bit limits on Linux systems

Applications managed by LoadLeveler for AIX can be 64-bit applications if the

hardware architecture on which AIX is running is capable of supporting 64-bit

processes. Resource limits, such as data limits and stack limits, can be 64-bit limits.

When a value of unlimited is specified for a process limit (cpu_limit excepted) in

the LoadLeveler administration file or job command file, the AIX version of

LoadLeveler stores this value internally as INT64_MAX. Before starting the user job,

LoadL_starter sets the appropriate limit to this value. This behavior is correct

because, on AIX, RLIM64_INFINITY is the same as INT64_MAX (=

0x7FFFFFFFFFFFFFFFLL).

On Linux systems, RLIM64_INFINITY is equal to UINT64_MAX (=

0xFFFFFFFFFFFFFFFFULL). To maintain compatibility with AIX, LoadLeveler for

Linux also stores unlimited internally as INT64_MAX. However, LoadL_starter on

Linux sets all process limits (cpu_limit excepted) that are in the range (INT64_MAX,

UINT64_MAX) to UINT64_MAX before starting the jobs managed by LoadLeveler.

For historical reasons, LoadLeveler for AIX treats the hard and soft time limits,

such as cpu_limit, job_cpu_limit, and wall_clock_limit, as 32-bit limits and

unlimited means INT32_MAX. For consistency reasons, LoadLeveler for Linux

assumes the same behavior.

Administration file reference

266 LoadLeveler: Using and Administering

Administration file keyword descriptions

account

Specifies a list of account numbers available to a user submitting jobs.

 Syntax:

account =list

Where list is a blank-delimited list of account numbers that identifies the

account numbers a user may use when submitting jobs.

 Default: A null list.

adapter_name

Specifies the name the operating system uses to refer to an interface card

installed on a node.

 Syntax:

adapter_name = string

Where string is the name of a particular interface card installed on the

node. Some examples are en0, tk1, and css0. Whenever a machine has one

or more adapters with a name that starts with css (for example, css0 or

css1), a virtual adapter named csss is created for that machine. This

adapter is used on the network statement when a job requires striped

communication. This keyword defines the adapters a user can specify in a

job command file using the network keyword.

adapter_stanzas

Specifies a list of adapter stanza names that define the adapters on a

machine that can be requested.

 Syntax:

adapter_stanzas = stanza_list

Where stanza_list is a blank-delimited list of one or more adapter stanza

names which specify adapters available on this machine. To take advantage

of dynamic adapter configuration you must exclude this keyword from the

machine stanza. LoadLeveler will then dynamically obtain the adapter

configuration for this machine from the RSCT.

Note: The dynamic adapter configuration feature cannot be used to

determine adapter characteristics for the following switch adapters:

v SP_Switch_MX_Adapter

v SP_Switch_MX2_Adapter

v RS/6000_SP_System_Attachment_Adapter

v SP_Switch2_Adapter

v SP_Switch2_PCI_Attachment_Adapter

v SP_Switch2_MX2_Adapter

v SP_Switch2_PCI-X_Attachment_Adapter

All adapter stanzas you define must be specified on this keyword. If the

keyword is specified without defining any adapter stanza names no

adapter will be configured for the machine.

adapter_type

Specifies the type of switch adapter to be used. This keyword is used for

Administration file reference

Chapter 12. Administration file reference 267

|

the High Performance Switch in a peer domain. The llextRPD command

will not generate an adapter_type statement if no AdapterType is found in

the cluster.

 Syntax:

adapter_type = type

Where type is the designation for the type of switch adapter.

admin Specifies a list of administrators for a group or class.

 Syntax:

admin = list

Where list is a blank-delimited list of administrators for either this class or

this group, depending on whether this keyword appears in a class or

group stanza, respectively. These administrators can hold, release, and

cancel jobs in this class or this group.

alias Lists one or more alias names to associate with the machine name.

 Syntax:

alias = machine_name

Where machine_name is a blank-delimited list of one or more machine

names. Depending upon your network configurations, you may need to

add alias keywords for machines that have multiple interfaces.

 In general, if your cluster is configured with machine host names which

match the host names corresponding to the IP address configured for the

LAN adapters which LoadLeveler is expected to use, you will not have to

specify the alias keyword. For example, if all of the machines in your

cluster are configured like this sample machine, you should not have to

specify the alias keyword.

Machine porsche.kgn.ibm.com

v The hostname command returns porsche.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.20 resolves to hostname

porsche.kgn.ibm.com.

However, if any machine in your cluster is configured like either of the

following two sample machines, then you will have to specify the alias

keyword for those machines:

1. Machine yugo.kgn.ibm.com

v The hostname command returns yugo.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.21 resolves to hostname

chevy.kgn.ibm.com.

v No adapter address resolves to yugo.

You need to code the machine stanza as:

chevy: type = machine

alias = yugo

2. Machine rover.kgn.ibm.com

v The hostname command returns rover.kgn.ibm.com.

v The FDDI adapter address 129.40.9.22 resolves to hostname

rover.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.22 resolves to hostname

bmw.kgn.ibm.com.

Administration file reference

268 LoadLeveler: Using and Administering

|
|
|
|

v No route exists via the FDDI adapter to the clusters central manager

machine.

v A route exists from this machine to the central manager via the

Ethernet adapter.

You need to code the machine stanza as:

bmw: type = machine

alias = rover

central_manager

Determines whether the machine is the LoadLeveler central manager.

 Syntax:

central_manager = true| false | alt

Where:

v true designates this machine as the LoadLeveler central manager host,

where the negotiator daemon runs. You must specify one and only one

machine stanza identifying the central manager. For example:

machine_a: type = machine

central_manager = true

v false specifies that this machine is not the central manager.

v alt specifies that this machine can serve as an alternate central manager

in the event that the primary central manager is not functioning. For

more information on recovering if the primary central manager is not

operating, refer to “What happens if the central manager isn’t

operating?” on page 535. Submit-only machines cannot have their

machine stanzas set to this value.

If you are going to select machines to serve as alternate central

managers, you should look at the following keywords in the

configuration file:

– CENTRAL_MANAGER_HEARTBEAT_INTERVAL

– CENTRAL_MANAGER_TIMEOUT

For information on setting these keywords, see “Specifying alternate

central managers” on page 37.

Default: false

ckpt_dir

Specifies the directory to be used for checkpoint files for jobs that did not

specify this directory in the job command file.

 Syntax:

ckpt_dir = directory

Where directory is the directory location to be used for checkpoint files that

did not have a directory name specified in the job command file. If the

value specified does not have a fully qualified directory path (including

the beginning forward slash), the initial working directory will be inserted

before the specified value.

 The value specified by the ckpt_dir keyword is only used when the

ckpt_file keyword in the job command file does not contain a full path

name and the ckpt_dir keyword in the job command file is not specified.

For more information on determining the checkpoint directory, see

“Naming checkpoint files and directories” on page 129.

Administration file reference

Chapter 12. Administration file reference 269

Default: Initial working directory

ckpt_time_limit

Specifies the hard limit, soft limit, or both limits for the elapsed time that

checkpointing a job can take.

 Syntax:

ckpt_time_limit = hardlimit,softlimit

Where hardlimit,softlimit defines the maximum time that checkpointing a

job can take. When LoadLeveler detects that the softlimit has been

exceeded, it attempts to end the checkpoint and allow the job to continue.

If this is not possible, and the hard limit is exceeded, LoadLeveler will

terminate the job. The start time of the checkpoint is defined as the time

when the Startd daemon receives status from the starter that a checkpoint

has started.

 Default: Unlimited

 Examples:

ckpt_time_limit = 30:45 #hardlimit - 30 minutes 45 seconds

ckpt_time_limit = 30:45,25:00 #hardlimit - 30 minutes 44 seconds

 #soflimit - 25 minutes

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

class_comment

Text characterizing the class.

 Syntax:

class_comment = "string"

Where string is text characterizing the class. This information appears

when the user is building a job command file using the GUI and requests

Choice information on the classes to which he or she is authorized to

submit jobs. The comment string associated with this keyword cannot

contain an equal sign (=) or a colon (:) character. The length of the string

cannot exceed 1024 characters.

 Default: No default value is set.

core_limit

Specifies the hard limit, soft limit, or both limits for the size of a core file a

job can create.

 Syntax:

ore_limit = hardlimit,softlimit

Examples:

core_limit = unlimited

core_limit = 30mb

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

Administration file reference

270 LoadLeveler: Using and Administering

|

|

|
|
|

|

|
|
|

cpu_limit

Specifies hard limit, soft limit, or both limits for the CPU time to be used

by each individual process of a job step.

 Syntax:

cpu_limit = hardlimit,softlimit

For example, if you impose a cpu_limit of five hours and you have a job

step composed of five processes, each process can consume five CPU

hours; the entire job step can therefore consume 25 total hours of CPU.

 Examples:

cpu_limit = 12:56:21 # hardlimit = 12 hours 56 minutes 21 seconds

cpu_limit = 56:00,50:00 # hardlimit = 56 minutes 0 seconds

 # softlimit = 50 minutes 0 seconds

cpu_limit = 1:03 # hardlimit = 1 minute 3 seconds

cpu_limit = unlimited # hardlimit = 2,147,483,647 seconds

 # (X’7FFFFFFF’)

cpu_limit = rlim_infinity # hardlimit = 2,147,483,647 seconds

 # (X’7FFFFFFF’)

cpu_limit = copy # current CPU hardlimit value on the

 # submitting machine.

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

cpu_speed_scale

Determines whether CPU time is normalized according to machine speed.

 Syntax:

cpu_speed_scale = true | false

Where true specifies that CPU time (which is used, for example, in setting

limits, in accounting information, and reported by the llq -x command), is

in normalized units for each machine. false specifies that CPU time is in

native units for each machine. For an example of using this keyword to

normalize accounting information, see “Example: Setting up job accounting

files” on page 61.

 Default: false

css_type

Designates the type of switch adapter to be used.

 Syntax:

css_type = type

Where type is one of the following choices:

v SP_Switch_Adapter

v SP_Switch_MX_Adapter

v SP_Switch_MX2_Adapter

v RS/6000_SP_System_Attachment_Adapter

v SP_Switch2_Adapter

This keyword must be specified in combination with a switch adapter (″css

. . .″), otherwise it will be ignored. The css_type attribute for the available

adapters are defined in the SDR. Use the command SDRGetObjects

Adapter css_type to obtain a list of css_types, or use llextSDR to obtain all

of the adapter information from the SDR.

Administration file reference

Chapter 12. Administration file reference 271

|
|
|

|

Note: css_type cannot be RS/6000_SP_System_Attachment_Adapter or

SP_Switch_Adapter if you are using Gang scheduling. For more

information see “Planning to preempt jobs” on page 113.

data_limit

Specifies hard limit, soft limit, or both for the data segment to be used by

each process of the submitted job.

 Syntax:

data_limit = hardlimit,softlimit

Examples:

data_limit = 125621 # hardlimit = 125621 bytes

data_limit = 5621kb # hardlimit = 5621 kilobytes

data_limit = 2mb # hardlimit = 2 megabytes

data_limit = 2.5mw # hardlimit = 2.5 megawords

data_limit = unlimited # hardlimit = 9,223,372,036,854,775,807 bytes

 # (X’7FFFFFFFFFFFFFFF’)

data_limit = rlim_infinity # hardlimit = 9,223,372,036,854,775,807 bytes

 # (X’7FFFFFFFFFFFFFFF’)

data_limit = copy # copy data hardlimit value from

 # submitting machine.

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

dce_host_name

Specifies the DCE host name of this machine.

 Syntax:

dce_host_name = dce hostname

Where dce hostname is the DCE hostname of this machine. Use either the

″SDRGetObjects Node dcehostname″ or llextSDR command to obtain a

listing of DCE host names of nodes on an SP system.

default_class

Specifies a class name that is the default value assigned to jobs submitted

by users for which no class statement appears.

 Syntax:

default_class = list

Where list is a blank-delimited list of class names used for jobs which do

not include a class statement in the job command file. If you specify only

one default class name, this class is assigned to the job. If you specify a list

of default class names, LoadLeveler searches the list to find a class which

satisfies the resource limit requirements. If no class satisfies these

requirements, LoadLeveler rejects the job.

 Suppose a job requests a CPU limit of 10 minutes. Also, suppose the

default class list is default_class = short long, where short is a class for

jobs up to five minutes in length and long is a class for jobs up to one

hour in length. LoadLeveler will select the long class for this job because

the short class does not have sufficient resources.

 Default: If no default_class is specified in the user stanza, or if there is no

user stanza at all, then jobs submitted without a class statement are

Administration file reference

272 LoadLeveler: Using and Administering

|
|
|

assigned to the default_class that appears in the default user stanza. If you

do not define a default_class, jobs are assigned to the class called

No_Class.

default_group

Specifies the default group name to which the user belongs.

 Syntax:

default_group = group_name

Where group_name is the default group assigned to jobs submitted by the

user.

 If you specify default_group = Unix_Group, LoadLeveler sets the user’s

LoadLeveler group to his or her current UNIX group.

 Default: If a default_group statement does not appear in the user stanza,

or if there is no user stanza at all, then jobs submitted by the user without

a group statement are assigned to the default_group that appears in the

default user stanza. If you do not define a default_group, jobs are assigned

to the group called No_Group.

default_interactive_class

Specifies a class to which interactive jobs are assigned for jobs submitted

by users who do not specify a class using the LOADL_INTERACTIVE_CLASS

variable. You can specify only one default interactive class name.

 Syntax:

default_interactive_class = class_name

Where class_name is the class to which an interactive job submitted by this

user is assigned if the user does not specify a class using the

LOADL_INTERACTIVE_CLASS environment variable.

 Default: If you do not set a default_interactive_class value in the user

stanza, or if there is no user stanza at all, then interactive jobs submitted

without a class statement are assigned to the default_interactive_class that

appears in the default user stanza. If you do not define a

default_interactive_class, interactive jobs are assigned to the class called

No_Class.

 See “Examples: User stanzas” on page 88 for more information on how

LoadLeveler assigns a default interactive class to jobs.

default_resources

Specifies the default amount of resources consumed by a task of a job step,

provided that no resources keyword is coded for the step in the job

command file. If a resources keyword is coded for a job step, then it

overrides any default resources associated with the associated job class.

 Syntax:

default_resources = name(count) name(count)...name(count)

The administrator defines the name and count values for

default_resources. In addition, name(count) could be

ConsumableCpus(count), ConsumableMemory(count units), or

ConsumableVirtualMemory(count units).

Administration file reference

Chapter 12. Administration file reference 273

ConsumableMemory and ConsumableVirtualMemory are the only two

consumable resources that can be specified with both a count and units.

The count for each specified resource must be an integer greater than or

equal to zero. The allowable units are those normally used with

LoadLeveler data limits:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

The ConsumableMemory and ConsumableVirtualMemory values are

stored in MB (megabytes) and rounded up. Therefore, the smallest amount

of ConsumableMemory or ConsumableVirtualMemory which you can

request is one megabyte. If no units are specified, then megabytes are

assumed. Resources defined here that are not in the

SCHEDULE_BY_RESOURCES list in the global configuration file will not

effect the scheduling of the job.

device_driver_name

Specifies the device driver interface needed for user space function.

 Syntax:

device_driver_name = name

Where name specifies the device driver interface. A device_driver_name

will be present for all adapter stanzas whose name begins with sn This

keyword is for peer domain switch adapters.

env_copy

 Specifies a default value for the job command file env_copy keyword for

the class, group or user stanza containing the keyword.

 Syntax:

env_copy = all | master

Table 44 states the value that LoadLeveler uses depending on the

combination of values set in the user, group, or class stanzas.

 Table 44. Summary of possible values set for the env_copy keyword in the administration file

env_copy keyword setting in applicable

stanzas in the administration file

Resulting LoadLeveler default behavior for

copying the job environment

All stanzas that set the env_copy keyword

specify env_copy = master

master becomes the default value for the job

command file env_copy keyword.

One or more stanzas explicitly set env_copy =

all

all becomes the default value for the job

command file env_copy keyword.

The env_copy keyword is not specified in

any stanza

Administration file reference

274 LoadLeveler: Using and Administering

|

|
|

|

|

|
|

||

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

Default value: No default value is set.

 For more information, see:

v The job command file env_copy keyword description on page 302.

v “Steps for reducing job launch overhead for parallel jobs” on page 92.

exclude_groups

Specifies a list of groups names identifying those who cannot submit jobs

of a particular class.

 Syntax:

exclude_groups = list

Where list is a blank-delimited list of groups who are not allowed to

submit jobs of that class name.

 This list also may contain individual user names. To allow a list of users to

be included with the list of group names, add a plus sign (+) to each user

name that you add to the list. LoadLeveler treats these names as implicit

groups.

 For example, to add user mike to a list of group names, specify:

include_groups = prod +mike

If the string +mike is also the actual name of a group stanza, LoadLeveler

treats this name as a group, not an implicit group. In this case,

LoadLeveler will not prevent user mike from submitting jobs to this class

unless the user is a member of the prod or +mike group.

 If this keyword is specified, this list limits groups and users of that class to

those on the list. Do not specify both a list of included groups and a list of

excluded groups. Only one of these may be used for any class.

 Default: The default is that no groups are excluded.

exclude_users

Specifies a list of user names identifying those who cannot submit jobs of a

particular class or who are not members of the group.

 Syntax:

exclude_users = list

The definition of this keyword varies slightly, depending on the type of

administration file stanza in which the keyword appears:

v In a class stanza: list is a blank-delimited list of users who are not

permitted to submit jobs of that class name.

v In a group stanza: list is a blank-delimited list of users who do not

belong to the group.

Do not specify both a list of included users and a list of excluded users.

Only one of these may be used for any class or group.

 Default: The default is that no users are excluded.

file_limit

Specifies the hard limit, soft limit, or both limits for the size of a file that a

job can create.

Administration file reference

Chapter 12. Administration file reference 275

|

|

|

|

|
|
|
|

|

|
|
|
|

|

|
|

|

Syntax:

file_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

include_groups

Specifies a list of group names identifying those who can submit jobs of a

particular class.

 Syntax:

include_groups = list

Where list is a blank-delimited list of groups who are allowed to submit

jobs of that class name.

 This list also may contain individual user names. To allow a list of users to

be included with the list of group names, add a plus sign (+) to each user

name that you add to the list. LoadLeveler treats these names as implicit

groups.

 For example, to add user mike to a list of group names, specify:

include_groups = prod +mike

If the string +mike is also the actual name of a group stanza, LoadLeveler

treats this name as a group, not an implicit group. In this case,

LoadLeveler will not allow user mike to submit jobs to this class unless

the user is a member of the prod or +mike group.

 If this keyword is specified, this list limits groups and users of that class to

those on the list. Do not specify both a list of included groups and a list of

excluded groups. Only one of these may be used for any class.

 Default: The default is to include all groups.

include_users

Specifies a list of user names identifying those who can submit jobs of a

particular class or who do belong to the group.

 Syntax:

include_users = list

The definition of this keyword varies slightly, depending on the type of

administration file stanza in which the keyword appears:

v In a class stanza: list is a blank-delimited list of users who are permitted

to submit jobs of that class name. If provided, this list limits users of that

class to those on the list.

v In a group stanza: list is a blank-delimited list of users that belong to the

group. If provided, this list limits users of that group to those on the list.

Do not specify both a list of included users and a list of excluded users.

Only one of these may be used for any class or group.

 Default: The default is to include all users or groups.

Administration file reference

276 LoadLeveler: Using and Administering

|
|
|

|
|
|
|

|

|
|
|
|

|

|
|

|

|

interface_address

Specifies the IP address by which the adapter is known to other nodes in

the network.

 Syntax:

interface_address = string

Where string is the IP address by which the adapter is known to other

nodes in the network. For example: 7.14.21.28. This keyword is required.

interface_name

Specifies the name by which the adapter is known to other nodes in the

network.

 Syntax:

interface_name = string

Where string is the name by which the adapter is known by other nodes in

the network.

job_cpu_limit

Specifies the hard limit, soft limit, or both limits for the total amount of

CPU time that all tasks of an individual job step can use per machine.

 Syntax:

job_cpu_limit = hardlimit,softlimit

Example:

job_cpu_limit = 10000

For more information on this keyword, see:

v JOB_LIMIT_POLICY on page “Collecting job resource data on serial

and parallel jobs” on page 57

v For additional information about limit keywords, see the following

topics:

– “Syntax for limit keywords” on page 264

– “Using limit keywords” on page 83

logical_id

Specifies the logical ID that uniquely identifies the adapter on its network.

 Syntax:

logical_id = id

This keyword is for peer domain switch adapters.

machine_mode

Specifies the type of jobs this machine can run.

 Syntax:

machine_mode = batch | interactive | general

Where:

batch Specifies this machine can run only batch jobs.

interactive Specifies this machine can run only interactive jobs. Only

POE is currently enabled to run interactively.

Administration file reference

Chapter 12. Administration file reference 277

|
|

|
|
|
|

|

general Specifies this machine can run both batch jobs and

interactive jobs.

 Default: general

master_node_exclusive

Specifies whether or not this machine is used only as a master node for

parallel jobs.

 Syntax:

master_node_exclusive = true| false

Where true specifies that this machine is used only as a master node for

parallel jobs.

Note: master_node_exclusive is ignored by the Gang scheduler.

 Default: false

master_node_requirement

Specifies whether or not parallel jobs in this class require the master node

feature.

 Syntax:

master_node_requirement = true|false

Where true specifies that parallel jobs do require the master node feature.

For these jobs, LoadLeveler allocates the first node (called the “master”) on

a machine having the master_node_exclusive = true setting in its machine

stanza. If most or all of your parallel jobs require this feature, you should

consider placing the statement master_node_requirement = true in your

default class stanza. Then, for classes that do not require this feature, you

can use the statement master_node_requirement = false in their class

stanzas to override the default setting. One machine per class should have

the true setting; if more than one machine has this setting, normal

scheduling selection is performed.

Note: master_node_requirement is ignored by Gang scheduler.

 Default: false

max_jobs_scheduled

Specifies the maximum number of job steps that this machine can run.

 Syntax:

max_jobs_scheduled = number

Where number is the maximum number of jobs submitted from this

scheduling (schedd) machine that can run (or start running) in the

LoadLeveler cluster at one time. If number of jobs are already running, no

other jobs submitted from this machine will run, even if resources are

available in the LoadLeveler cluster. When one of the running jobs

completes, any waiting jobs then become eligible to be run.

 Default: The default is -1, which means there is no maximum.

max_node

Specifies the maximum number of nodes that may be requested for a

particular class or by a particular user or group for a parallel job.

Administration file reference

278 LoadLeveler: Using and Administering

|
|

Syntax:

max_node = number

Where number specifies the maximum number of nodes for a parallel job in

a job command file using the node keyword. The max_node keyword will

not affect the use of the min_processors and max_processors keywords in

the job command file.

 Default: The default is -1, which means there is no limit.

max_processors

Specifies the maximum number of processors that may be requested for a

particular class or by a particular user or group for a parallel job.

 Syntax:

max_processors = number

Where number specifies the maximum number of processors for a parallel

job in a job command file using the min_processors and max_processors

keywords.

 Default: The default is -1 which means that there is no limit.

max_protocol_instances

Specifies the maximum number of instances on the network statement.

 Syntax:

max_protocol_instances = number

Where number specifies the maximum value allowed on the instances

keyword on the network statement for jobs submitted on this class.

 Default: The default is 2.

max_reservation_duration

Specifies the maximum time, in minutes, that advance reservations made

for this user or group may last.

 Syntax:

max_reservation_duration = number of minutes

When the duration is defined in both the user and group stanza for a

specific user, LoadLeveler uses the more restrictive of the two values to

determine the maximum duration.

 Default: The default is -1, which means that no limit is placed on the

duration of the reservation.

 For more information, see “Steps for configuring reservations in a

LoadLeveler cluster” on page 117.

max_reservations

Specifies the maximum number of advance reservations that this user or

group can make.

 Syntax:

max_reservations = number of reservations

Administration file reference

Chapter 12. Administration file reference 279

|
|

|
|
|

|

|

|
|
|

|
|

|
|

|
|
|

|

|

This number includes all reservations except those in COMPLETE or

CANCEL state.

 Table 45 summarizes the resulting behavior for various sample

combinations of max_reservations settings in user and group stanzas.

 Table 45. Sample user and group settings for the max_reservations keyword

When the user

stanza value is:

And the group

stanza value is:

Then the user may create this number of

reservations in this group:

Not defined Not defined 0 (zero)

2 Not defined 2 (with any group as the owning group)

Not defined 1 1

3 1 1 (the user may create more reservations in

other groups)

1 2 1

0 2 0

1 0 0 (the user may create one reservation in

another group)

 Default: Undefined, which means that no reservations will be authorized

or disallowed. LoadLeveler considers this keyword undefined if negative

values are set for it.

max_total_tasks

Specifies the maximum number of tasks that the Backfill or Gang scheduler

allows a user, group, or class to run at any given time.

 Syntax:

max_total_tasks = number

where number is -1, 0, or any positive integer.

 Default: The default value for this keyword is -1,which allows an

unlimited number of tasks.

maxidle

Specifies the maximum number of idle job steps this user or group can

have simultaneously.

 Syntax:

maxidle = number

Where number is the maximum number of idle jobs either this user or this

group can have in queue, depending on whether this keyword appears in

a user or group stanza. That is, number is the maximum number of jobs

which the negotiator will consider for dispatch for the user or group. Jobs

above this maximum are placed in the NotQueued state. This action

prevents one of the following situations:

v Individual users from dominating the number of jobs that are either

running or are being considered to run.

v Groups from flooding the job queue.

Default: If the user or group stanza does not specify maxidle or if there is

no user or group stanza at all, the maximum number of jobs that can be

Administration file reference

280 LoadLeveler: Using and Administering

|
|

|
|

||

|
|
|
|
|
|

|||

|||

|||

|||
|

|||

|||

|||
|
|

|
|
|

|

|
|

|
|

|
|

simultaneously in queue for the user or group is defined in the default

stanza. If no value is found, or the limit found is -1, then no limit is placed

on the number of jobs that can be simultaneously idle for the useror group.

 For more information, see “Controlling the mix of idle and running jobs”

on page 540.

maxjobs

Specifies the maximum number of job steps this user, class, or group can

have running simultaneously.

 Syntax:

maxjobs = number

The definition of this keyword varies slightly, depending on the type of

administration file stanza in which the keyword appears:

v In a class stanza: number is the maximum number of jobs that can run in

this class.

v In a user stanza: number is the maximum number of jobs this user can

run at any time.

v In a group stanza: number is a maximum number of jobs this group can

run at any time.

Default: If the stanza does not specify maxjobs, or if there is no class, user,

or group stanza at all, the maximum jobs is defined in the default stanza.

The default is -1, which means:

v In a class stanza: No limit is placed on the number of jobs a user can

submit.

v In a user stanza: No limit is placed on the number of jobs that can

simultaneously run for the user. Regardless of this limit, there is no limit

to the number of jobs a user can submit.

v In a group stanza: No limit is placed on the number of jobs that can be

simultaneously run for the group. Regardless of the limit set to running

jobs, there is no limit to the number of jobs that a group can submit.

For more information, see “Controlling the mix of idle and running jobs”

on page 540.

maxqueued

Specifies the maximum number of job steps a single group or user can

have queued at the same time.

 Syntax:

maxqueued = number

Where number is the maximum number of jobs allowed in the queue for

this user or group, depending on whether this keyword appears in a user

or group stanza. This is the maximum number of jobs which can be either

running or being considered to be dispatched by the negotiator for that

user or group. Jobs above this maximum are placed in the NotQueued

state. This action prevents one of the following situations:

v Individual users from dominating the number of jobs that are either

running or are being considered to run.

v Groups from flooding the job queue.

Default: If the user or group stanza does not specify maxqueued or if

there is no user or group stanza at all, the maximum number of jobs that

Administration file reference

Chapter 12. Administration file reference 281

|

|

|
|

|
|

|

|
|

can be simultaneously in queue for the user or group is defined in the

default stanza. If no value is found, or the limit found is -1, then no limit is

placed on the number of jobs that can be simultaneously idle for the user

or group. Regardless of this limit, there is no limit to the number of jobs a

user or group can submit.

 For more information, see “Controlling the mix of idle and running jobs”

on page 540.

multilink_address

Specifies the multilink address used for IP striping on the associated

adapter.

 Syntax:

multilink_address = ip_address

Where ip_address indicates the IP address that includes the adapters that

can be striped across.

multilink_list

Specifies the IP addresses of the adapters that this multilink device stripes

across.

 Syntax:

multilink_list = adapter_name <, adapter_name>*

Where adapter_name indicates multilinked devices which stripes IP

addresses across the adapters given in the list.

name_server

Specifies a list of name servers used for a machine.

 Syntax:

name_server = list

Where list is a blank-delimited list of character strings that is used to

specify which nameservers are used for the machine. Valid strings are

DNS, NIS, and LOCAL. LoadLeveler uses the list to determine when to

append a DNS domain name for machine names specified in LoadLeveler

commands issued from the machine described in this stanza.

 If DNS is specified alone, LoadLeveler will always append the DNS

domain name to machine names specified in LoadLeveler commands. If

NIS or LOCAL is specified, LoadLeveler will never append a DNS domain

name to machine names specified in LoadLeveler commands. If DNS is

specified with either NIS or LOCAL, LoadLeveler will always look up the

name in the administration file to determine whether to append a DNS

domain name. If the name is specified with a trailing period, it doesn’t

append the domain name.

network_id

Specifies a unique numerical network identifier. This value is set by the

llextRPD command and should not be changed.

 Syntax:

network_id = number

Default: No default value is set.

network_type

Administration file reference

282 LoadLeveler: Using and Administering

|

|
|

|
|

|

Syntax:

network_type = string

Where string specifies the type of network that the adapter supports (for

example, Ethernet). This should be unique for each communication path

(for example, css0 and css1 define two different communication paths).

This is an administrator defined name. This keyword defines the types of

networks a user can specify in a job command file using the network

keyword.

 Default: No default value is set.

nice Increments the nice value of a job.

 Syntax:

nice = value

Where value is the amount by which the current UNIX nice value is

incremented. The nice value is one factor in a job’s run priority. The lower

the number, the higher the run priority. If two jobs are running on a

machine, the nice value determines the percentage of the CPU allocated to

each job.

 This value ranges from -20 to 20. Values out of this range are placed at the

top (or bottom) of the range. For example, if your current nice value is 15,

and you specify nice = 10, the resulting value is 20 (the upper limit)

rather than 25. The default is 0.

 If the administrator has decided to enforce consumable resources, the nice

value will only adjust priorities of processes within the same WLM class.

Because LoadLeveler defines a single class for every job step, the nice value

as no effect.

 For more information, consult the appropriate UNIX documentation.

NQS_class

Specifies whether any job submitted to this class is routed to an NQS

machine.

 Restriction: LoadLeveler for Linux does not support NQS jobs.

 Syntax:

NQS_class = true|false

When true, any job submitted to this class will be routed to an NQS

machine.

 Default: false

NQS_query

Specifies a list of queue names to use to monitor and cancel jobs.

 Restriction: LoadLeveler for Linux does not support NQS jobs.

 Syntax:

NQS_query = queue names

Administration file reference

Chapter 12. Administration file reference 283

|

|

|

Where queue names is a blank-delimited list of queue names (including host

names if necessary) to be used with the qstat command to monitor the job

and with the qdel command to cancel the job.

 Default: No default value is set.

NQS_submit

Specifies a name that identifies the name of the NQS pipe queue to which

the job will be routed.

 Restriction: LoadLeveler for Linux does not support NQS jobs.

 Syntax:

NQS_submit = name

Where name is the name of the NQS pipe queue to which the job will be

routed. When the job is dispatched to LoadLeveler, LoadLeveler will

invoke the qsub command using the name of this queue.

 Default: No default value is set.

pool_list

Specifies a list of pool numbers to which the machine belongs. Do not use

negative numbers in a machine pool_list.

 Syntax:

pool_list = pool_numbers

Where pool_numbers is a blank-delimited list of non-negative numbers

identifying pools to which the machine belongs. These numbers may be

any positive integers including zero.

priority

Identifies the priority of the appropriate user, class, or group.

 Syntax:

priority = number

Where number is a integer that specifies the priority for jobs either in this

class, or submitted by this user or group, depending on whether this

keyword appears in a class, user, or group stanza, respectively.

 The number specified for priority is referenced as either ClassSysprio,

UserSysprio, or GroupSysprio in the configuration file. You can use

ClassSysprio, UserSysprio, or GroupSysprio when assigning job priorities.

If the variable ClassSysprio, UserSysprio, or GroupSysprio does not

appear in the SYSPRIO expression in the configuration file, then the

priority specified in the administration file is ignored. See “LoadLeveler

variables” on page 256 for more information about the ClassSysprio,

UserSysprio, or GroupSysprio keywords.

 Default: The default is 0.

reservation_permitted

Specifies whether the machine may be reserved through new reservation

requests.

 Syntax:

reservation_permitted = true | false

Administration file reference

284 LoadLeveler: Using and Administering

|

|
|
|

|
|
|
|

|
|

|
|
|

|

|

If the value of this keyword is changed to false for this machine when it

already is reserved through existing reservations, LoadLeveler will reserve

this machine until those existing reservations complete or are canceled.

 Default: true, which means that this machine may be reserved through

new reservation requests.

resources

Specifies quantities of the consumable resources initially available on the

machine.

 Syntax:

resources = name(count) name(count) ... name(count)

Where name(count) is an administrator-defined name and count, or could

also be ConsumableCpus(count), ConsumableMemory(count units), or

ConsumableVirtualMemory(count units). ConsumableMemory and

ConsumableVirtualMemory are the only two consumable resources that

can be specified with both a count and units. The count for each specified

resource must be an integer greater than or equal to zero. The allowable

units are those normally used with LoadLeveler data limits:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

The ConsumableMemory and ConsumableVirtualMemory resource values

are stored in mb (megabytes) and rounded up. Therefore, the smallest

amount of ConsumableMemory or ConsumableVirtualMemory which

you can request is one megabyte. If no units are specified, then megabytes

are assumed. Resources defined here that are not in the

SCHEDULE_BY_RESOURCES list in the global configuration file will not

effect the scheduling of the job.

 For the ConsumableCPUs resource, a value of all may be specified instead

of count. This indicates that the CPU resource value will be obtained from

the Startd daemons. However, these resources will not be available for

scheduling until the first Startd update.

 Default: No default value is set.

rss_limit

Specifies the hard limit, soft limit, or both limits for the resident set size for

a job.

 Syntax:

rss_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

Administration file reference

Chapter 12. Administration file reference 285

|
|
|

|
|

|

|
|

v “Using limit keywords” on page 83

schedd_fenced

Specifies whether or not the central manager is to ignore connections from

the schedd daemon running on this machine.

 Syntax:

schedd_fenced = true | false

Where true specifies that the central manager ignores connections from the

schedd daemon running on this machine. Use the true setting together

with the llctl -h host purgeschedd command when you want to attempt to

recover resources lost when a node running the schedd daemon fails. A

true setting prevents conflicts from arising when a schedd machine is

restarted while a purge is taking place. For more information, see “How do

I recover resources allocated by a schedd machine?” on page 537.

 Default: false

schedd_host

Specifies whether or not this machine is used to help submit-only

machines access LoadLeveler hosts that run LoadLeveler jobs.

 Syntax:

schedd_host = true | false

When true this keyword specifies that if a schedd is running on a machine

that it will serve as a public scheduling machine. A public scheduling

machine accepts job submissions from other machines in the LoadLeveler

cluster. Jobs are submitted to a public scheduling machine if:

v The submission occurs on a machine which does not run the schedd

daemon. These include submit-only machines and machines which are

configured to run other LoadLeveler daemons but not the schedd

daemon.

v The submission occurs on a machine which runs the schedd daemon but

is configured to submit jobs to a public scheduling machine by having

the SCHEDD_SUBMIT_AFFINITY keyword set to false in the global or

local configuration file.

This keyword does not configure LoadLeveler to run the schedd daemon

on a node. Use the configuration keyword SCHEDD_RUNS_HERE to run

the schedd daemon on a node. Refer to 243 for more information.

 Default: false

spacct_excluse_enable

Specifies whether the SP accounting function is informed whenever this

machine is being used exclusively by a particular job.

 Syntax:

spacct_excluse_enable = true | false

Where true specifies that the accounting function on an SP system is

informed that a job step has exclusive use of this machine. Note that your

SP system must have exclusive user accounting enabled in order for this

keyword to have an effect. For more information on SP accounting, see

Parallel System Support Programs for AIX: Administration Guide, GC23-3899.

Administration file reference

286 LoadLeveler: Using and Administering

|

Default: false

speed Specifies the weight associated with the machine for scheduling purposes.

 Syntax:

speed = number

Where number is a floating point number that is used for machine

scheduling purposes in the MACHPRIO expression. For more information

on machine scheduling and the MACHPRIO expression, see “Setting

negotiator characteristics and policies” on page 36. In addition, the speed

keyword is also used to define the weight associated with the machine.

This weight is used when gathering accounting data on a machine basis.

 To distinguish speed among different machines, you must include this

value in the local configuration file. For information on how the speed

keyword can be used to schedule machines, refer to “Setting negotiator

characteristics and policies” on page 36.

 Default: The default is 1.0.

stack_limit

Specifies the hard limit, soft limit, or both limits for the size of a stack.

 Syntax:

stack_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

submit_only

Specifies whether or not this machine is a submit-only machine.

 Syntax:

submit_only = true| false

Where true designates this as a submit-only machine. If you set this

keyword to true, in the administration file set central_manager and

schedd_host to false.

 Default: false

switch_node_number

Identifies the node on which the SP switch adapter is installed.

 Syntax:

switch_node_number = integer

Where integer specifies the node on which the SP switch adapter is

installed. This keyword is required for SP switch adapters. Its value is

defined in the switch_node_number field in the Node class in the SDR.

This value must match the value in the

/spdata/sys1/st/switch_node_number file of the Parallel System Support

Programs (PSSP).

total_tasks

Specifies the maximum number of tasks that may be requested for a

particular class or by a particular user or group for a parallel job.

Administration file reference

Chapter 12. Administration file reference 287

|
|
|

|
|

Syntax:

total_tasks = number

Where number specifies the maximum number of tasks for a parallel job in

a job command file using the total_tasks keyword.

 Default: The default is -1, which means there is no limit.

type Identifies the type of stanza in the administration file.

 Syntax:

type = stanza_type

Where stanza_type is one of the following:

v Adapter

v Class

v Group

v Machine

v User

Default: No default value is set.

wall_clock_limit

Specifies the hard limit, soft limit, or both limits for the amount of elapsed

time for which a job can run.

 Syntax:

wall_clock_limit = hardlimit,softlimit

Note that LoadLeveler uses the time the negotiator daemon dispatches the

job as the start time of the job. When a job is checkpointed, vacated, and

then restarted, the wall_clock_limit is not adjusted to account for the

amount of time that elapsed before the checkpoint occurred. This keyword

is not supported for NQS jobs.

 If you are running the Backfill or Gang scheduler, you must set a wall

clock limit either in the job command file or in a class stanza (for the class

associated with the job you submit). LoadLeveler administrators should

consider setting a default wall clock limit in a default class stanza. For

more information on setting a wall clock limit when using the Backfill or

Gang scheduler, see “Choosing a scheduler” on page 35.

 For additional information about limit keywords, see the following topics:

v “Syntax for limit keywords” on page 264

v “Using limit keywords” on page 83

Administration file reference

288 LoadLeveler: Using and Administering

||

|

|

|
|
|
|
|
|

|

|
|
|

Chapter 13. Job command file reference

A LoadLeveler job consists of one or more job steps, each of which is defined in a

single job command file. A job command file specifies the name of the job, as well

as the job steps that you want to submit, and can contain other LoadLeveler

statements.

 Subtask Associated information (see . . .)

To find out how to work with a job

command file

Chapter 7, “Building and submitting jobs,” on page

145

To learn how to correctly specify the

contents of a job command file

v “Job command file syntax”

v “Job command file keyword descriptions” on page

294

Job command file syntax

The following general rules apply to job command files.

v Keyword statements begin with # @. There can be any number of blanks

between the # and the @.

v Comments begin with #. Any line whose first non-blank character is a pound

sign (#) and is not a LoadLeveler keyword statement is regarded as a comment.

v Statement components are separated by blanks. You can use blanks before or

after other delimiters to improve readability but they are not required if another

delimiter is used.

v The back-slash (\) is the line continuation character. Note that the continued line

must not begin with # @. If your job command file is the script to be executed,

you must start the continued line with a #. See Figure 21 on page 149 and

Figure 22 on page 151 for examples using the back-slash for line continuation.

v Keywords are not case sensitive. This means you can enter them in lower case,

upper case, or mixed case.

Serial job command file

Figure 32 is an example of a simple serial job command file which is run from the

current working directory. The job command file reads the input file, longjob.in1,

from the current working directory and writes standard output and standard error

files, longjob.out1 and longjob.err1, respectively, to the current working directory.

The name of this job command file is file.cmd.

The input file is longjob.in1 and the error file is

longjob.err1. The queue statement marks the end of

the job step.

@ executable = longjob

@ input = longjob.in1

@ output = longjob.out1

@ error = longjob.err1

@ queue

Figure 32. Serial job command file

 289

|||

|
|
|
|

|
|
|

|
|
|

Parallel job command file

In addition to building job command files to submit serial jobs, you can also build

job command files to submit parallel jobs. Before constructing parallel job

command files, consult your LoadLeveler system administrator to see if your

installation is configured for parallel batch job submission.

For more information on submitting parallel jobs, see “Working with parallel jobs”

on page 157.

Syntax for limit keywords

The syntax for setting a limit is:

limit_type = hardlimit,softlimit

For example:

core_limit = 120kb,100kb

To specify only a hard limit, you can enter, for example:

core_limit = 120kb

To specify only a soft limit, you can enter, for example:

core_limit = ,100kb

In a keyword statement, you cannot have any blanks between the numerical value

(100 in the above example) and the units (kb). Also, you cannot have any blanks to

the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit, core_limit,

file_limit, stack_limit, and rss_limit — the hard limit and the soft limit are

expressed as:

integer[.fraction][units]

The allowable units for these limits are:

b bytes

w words

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

If no units are specified for data limits, then bytes are assumed.

For limit keywords that refer to a time limit — such as ckpt_time_limit, cpu_limit,

job_cpu_limit, and wall_clock_limit — the hard limit and the soft limit are

expressed as:

[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

Job command file reference

290 LoadLeveler: Using and Administering

|

You can use the following character strings with all limit keywords except the copy

keyword for wall_clock_limit, job_cpu_limit and ckpt_time_limit:

rlim_infinity Represents the largest positive number.

unlimited Has same effect as rlim_infinity.

copy Uses the limit currently active when the job is

submitted.

64-bit support for job command file keywords

Users can assign 64-bit integer values to selected keywords in the job command

file. System resource limits, with the exception of CPU limits, are treated by

LoadLeveler daemons and commands as 64-bit limits.

Table 46 describes 64-bit support for specific job command file keywords.

 Table 46. Notes on 64-bit support for job command file keywords

Keyword

name Notes

ckpt_time_

limit

Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

core_limit 64-bit integer values may be assigned to this limit. Fractional specifications

are allowed and will be converted to 64-bit integer values. Refer to the

allowable units for these limits listed under “Syntax for limit keywords” on

page 290.

cpu_limit Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

data_limit 64-bit integer values may be assigned to these limits. Fractional

specifications are allowed and will be converted to 64-bit integer values.

Refer to the allowable units for these limits listed under “Syntax for limit

keywords” on page 290.

file_limit

image_size 64-bit integer values may be assigned to this keyword. Fractional and unit

specifications are not allowed. The default unit of image_size is kb.

Example:

image_size = 12345678901

job_cpu_limit Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

preferences 64-bit integer values may be associated with the LoadLeveler variables

″Memory″ and ″Disk″ in the expressions assigned to these keywords.

Fractional and unit specifications are not allowed.

Examples:

requirements = (Arch == "R6000") && (Disk > 500000000) && (Memory > 6000000000)

preferences = (Disk > 6000000000) && (Memory > 9000000000)

requirements

Job command file reference

Chapter 13. Job command file reference 291

|

|

|

|

Table 46. Notes on 64-bit support for job command file keywords (continued)

Keyword

name Notes

resources Consumable resources associated with the resources keyword may be

assigned 64-bit integer values. Fractional specifications are not allowed. Unit

specifications are valid only when specifying the values of the predefined

ConsumableMemory and ConsumableVirtualMemory resources.

Examples:

resources = spice2g6(123456789012) ConsumableMemory(10 gb)

resources = ConsumableVirtualMemory(15 pb) db2_license(1)

rss_limit 64-bit integer values may be assigned to these limits. Fractional

specifications are allowed and will be converted to 64-bit integer values.

Refer to the allowable units for these limits listed under “Syntax for limit

keywords” on page 290.

stack_limit

wall_clock_

limit

Not supported. The hard and soft time limits associated with this keyword

are 32-bit integers. If a value that cannot be contained in a 32-bit integer is

assigned to this limit, the value will be truncated to either 2147483647 or

-2147483648.

Mapping NQS script options to LoadLeveler job command file

options

When you prepare a job to be routed to an NQS machine, you must specify a shell

script in the LoadLeveler job command file. You may specify scripts that were

originally written for NQS and therefore contain NQS options. LoadLeveler maps

the NQS options as closely as possible to LoadLeveler features, but exact functions

are not always available. Table 47 summarizes the NQS options and their

LoadLeveler equivalents.

Note: 64-bit integer values in a LoadLeveler job command file will be mapped to

64-bit integer values in an NQS script. 64-bit integer values in an NQS script

may be truncated when mapped to a LoadLeveler job command file.

Truncation occurs when the corresponding LoadLeveler keywords support

only 32-bit integers.

 Table 47. Mapping of NQS options to LoadLeveler equivalents

NQS option

Equivalent

LoadLeveler option Notes

a startdate Used only for LoadLeveler scheduling

e error —

ke No equivalent Ignored

ko No equivalent Ignored

lc core_limit —

ld data_limit —

lf file_limit —

lm rss_limit —

lM No equivalent Ignored

ln No equivalent Ignored

ls stack_limit —

lt cpu_limit —

Job command file reference

292 LoadLeveler: Using and Administering

|

|

|

|
|
|
|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 47. Mapping of NQS options to LoadLeveler equivalents (continued)

NQS option

Equivalent

LoadLeveler option Notes

lT No equivalent Ignored

lv No equivalent Ignored

lw No equivalent Ignored

mb notification The conversion varies depending on the value

specified for notification:

always Converted to -mb and -me options

complete Converted to -me option

error Converted to -me option

never Ignored

start Converted to -mb option

me notification

mu notify_user —

nr restart The conversion varies depending on the value

specified for restart:

yes Ignored

no Converted to -nr option

o output —

p user_priority Used only for LoadLeveler scheduling

q class Used only for LoadLeveler scheduling

r No equivalent Ignored

re No equivalent Ignored

ro No equivalent Ignored

s shell —

x environment =

COPY_ALL

If COPY_ALL is not specified, an error message is

generated and the job is not submitted.

z No equivalent Suppresses messages but not mail

A similar conversion of options occurs when the job is dispatched to the node

running the specified NQS class; in this case, LoadLeveler options pertaining to the

runtime environment are converted to NQS options. Table 48 summarizes the

LoadLeveler options and their NQS equivalents.

 Table 48. Mapping of LoadLeveler options to NQS equivalents

LoadLeveler option

Equivalent NQS

option Notes

arguments No equivalent An error message is generated and the job is not

submitted.

checkpoint No equivalent An error message is generated and the job is not

submitted.

class -q Used only for LoadLeveler scheduling.

core_limit -lc —

cpu_limit -lt —

data_limit -ld —

environment =

COPY_ALL

-x If COPY_ALL is not specified, an error message

is generated and the job is not submitted.

error -e —

Job command file reference

Chapter 13. Job command file reference 293

|

|
|
||

|||

|||

|||

|||
|
||
||
||
||
||

||

|||

|||
|
||
||

|||

|||

|||

|||

|||

|||

|||

||
|
|
|

|||
|

|
|
|
|

||

|
|
||

|||
|

|||
|

|||

|||

|||

|||

|
|
||
|

|||

Table 48. Mapping of LoadLeveler options to NQS equivalents (continued)

LoadLeveler option

Equivalent NQS

option Notes

executable No equivalent An error message is generated and the job is not

submitted.

file_limit -lf —

hold No equivalent Used only for LoadLeveler scheduling.

image_size No equivalent An error message is generated and the job is not

submitted.

initialdir No equivalent An error message is generated and the job is not

submitted.

input No equivalent An error message is generated and the job is not

submitted.

notification The conversion varies depending on the value specified for

notification:

always Converted to -mb and -me options

complete Converted to -me option

error Converted to -me option

never Ignored

start Converted to -mb option

notify_user -mu —

output -o —

preferences No equivalent Used only for LoadLeveler scheduling.

queue No equivalent Places one copy of the job in the LoadLeveler

queue.

requirements No equivalent Used only for LoadLeveler scheduling.

restart The conversion varies depending on the value specified for restart:

yes Ignored

no Converted to -nr option

rss_limit -lw —

shell -s —

stack_limit -ls —

startdate No equivalent Used only for LoadLeveler scheduling.

user_priority No equivalent Used only for LoadLeveler scheduling.

For more information on submitting jobs to NQS machines, see “Steps for

submitting a job to be routed to an NQS machine” on page 179.

Job command file keyword descriptions

This section provides an alphabetical list of the keywords you can use in a

LoadLeveler script. It also provides examples of statements that use these

keywords. For most keywords, if you specify the keyword in a job step of a

multi-step job, its value is inherited by all proceeding job steps. Exceptions to this

are noted in the keyword description.

If a blank value is used after the equal sign, it is as if no keyword was specified.

account_no

Job command file reference

294 LoadLeveler: Using and Administering

|

|
|
||

|||
|

|||

|||

|||
|

|||
|

|||
|

||
|
||
||
||
||
||

|||

|||

|||

|||
|

|||

||
||
||

|||

|||

|||

|||

|||
|

Supports centralized accounting. Allows you to specify an account

number to associate with a job. This account number is stored with

job resource information in local and global history files. It may

also be validated before LoadLeveler allows a job to be submitted.

For more information, see “Gathering job accounting data” on page

57.

 Syntax:

account_no = string

where string is a text string that can consist of a combination of

numbers and letters.

 Default value: No default value is set.

 Example: If the job accounting group charges for job time based

upon the department to which you belong, your account number

would be similar to:

account_no = dept34ca

arguments

 Specifies the list of arguments to pass to your program when your

job runs.

 Syntax:

arguments = arg1 arg2 ...

Default value: No default arguments are set.

 Example: If your job requires the numbers 5, 8, 9 as input, your

arguments keyword would be similar to:

arguments = 5 8 9

blocking

 Blocking specifies that tasks be assigned to machines in multiples

of a certain integer. Unlimited blocking specifies that tasks be

assigned to each machine until it runs out of initiators, at which

time tasks will be assigned to the machine which is next in the

order of priority. If the total number of tasks are not evenly

divisible by the blocking factor, the remainder of tasks are allocated

to a single node.

 Syntax:

blocking = integer | unlimited

where:

integer

Specifies the blocking factor to be used. The blocking factor

must be a positive integer. With a blocking factor of 4,

LoadLeveler will allocate 4 tasks at a time to each machine

with at least 4 initiators available. This keyword must be

specified with the total_tasks keyword. Example:

blocking = 4

total_tasks = 17

Job command file reference

Chapter 13. Job command file reference 295

|

LoadLeveler will allocate tasks to machines in an order

based on the values of their MACHPRIO expressions

(beginning with the highest MACHPRIO value). In cases

where total_tasks is not a multiple of the blocking factor,

LoadLeveler assigns the remaining number of tasks as soon

as possible (even if that means assigning the remainder to

a machine at the same time as it assigns another block).

unlimited

Specifies that LoadLeveler allocate as many tasks as

possible to each machine, until all of the tasks have been

allocated. LoadLeveler will prioritize machines based on

the number of initiators each machine currently has

available. Unlimited blocking is the only means of

allocating tasks to nodes that does not prioritize machines

primarily by MACHPRIO expression.

 Default value: No default is set, which means that no blocking is

requested.

bulkxfer Indicates whether the communication subsystem will use bulk data

transfer for user space communication.

 Syntax:

bulkxfer = yes | no

Default: no

 For additional information about bulk data transfer, see “Using

bulk data transfer” on page 152.

checkpoint

 Indicates if a job is able to be checkpointed. Checkpointing a job is

a way of saving the state of the job so that if the job does not

complete it can be restarted from the saved state rather than

starting the job from the beginning.

 If you specify an invalid value for the checkpoint keyword, an

error message is generated and the job is not submitted.

 Syntax:

checkpoint = interval | yes | no

Where:

interval

Specifies that LoadLeveler will automatically checkpoint

your program at preset intervals. The time interval is

specified by the settings in the MIN_CKPT_INTERVAL

and MAX_CKPT_INTERVAL keywords in the

configuration file. Since a job with a setting of interval is

considered checkpointable, you can initiate a checkpoint

using any method in addition to the automatic checkpoint.

The difference between interval and yes is that interval

enables LoadLeveler to automatically take checkpoints on

the specified intervals while the value yes does not enable

that ability.

yes Enables a job step to be checkpointed. With this setting, a

Job command file reference

296 LoadLeveler: Using and Administering

|
|

||
|

|

|

|

|
|

checkpoint can be initiated either under the control of an

application or by a method external to the application.

With a setting of yes, LoadLeveler will not checkpoint on

the intervals specified by the MIN_CKPT_INTERVAL and

MAX_CKPT_INTERVAL keywords in the configuration

file. The difference between yes and interval is that

interval enables LoadLeveler to automatically take

checkpoints on the specified intervals while the value yes

does not enable that ability.

no The step cannot be checkpointed.

 Default value: no

 Restriction: On Linux machines only: If a job with checkpoint =

interval or checkpoint = yes is dispatched, it is rejected.

 Example: If a checkpoint is initiated from within the application

but checkpoints are not to be taken automatically by LoadLeveler

you can use:

checkpoint = yes

For detailed information on checkpointing, see “Checkpointing

jobs” on page 125.

ckpt_dir

 Specifies the directory which contains the checkpoint file.

 Checkpoint files can become quite large. When specifying ckpt_dir,

make sure that there is sufficient disk space to contain the files.

Guidelines can be found in “Checkpointing jobs” on page 125.

 Syntax:

ckpt_dir = pathname

The values for ckpt_dir are case sensitive.

 Default value: The value of the ckpt_dir keyword in the class

stanza of the administration file

 Restriction: The keyword ckpt_dir is not allowed in the command

file for interactive POE sessions.

 Example: If checkpoint files were to be stored in the /tmp

directory the job command file would include:

ckpt_dir = /tmp

For more information on naming directories for checkpointing, see

“Naming checkpoint files and directories” on page 129.

ckpt_execute_dir

Specifies the directory where the job step’s executable will be saved

for checkpointable jobs. You may specify this keyword in either the

configuration file or the job command file; different file

permissions are required depending on where this keyword is set.

For additional information, see “Planning considerations for

checkpointing jobs” on page 126.

Job command file reference

Chapter 13. Job command file reference 297

|

|

|
|
|
|
|
|
|

Syntax:

ckpt_execute_dir = directory

This directory cannot be the same as the current location of the

executable file, or LoadLeveler will not stage the executable. In this

case, the user must have execute permission for the current

executable file.

 Default value: No default value is set.

ckpt_file

 Used to specify the base name of the checkpoint file. The

checkpoint file is created by the AIX checkpoint functions and is

derived from the filename specified in the ckpt_file keyword in

the job command file or the default file name.

 Syntax:

ckpt_file = filename

The value for the ckpt_file keyword is case sensitive.

 Default value: [jobname.]job_step_id.ckpt

 Restriction: The keyword ckpt_file is not allowed in the command

file for interactive POE sessions.

 Example: If you are storing checkpoint files in a file with the base

name ″myckptfiles″ which is placed in the directory named by the

ckpt_dir keyword, the job command file would contain:

ckpt_file = myckptfiles

Alternatively, if you are naming the checkpoint files ″myckptfiles″

and storing them in the directory /tmp, the keyword in the job

command file can contain:

ckpt_file = /tmp/myckptfiles

Or the combination of ckpt_dir and ckpt_file keywords can be

used, producing the same result.

ckpt_dir = /tmp

ckpt_file = myckptfiles

For more information on naming files for checkpointing, see

“Naming checkpoint files and directories” on page 129.

ckpt_time_limit

 Specifies the hard or soft limit, or both limits for the elapsed time

checkpointing a job can take. When the soft limit is exceeded,

LoadLeveler will attempt to abort the checkpoint and allow the job

to continue. If the checkpoint is not able to be aborted and the

hard limit is exceeded, LoadLeveler will terminate the job.

 Syntax:

ckpt_time_limit = hardlimit,softlimit

Default value: The value of the ckpt_time_limit keyword in the

class stanza of the administration file

Job command file reference

298 LoadLeveler: Using and Administering

|

|

|
|
|
|

|

|

Examples:

ckpt_time_limit = 00:10:00,00:05:00

ckpt_time_limit = 12:30,7:10

ckpt_time_limit = rlim_infinity

ckpt_time_limit = unlimited

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

class

 Specifies the name of a job class defined locally in your cluster.

You can use the llclass command to find out information on job

classes.

 Syntax:

class = name

Default value: If you do not specify a value for this keyword, the

default job class, No_Class, is assigned.

 Example: If you are allowed to submit jobs belonging to a class

called “largejobs”, your class keyword would look like the

following:

class = largejobs

comment

 Specifies text describing characteristics or distinguishing features of

the job.

core_limit

 Specifies the hard limit, soft limit, or both limits for the size of a

core file. This limit is a per process limit.

 Syntax:

core_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default value is set.

 Examples:

core_limit = 125621,10kb

core_limit = 5621kb,5000kb

core_limit = 2mb,1.5mb

core_limit = 2.5mw

core_limit = unlimited

core_limit = rlim_infinity

core_limit = copy

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

cpu_limit

 Specifies the hard limit, soft limit, or both limits for the amount of

CPU time that a submitted job step can use. This limit is a per

process limit.

Job command file reference

Chapter 13. Job command file reference 299

|
|

|

|

|
|

Syntax:

cpu_limit = hardlimit,softlimit

Default value: No default value is set.

 Examples:

cpu_limit = 12:56:21,12:50:00

cpu_limit = 56:21.5

cpu_limit = 1:03,21

cpu_limit = unlimited

cpu_limit = rlim_infinity

cpu_limit = copy

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

data_limit

 Specifies the hard limit, soft limit, or both limits for the size of the

data segment to be used by the job step. This limit is a per process

limit.

 Syntax:

data_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default value is set.

 Examples:

data_limit = ,125621

data_limit = 5621kb

data_limit = 2mb

data_limit = 2.5mw,2mb

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

dependency

 Specifies the dependencies between job steps. A job dependency, if

used in a given job step, must be explicitly specified for that step.

 Syntax:

dependency = step_name operator value

where:

step_name

Is the name of a previously defined job step (as described in

321).

operator

Is one of the following:

== Equal to

!= Not equal to

<= Less than or equal to

>= Greater than or equal to

Job command file reference

300 LoadLeveler: Using and Administering

|

|
|

|

|

|
|

< Less than

> Greater than

&& And

|| Or

value

Is usually a number that specifies the job return code to which

the step_name is set. It can also be one of the following

LoadLeveler defined job step return codes:

CC_NOTRUN

The return code set by LoadLeveler for a job step

which is not run because the dependency is not met.

The value of CC_NOTRUN is 1002.

CC_REMOVED

The return code set by LoadLeveler for a job step

which is removed from the system (because, for

example, llcancel was issued against the job step). The

value of CC_REMOVED is 1001.

 Default value: No default value is set.

 Examples: The following are examples of dependency statements:

v Example 1: In the following example, the step that contains this

dependency statement will run if the return code from step 1 is

zero:

dependency = (step1 == 0)

v Example 2: In the following example, step1 will run with the

executable called myprogram1. Step2 will run only if

LoadLeveler removes step1 from the system. If step2 does run,

the executable called myprogram2 gets run.

Beginning of step1

@ step_name = step1

@ executable = myprogram1

@ ...

@ queue

Beginning of step2

@ step_name = step2

@ dependency = step1 == CC_REMOVED

@ executable = myprogram2

@ ...

@ queue

v Example 3: In the following example, step1 will run with the

executable called myprogram1. Step2 will run if the return code

of step1 equals zero. If the return code of step1 does not equal

zero, step2 does not get executed. If step2 is not run, the

dependency statement in step3 gets evaluated and it is

determined that step2 did not run. Therefore, myprogram3 gets

executed.

Beginning of step1

@ step_name = step1

@ executable = myprogram1

@ ...

@ queue

Beginning of step2

@ step_name = step2

@ dependency = step1 == 0

@ executable = myprogram2

@ ...

@ queue

Job command file reference

Chapter 13. Job command file reference 301

|

Beginning of step3

@ step_name = step3

@ dependency = step2 == CC_NOTRUN

@ executable = myprogram3

@ ...

@ queue

v Example 4: In the following example, the step that contains

step2 returns a non-negative value if successful. This step should

take into account the fact that LoadLeveler uses a value of 1001

for CC_REMOVED and 1002 for CC_NOTRUN. This is done

with the following dependency statement:

dependency = (step2 >= 0) && (step2 < CC_REMOVED)

env_copy

 Specifies whether environment variables for a batch or interactive

parallel job are copied to all executing nodes, or to only the master

node. When all is specified either explicitly or by default, any

environment variables (specified by the environment keyword in

the job command file) will be copied to all nodes where the job

step runs. When master is specified, the environment variables will

be copied only to the node selected to run the master task of the

parallel job.

 Although a LoadLeveler administrator may set this keyword in

one or more class, group, or user stanzas in the administration file,

an explicit setting in the job command file overrides any settings in

the administration file that are relevant for the parallel job.

 LoadLeveler ignores this keyword if it is set for a serial job.

 Syntax:

env_copy = all | master

Default value: LoadLeveler uses the default value all only when

both of the following conditions are true:

v The env_copy keyword is not specified in the job command file.

v The env_copy keyword is not specified in any class, group, or

user stanza that is relevant to the parallel job.

environment

 Specifies login initial environment variables set by LoadLeveler

when your job step starts. If the same environment variables are

set in the user’s initialization files (such as the .profile), those set

by the login initialization files will supersede those set by

LoadLeveler.

 You may use the env_copy keyword to instruct LoadLeveler to

copy these environment variables to all executing nodes, or to only

the master executing node.

 Syntax:

environment = env1 ; env2 ; ...

Separate environment specifications (env1, env2, and so on) with

semicolons. An environment specification may be one of the

following:

COPY_ALL

Specifies that all the environment variables from your shell

be copied.

Job command file reference

302 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|

|
|
|

$var Specifies that the environment variable var be copied into

the environment of your job when LoadLeveler starts it.

!var Specifies that the environment variable var not be copied

into the environment of your job when LoadLeveler starts

it. This specification is most useful together with

COPY_ALL.

var=value

Specifies that the environment variable var be set to the

value “value” and copied into the environment of your job

when LoadLeveler starts it.

 When processing the string you specify for var,

LoadLeveler first removes any leading or trailing blanks,

and copies the remaining string, as is, into the

environment.

 Default value: No default value is set.

 Examples:

v This example illustrates how to specify that LoadLeveler is to

copy all the environment variables from your shell except for

env2:

environment = COPY_ALL; !env2;

v This example illustrates how LoadLeveler processes the string

you specify with var: If you specify the following:

environment = env3 = "quoted string"; env4 = imbedded blanks;

LoadLeveler uses these values:

– For env3: "quoted string"

– For env4: imbedded blanks

error

 Specifies the name of the file to use as standard error (stderr) when

your job step runs.

 Syntax:

error = filename

Default value: If you do not specify a value for this keyword, the

file /dev/null is used.

 Example:

error = $(jobid).$(stepid).err

executable

 Identifies the name of the program to run, which can be a shell

script or a binary. For parallel jobs, executable must be the parallel

job launcher (POE for AIX, or mpirun for Linux), or the name of a

program that invokes the parallel job launcher.

 Note that the executable statement automatically sets the

$(base_executable) variable, which is the file name of the

executable without the directory component. See Figure 21 on page

149 for an example of using the $(base_executable) variable.

 Syntax:

executable = name

Job command file reference

Chapter 13. Job command file reference 303

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|

Default value: If you do not include this keyword, then it will

default to the job command file that is being submitted, and

LoadLeveler will assume that the file is a valid shell script.

 Examples:

v # @ executable = a.out

v # @ executable = /usr/bin/poe (for POE jobs)

file_limit

 Specifies the hard limit, soft limit, or both limits for the size of a

file. This limit is a per process limit.

 Syntax:

file_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default value is set.

 Example:

file_limit = 100pb,50tb

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

group

 Specifies the LoadLeveler group.

 Syntax:

group = group_name

Default value: If you do not specify a value for this keyword,

LoadLeveler uses the default group, No_Group.

 Example:

group = my_group_name

hold

 Specifies whether you want to place a hold on your job step when

you submit it. There are three types of holds:

user Specifies user hold

system

Specifies system hold

usersys

Specifies user and system hold

To remove the hold on the job, you can use either the GUI or the

llhold -r command.

 Syntax:

hold = user | system | usersys

Default value: No default is set, which means that no hold is

requested.

Job command file reference

304 LoadLeveler: Using and Administering

|
|
|

|

|

|
|

|
|

Example: To put a user hold on a job, the keyword statement

would be:

hold = user

image_size

 Specifies the maximum virtual image size to which your program

will grow during execution. LoadLeveler tries to execute your job

steps on a machine that has enough resources to support executing

and checkpointing your job step. If your job command file has

multiple job steps, the job steps will not necessarily run on the

same machine, unless you explicitly request that they do.

 If you underestimate the image size of your job step, your job step

may crash due to the inability to acquire more address space. If

you overestimate the image size, LoadLeveler may have difficulty

finding machines that have the required resources.

 Syntax:

image_size = number

where number must be a positive integer. This keyword accepts

both 32-bit and 64-bit integer values. If you do not specify the

units associated with this keyword, LoadLeveler uses the default

unit, which is kilobytes. For a list of allowable units, see the

resources keyword description on page 317.

 Default value: If you do not specify the image size of your job

command file, the image size is that of the executable.

 Example: To set an image size of 11 KB, the keyword statement

would be:

image_size = 11

initialdir

 Specifies the path name of the directory to use as the initial

working directory during execution of the job step. File names

mentioned in the command file which do not begin with a slash (/

) are relative to the initial directory. The initial directory must exist

on the submitting machine as well as on the machine where the job

runs.

 Syntax:

initialdir = pathname

Default value: If you do not specify a value for this keyword, the

initial directory is the current working directory at the time you

submitted the job.

 Example:

initialdir = /var/home/mike/ll_work

input

 Specifies the name of the file to use as standard input (stdin) when

your job step runs.

 Syntax:

input = filename

Job command file reference

Chapter 13. Job command file reference 305

|

|

|
|

|

Default value: If you do not specify an input file, LoadLeveler

uses the file /dev/null

 Example:

input = input.$(process)

job_cpu_limit

 Specifies the hard limit, soft limit, or both limits for the CPU time

used by all processes of a serial job step. For example, if a job step

runs as multiple processes, the total CPU time consumed by all

processes is added and controlled by this limit.

 For parallel job steps, LoadLeveler enforces these limits differently.

Parallel job steps usually have tasks running on several different

nodes and each task can have several processes associated with it.

In addition, the parallel tasks running on a node are descendants

of a LoadL_starter process. Therefore, if you specify a hard or soft

CPU time limit of S seconds and if a LoadL_starter has N tasks

running under it, then all tasks associated with that LoadL_starter

will be terminated if the total CPU time of the LoadL_starter

process and its children is greater than S*N seconds.

 If several LoadL_starter processes are involved in running a

parallel job step, then LoadLeveler enforces the limits associated

with the job_cpu_limit keyword independently for each

LoadL_starter. LoadLeveler determines how often to check the

job_cpu_limit by looking at the values for JOB_LIMIT_POLICY and

JOB_ACCT_Q_POLICY. The smaller value associated with these

two configuration keywords sets the interval for checking the

job_cpu_limit. For more information on JOB_LIMIT_POLICY and

JOB_ACCT_Q_POLICY see “Collecting job resource data on serial

and parallel jobs” on page 57.

 Syntax:

job_cpu_limit = hardlimit,softlimit

Default value: No default is set.

 Example:

job_cpu_limit = 12:56,12:50

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

job_name

 Specifies the name of the job. This keyword must be specified in

the first job step. If it is specified in other job steps in the job

command file, it is ignored.

 The job_name only appears in the long reports of the llq, llstatus,

and llsummary commands, and in mail related to the job.

 Syntax:

job_name = job_name

You can name the job using any combination of letters, numbers,

or both.

Job command file reference

306 LoadLeveler: Using and Administering

|

|
|

Default value: No default value is set.

 Example:

job_name = my_first_job

job_type

 Specifies the type of job step to process. This keyword must be

specified for each job step in a job command file.

 Syntax:

job_type = serial | parallel

 Default value: serial

large_page

 Specifies whether or not a job step requires Large Page support

from AIX.

 Restriction: Large Page memory is not supported in LoadLeveler

for Linux. In this case, specifying M would cause the job to never

be sent.

 Syntax:

large_page = value

where value can be Y, M, or N. Y informs LoadLeveler to use Large

Page memory, if available, but to otherwise use regular memory. M

means use of Large Page memory is mandatory.

 Default value: N, which means to not use Large Page memory.

 Example: To ask LoadLeveler to use Large Page memory for the

job step, if available, specify:

large_page = Y

max_processors

 Specifies the maximum number of nodes requested for a parallel

job, regardless of the number of processors contained in the node.

This keyword is equivalent to the maximum value you specify on

the node keyword. In any new job command files you create for

parallel jobs, you should use the node keyword to request

nodes/processors. Note that if you specify in a job command file

both the max_processors keyword and the node keyword, the job

is not submitted.

 Syntax:

max_processors = number

Default value: No default is set.

 Example:

max_processors = 6

min_processors

 Specifies the minimum number of nodes requested for a parallel

job, regardless of the number of processors contained in the node.

This keyword is equivalent to the minimum value you specify on

Job command file reference

Chapter 13. Job command file reference 307

|

|

|

|

|

|

the node keyword. In any new job command files you create for

parallel jobs, you should use the node keyword to request

nodes/processors. Note that if you specify in a job command file

both the min_processors keyword and the node keyword, the job

is not submitted.

 Syntax:

min_processors = number

Default value: No default is set.

 Example:

min_processors = 4

network

 Specifies communication protocols, adapters, and their

characteristics. You need to specify this keyword when you want a

task of a parallel job step to request a specific adapter that is

defined in the LoadLeveler administration file. You do not need to

specify this keyword when you want a task to access a shared,

default adapter through TCP/IP. (A default adapter is an adapter

whose name matches a machine stanza name.)

 Note that you cannot specify both the network statement and the

Adapter requirement in a job command file. Also, the value of the

network keyword applies only to the job step in which you specify

the keyword. (That is, this keyword is not inherited by other job

steps.)

 Syntax:

network.protocol = type[, usage[, mode[,comm_level[, instances=<number|max>]]]]

where:

protocol

Specifies the communication protocols that are used with

an adapter, and can be the following:

MPI Specifies the message passing interface (MPI). You

can specify in a job step both network.MPI and

network.LAPI.

LAPI Specifies the low-level application programming

interface (LAPI). You can specify in a job step both

network.MPI and network.LAPI.

 LAPI is not supported on LoadLeveler for Linux.

MPI_LAPI

Specifies sharing adapter windows between MPI

and LAPI. When you specify network.MPI_LAPI

in a job step, you cannot specify any other network

statements in that job step.

 LAPI is not supported on LoadLeveler for Linux.

type This field is required and specifies one of the following:

adapter_name

The possible values are the names associated with

the interface cards installed on a node (for

Job command file reference

308 LoadLeveler: Using and Administering

|

|

|

|

example, en0, tk1 and css0). Note, when css0 is

specified for the HPS switch, it takes on a different

meaning described below.

network_type

Specifies a network_type as specified in the

LoadLeveler administration file. The LoadLeveler

administrator must specify values used as

network_type in the adapter stanza of the

LoadLeveler administration file using the

network_type keyword. For example, an

installation can define a network type of ″switch″

to identify css0 adapters. For more information on

specifying network_type, see “Defining adapters”

on page 81.

sn_single

When used for the HPS switch it specifies that

LoadLeveler use a common, single switch network.

When used for a switch other than the HPS switch

it is comparable to specifying an adapter_name of

css0.

sn_all Specifies that striped communication should be

used over all available switch networks. The

networks specified must be accessible by all

machines selected to run the job. For more

information on striping, see “Submitting jobs that

use striping” on page 161.

csss csss may be used interchangeably with sn_all. This

option is provided for compatibility with job

command files created with older versions of

LoadLeveler.

css0 css0 may be used interchangeably with sn_single.

This option is provided for compatibility with job

command files created with older versions of

LoadLeveler.

The following are optional and if omitted their position must be

specified with a comma:

usage Specifies whether the adapter can be shared with tasks of

other job steps. Possible values are shared, which is the

default, or not_shared. If not_shared is specified,

LoadLeveler can only guarantee that the adapter will not

be shared by other jobs running on the same OSI. If the

adapter is shared by more than one OSI, LoadLeveler can

not guarantee that the adapter is not shared with jobs

running on a different OSI.

mode Specifies the communication subsystem mode used by the

communication protocol that you specify, and can be either

IP (Internet Protocol), which is the default, or US (User

Space). Note that each instance of the US mode requested

by a task running on the SP switch requires an adapter

window. For example, if a task requests both the MPI and

LAPI protocols such that both protocol instances require

US mode, two adapter windows will be used. For more

information on adapter windows, see Parallel System

Support Programs for AIX Administration Guide.

Job command file reference

Chapter 13. Job command file reference 309

comm_level

The comm_level keyword should be used to suggest the

amount of inter-task communication that users expect to

occur in their parallel jobs. This suggestion is used to

allocate adapter device resources. For more information on

device resources, consult the PSSP: Administration Guide,

SA22-7348 and RSCT Administration Guide, SA22-7889.

Specifying a level that is higher than what the job actually

needs will not speed up communication, but may make it

harder to schedule a job (because it requires more

resources). The comm_level keyword can only be specified

with US mode. The three communication levels are:

LOW Implies that minimal inter-task communication will

occur.

AVERAGE

This is the default value. Unless you know the

specific communication characteristics of your job,

the best way to determine the comm_level is

through trial-and-error.

HIGH Implies that a great deal of inter-task

communication will occur.
instances

If instances is specified as a number, it indicates the

number of parallel communication paths made available to

the protocol on each network. The number actually used

will depend on the implementation of the protocol

subsystem. If instances is specified by max, the actual

value used is determined by the

MAX_PROTOCOL_INSTANCES for the class to which the

job is submitted. The default value for instances is 1.

 For the best performance set

MAX_PROTOCOL_INSTANCES so that the

communication subsystem uses every available adapter

before it reuses any of the adapters.

 Default value: If you do not specify the network keyword,

LoadLeveler allows the task to access a shared, default adapter

through TCP/IP. The default adapter is the adapter associated with

the machine name.

 Examples:

v Example 1: To use the MPI protocol with an SP switch adapter

in User Space mode without sharing the adapter, enter the

following:

network.MPI = sn_single,not_shared,US,HIGH

v Example 2: To use the MPI protocol with a shared SP switch

adapter in IP mode, enter the following:

network.MPI = sn_single,,IP

Because a shared adapter is the default, you do not need to

specify shared.

v Example 3: A communication level can only be specified if User

Space mode is also specified:

network.MPI = sn_single,,US,AVERAGE

Job command file reference

310 LoadLeveler: Using and Administering

|
|
|
|

Note that LoadLeveler can ensure that an adapter is dedicated

(not shared) if you request the adapter in US mode, since any

user who requests a user space adapter must do so using the

network statement. However, if you request a dedicated adapter

in IP mode, the adapter will only be dedicated if all other

LoadLeveler users who request this adapter do so using the

network statement.

v Example 4: css0 can be used in place of sn_single:

network.MPI = css0, not_shared,US,HIGH

node

 Specifies the minimum and maximum number of nodes requested

by a job step. You must specify at least one of these values. The

value of the node keyword applies only to the job step in which

you specify the keyword. (That is, this keyword is not inherited by

other job steps.)

 When you use the node keyword together with the total_tasks

keyword, the min and max values you specify on the node

keyword must be equal, or you must specify only one value. For

example:

node = 6

total_tasks = 12

Syntax:

node = [min][,max]

where:

min Specifies the minimum number of nodes requested by the

job step.

max Specifies the maximum number of nodes requested by the

job step. The maximum number of nodes a job step can

request is limited by the max_node keyword in the

administration file (provided this keyword is specified).

That is, the maximum must be less than or equal to any

max_node value specified in a user, group, or class stanza.

 Default value: The default value for min is 1; the default value for

max is the min value for this keyword.

 Example: To specify a range of six to twelve nodes, enter the

following:

node = 6,12

To specify a maximum of seventeen nodes, enter the following:

node = ,17

For information on specifying the number of tasks you want to run

on a node, see “Task-assignment considerations” on page 159,322,

and 322.

node_usage

 Specifies whether this job step shares nodes with other job steps.

 Syntax:

node_usage = shared | not_shared

Job command file reference

Chapter 13. Job command file reference 311

where:

shared

Specifies that nodes can be shared with other tasks of other

job steps.

not_shared

Specifies that nodes are not shared. No other job steps are

scheduled on this node.

 Default value: shared

notification

 Specifies when the user specified in the notify_user keyword is

sent mail.

 Syntax:

notification = always|error|start|never|complete

where:

always

Notify the user when the job begins, ends, or if it incurs

error conditions.

error Notify the user only if the job fails.

start Notify the user only when the job begins.

never Never notify the user.

complete

Notify the user only when the job ends.

 Default value: complete

 Examples:

v If you want to be notified with mail only when your job step

completes, your notification keyword would be:

notification = complete

v When a LoadLeveler job ends, you may receive mail notification

indicating the job exit status. For example, you could get the

following mail message:

Your LoadLeveler job

myjob1

exited with status 4.

The return code 4 is from the user’s job. LoadLeveler retrieves

the return code and returns it in the mail message, but it is not a

LoadLeveler return code.

notify_user

 Specifies the user to whom mail is sent based on the notification

keyword.

 Syntax:

notify_user = userID

Default value: The default is the submitting user at the submitting

machine.

 Example: If you are the job step owner but you want a coworker

whose name and user ID is bob, to receive mail regarding the job

step, your notify keyword would be:

Job command file reference

312 LoadLeveler: Using and Administering

|

|

|
|

notify_user = bob@mailserv.pok.ibm.com

output

 Specifies the name of the file to use as standard output (stdout)

when your job step runs.

 Syntax:

output = filename

Default value: If you do not specify this keyword, LoadLeveler

uses the file /dev/null

 Example:

output = out.$(jobid)

preferences

 Specifies the characteristics that you prefer be available on the

machine that executes the job steps. LoadLeveler attempts to run

the job steps on machines that meet your preferences. If such a

machine is not available, LoadLeveler will then assign machines

that meet only your requirements.

 The values you can specify in a preferences statement are the same

values you can specify in a requirements statement, with the

exception of the Adapter requirement. See 313 for more

information.

 Restriction: Preferences are ignored when using Gang scheduling.

 Syntax:

preferences = Boolean_expression

Default value: No default preferences are set.

 Examples:

preferences = (Memory <=16) && (Arch == "R6000")

preferences = Memory >= 64

queue

 Places one copy of the job step in the queue. This statement is

required. The queue statement essentially marks the end of the job

step. Note that you can specify statements between queue

statements.

 Syntax:

queue

requirements

 Specifies the requirements which a machine in the LoadLeveler

cluster must meet to execute any job steps. You can specify

multiple requirements on a single requirements statement.

 Syntax:

requirements = Boolean_expression

Job command file reference

Chapter 13. Job command file reference 313

|

|
|

|

When strings are used as part of a Boolean expression that must be

enclosed in double quotes. Sample requirement statements are

included following the descriptions of the supported requirements,

which are:

Adapter

Specifies the predefined type of network you want to use to

run a parallel job step. In any new job command files you

create, you should use the network keyword to request

adapters and types of networks.

 The Adapter requirement is provided for compatibility with

Version 1.3 job command files when run under the

LoadLeveler Backfill scheduler. It is also the way to specify

when running with the default LoadLeveler scheduler. When

using the default scheduler, the Adapter requirement is

specified as the physical name of the device, such as en0 or

css0.

 Note that you cannot specify both the Adapter requirement

and the network statement in a job command file.

 For the Backfill scheduler you can use the predefined network

types. The predefined network types are:

hps_ip

Refers to an SP switch in IP mode.

hps_user

Refers to an SP switch in user space mode. If the

switch in user mode is requested by the job, no other

jobs using the switch in user mode will be allowed on

nodes running that job.

ethernet

Refers to Ethernet.

fddi Refers to Fiber Distributed Data Interface (FDDI).

tokenring

Refers to Token Ring.

fcs Refers to Fiber Channel Standards.

Note that LoadLeveler converts the above network types to the

network statement.

Arch

Specifies the machine architecture on which you want your job

step to run. It describes the particular kind of platform for

which your executable has been compiled. The default is the

architecture of the submitting machine.

Connectivity

Connectivity is the ratio of the number of active switch

adapters on a node to the total number of switch adapters on

the node. The value ranges from 0.0 (all switch adapters are

down) to 1.0 (all switch adapters are active). A node with no

switch adapters has a connectivity of 0.0 . Connectivity can be

used in a MACHPRIO expression to favor nodes that do not

have any down switch adapters or in a job REQUIREMENTS

statement to require only nodes with a certain connectivity.

Job command file reference

314 LoadLeveler: Using and Administering

Disk

Specifies the amount of disk space in kilobytes you believe is

required in the LoadLeveler execute directory to run the job

step.

Note: The Disk variable in an expression associated with the

requirements and preferences keywords are 64-bit

integers.

Feature

Specifies the name of a feature defined on a machine where

you want your job step to run. Be sure to specify a feature in

the same way in which the feature is specified in the

configuration file. To find out what features are available, use

the llstatus command.

LargePageMemory

Specifies the amount, in megabytes, of Large Page Memory

required to run the job.

Note: The Memory variable in an expression associated with

the requirements and preferences keywords are 64-bit

integers.

LL_Version

Specifies the LoadLeveler version, in dotted decimal format, on

which you want your job step to run. For example,

LoadLeveler Version 2 Release 1 (with no modification levels)

is written as 2.1.0.0.

Machine

Specifies the names of machines on which you want the job

step to run. Be sure to specify a machine in the same way in

which it is specified in the machine configuration file.

 If you have a mixed LoadLeveler cluster where the OpSys

values of the machines may be either AIX53 or AIX52, using

the requirements keyword to specify a Machine requirement

may result in an expression that always evaluates to false. If

the OpSys value of the submitting machine is AIX53, the

llsubmit command automatically adds (OpSys == ″AIX53″) to

the other job requirements unless an OpSys requirement has

already been explicitly specified. This behavior means that the

specification:

requirements = (Machine == "jupiter")

automatically becomes:

requirements = (Machine == "jupiter") && (OpSys == "AIX53")

This requirement cannot be satisfied unless the OpSys value of

″jupiter″ is also AIX53. In this case, a better strategy would be

to use an expression such as:

requirements =

 (Machine == "jupiter") && ((OpSys == "AIX52") || (OpSys == "AIX53"))

Memory

Specifies the amount, in megabytes, of regular physical

memory required in the machine where you want your job

step to run.

Job command file reference

Chapter 13. Job command file reference 315

|

|
|

|

|

|

|

Note: The Memory variable in an expression associated with

the requirements and preferences keywords are 64-bit

integers.

OpSys

Specifies the operating system on the machine where you want

your job step to run. It describes the particular kind of

platform for which your executable has been compiled. The

default is the operating system of the submitting machine. The

executable must be compiled on a machine that matches these

requirements.

Pool

Specifies the number of a pool where you want your job step

to run.

TotalMemory

Specifies the amount, in megabytes, of regular physical

memory and Large Page memory required in the machine

where you want your job step to run.

Note: The Memory variable in an expression associated with

the requirements and preferences keywords are 64-bit

integers.

 Default value: No default requirements are set.

 Examples:

v Example 1: To specify a memory requirement and a machine

architecture requirement, enter:

requirements = (Memory >=16) && (Arch == "R6000")

v Example 2: To specify that your job requires multiple machines

for a parallel job, enter:

requirements = (Machine == { "ll6" "ll5" "ll0" })

v Example 3: You can set a machine equal to a job step name. This

setting means that you want the job step to run on the same

machine on which the previous job step ran. For example:

requirements = (Machine == machine.step_name)

Where step_name is a step name previously defined in the job

command file. The use of Machine == machine.step_name is

limited to serial jobs.

Example:

@ step_name = step1

@ executable = c1

@ output = $(executable).$(jobid).$(step_name).out

@ queue

@ step_name = step2

@ dependency = (step1 == 0)

@ requirements = (Machine == machine.step1)

@ executable = c2

@ output = $(executable).$(jobid).$(step_name).out

@ queue

v Example 4: To specify a requirement for a specific pool number,

enter:

requirements = (Pool == 7)

Job command file reference

316 LoadLeveler: Using and Administering

|

|

v Example 5: To specify a requirement that the job runs on

LoadLeveler Version 2 Release 1 or any follow-on release, enter:

requirements = (LL_Version >= "2.1")

Note that the statement requirements = (LL_Version == "2.1")

matches only the value 2.1.0.0.

v Example 6: To specify the job runs if all switch connections are

up, enter:

@ requirements = (Connectivity == 1.0)

To specify the job runs if at least half of the switch connections

are up, enter:

@ requirements = (Connectivity >= .5)

To specify the job runs if there is at least some connectivity,

enter:

@ requirements = (Connectivity > 0)

resources

 Specifies quantities of the consumable resources consumed by each

task of a job step. The resources may be machine resources or

floating resources.

 Syntax:

resources=name(count) name(count) ... name(count)

where name(count) is one of the following:

v An administrator defined name and count

v ConsumableCpus(count)

v ConsumableMemory(count units)

v ConsumableVirtualMemory(count units)

ConsumableMemory and ConsumableVirtualMemory are the

only two consumable resources that can be specified with both a

count and units.

 The count for each specified resource must be an integer greater

than or equal to zero, except for the following instances in which

the integer must be greater than zero:

v ConsumableMemory

v ConsumableVirtualMemory

v ConsumableCpus when the enforcement policy is hard or soft

ConsumableCpus can have a value of zero when the administrator

has not requested that consumable resources be enforced, or when

the enforcement policy is shares.

 When you set ConsumableCpus to zero, the meaning varies

depending on whether use is being enforced. With no enforcement,

zero means the job is requesting a negligible amount of CPU. With

an enforcement policy of shares, it means the job is requesting a

tiny percentage of available shares.

 If the count is not valid then LoadLeveler will issue a message and

the job will not be submitted. The allowable units are those

normally used with LoadLeveler data limits:

Job command file reference

Chapter 13. Job command file reference 317

|

|

b bytes

w words (4 bytes)

kb kilobytes (2**10 bytes)

kw kilowords (2**12 bytes)

mb megabytes (2**20 bytes)

mw megawords (2**22 bytes)

gb gigabytes (2**30 bytes)

gw gigawords (2**32 bytes)

tb terabytes (2**40 bytes)

tw terawords (2**42 bytes)

pb petabytes (2**50 bytes)

pw petawords (2**52 bytes)

eb exabytes (2**60 bytes)

ew exawords (2**62 bytes)

The resources keyword accepts both 32-bit and 64-bit integer

values. These values, however, are assigned to the consumable

resources defined in the resources keyword and not to the

keyword itself.

 ConsumableMemory and ConsumableVirtualMemory values are

stored in mb (megabytes) and rounded up. Therefore, the smallest

amount of ConsumableMemory or ConsumableVirtualMemory

which you can request is one megabyte. If no units are specified,

then megabytes are assumed. However, image_size units are in

kilobytes. Resources defined here that are not in the

SCHEDULE_BY_RESOURCES list in the global configuration file

will not affect the scheduling of the job.

 When resource usage and resource submission is enforced, the

resources keyword must specify requirements for the resources

defined in the ENFORCE_RESOURCE_USAGE keyword.

 Default value: If the resources keyword is not specified in the job

step, then the default_resources (if any) defined in the

administration file for the class will be used for each task of the job

step.

restart

 Specifies whether LoadLeveler considers a job to be “restartable.”

 Syntax:

restart = yes|no

If restart=yes, and the job is vacated from its executing machine

before completing, the central manager requeues the job. It can

start running again when a machine on which it can run becomes

available. If restart=no, a vacated job is canceled rather than

requeued.

 Note that jobs which are checkpointable (checkpoint = yes |

interval) are always considered ″restartable″.

 Default value: yes

restart_from_ckpt

 Indicates whether a job step is to be restarted from a checkpoint

file.

Job command file reference

318 LoadLeveler: Using and Administering

|

Restriction: This keyword is ignored by LoadLeveler for Linux.

 Syntax:

restart_from_ckpt = yes | no

where:

yes Indicates LoadLeveler will restart the job step from the

checkpoint file specified by the job command file keyword

ckpt_file. The location of the ckpt_file will be determined

by the values of the job command file keyword ckpt_file

or ckpt_dir, the administrator defined location or the

default location. See “Naming checkpoint files and

directories” on page 129 for a description of how the

checkpoint directory location is determined. This value is

valid only when a job is being restarted from a previous

checkpoint.

no The job step will be started from the beginning, not from

the checkpoint file.

 Default value: no

 If you specify an invalid value for this keyword, the system

generates an error message and the job is not submitted.

restart_on_same_nodes

 Indicates that a job step is to be restarted on the same set of nodes

that it was run on previously. This keyword applies only to

restarting a job step after a vacate (this condition is when the job

step is terminated and then returned to the LoadLeveler job

queue).

 Syntax:

restart_on_same_nodes = yes | no

where:

yes Indicates that the job step is to be restarted on the same set

of nodes on which it had run.

no Indicates that it is not required to restart a vacated job on

the same nodes.

 Default value: no

rss_limit

 Specifies the hard limit, soft limit, or both limits for the resident set

size.

 Syntax:

rss_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default is set.

 Example:

rss_limit=12mb,10mb

Job command file reference

Chapter 13. Job command file reference 319

|

|

|

|

This example specifies the limits in megabytes, but If no units are

specified, then bytes are assumed.

 For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

shell

 Specifies the name of the shell to use for the job step.

 Syntax:

shell = name

Default value: If you do not specify a value for this keyword,

LoadLeveler uses the shell used in the owner’s password file entry.

If none is specified, LoadLeveler uses /bin/sh

 Example: If you want to use the Korn shell, the shell keyword

would be:

shell = /bin/ksh

stack_limit

 Specifies the hard limit, soft limit, or both limits for the size of the

stack that is created.

 Syntax:

stack_limit = hardlimit,softlimit

This keyword accepts both 32-bit and 64-bit integer values.

 Default value: No default is set.

 Example:

stack_limit = 120000,100000

Because no units have been specified in the above example,

LoadLeveler assumes that the figure represents a number of bytes.

 For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

startdate

 Specifies when you want to run the job step.

 Syntax:

startdate = date time

date is expressed as MM/DD/YYYY, and time is expressed as

HH:mm(:ss).

 Default value: If you do not specify a start date, LoadLeveler uses

the current date and time.

 Example: If you want the job to run on August 28th, 2010 at 1:30

PM, issue:

Job command file reference

320 LoadLeveler: Using and Administering

|
|

|
|
|

|

|

|
|

startdate = 08/28/2010 13:30

If you specify a start date that is in the future, your job is kept in

the Deferred state until that start date.

step_name

 Specifies the name of the job step. You can name the job step using

any combination of letters, numbers, underscores (_) and periods

(.). You cannot, however, name it T or F, or use a number in the

first position of the step name. The step name you use must be

unique and can be used only once.

 Syntax:

step_name = step_name

Default value: If you don’t specify a step name, by default the first

job step is named the character string ″0″, the second is named the

character string ″1″, and so on.

 Example:

step_name = step_3

task_geometry

 The task_geometry keyword allows you to group tasks of a

parallel job step to run together on the same node. Although

task_geometry allows for a great deal of flexibility in how tasks are

grouped, you cannot specify the particular nodes that these groups

run on; the scheduler will decide which nodes will run the

specified groupings.

 Syntax:

task_geometry={(task id,task id,...)(task id,task id, ...) ... }

Default value: No default value is set.

 Example: A job with 6 tasks will run on 4 different nodes:

task_geometry={(0,1) (3) (5,4) (2)}

Each number in the example above represents a task ID in a job,

each set of parenthesis contains the task IDs assigned to one node.

The entire range of tasks specified must begin with 0, and must be

complete; no number can be skipped (the largest task id number

should end up being the value that is one less than the total

number of tasks). The entire statement following the keyword must

be enclosed in braces, and each grouping of nodes must be

enclosed in parenthesis. Commas can only appear between task

IDs, and spaces can only appear between nodes and task IDs.

 The task_geometry keyword cannot be specified under any of the

following conditions:

v The step is serial.

v job_type is anything other than parallel

v Any of the following keywords are specified:

– tasks_per_node

Job command file reference

Chapter 13. Job command file reference 321

|

– total_tasks

– node

– min_processors

– max_processors

– blocking

For more information, see “Task-assignment considerations” on

page 159.

tasks_per_node

 Specifies the number of tasks of a parallel job you want to run per

node. Use this keyword together with the node keyword. The

value you specify on the node keyword can be a range or a single

value. If the node keyword is not specified, then the default value

is one node.

 The maximum number of tasks a job step can request is limited by

the total_tasks keyword in the administration file (provided this

keyword is specified). That is, the maximum must be less than any

total_tasks value specified in a user, group, or class stanza.

 The value of the tasks_per_node keyword applies only to the job

step in which you specify the keyword. (That is, this keyword is

not inherited by other job steps.)

 Also, you cannot specify both the tasks_per_node keyword and

the total_tasks keyword within a job step.

 Syntax:

tasks_per_node = number

where number is the number of tasks you want to run per node.

 Default value: The default is one task per node.

 Example: To specify a range of seven to 14 nodes, with four tasks

running on each node, enter the following:

node = 7,14

tasks_per_node = 4

The above job step runs 28 to 56 tasks, depending on the number

of nodes allocated to the job step.

total_tasks

 Specifies the total number of tasks of a parallel job you want to

run on all available nodes. Use this keyword together with the

node keyword. The value you specify on the node keyword must

be a single value rather than a range of values. If the node

keyword is not specified, then the default value is one node.

 The maximum number of tasks a job step can request is limited by

the total_tasks keyword in the administration file (provided this

keyword is specified). That is, the maximum must be less than any

total_tasks value specified in a user, group, or class stanza. The

value of the total_tasks keyword applies only to the job step in

which you specify the keyword. (That is, this keyword is not

inherited by other job steps.) Also, you cannot specify both the

total_tasks keyword and the tasks_per_node keyword within a job

step.

Job command file reference

322 LoadLeveler: Using and Administering

If you specify an unequal distribution of tasks per node,

LoadLeveler allocates the tasks on the nodes in a round-robin

fashion. For example, if you have three nodes and five tasks, two

tasks run on the first two nodes and one task runs on the third

node.

 Syntax:

total_tasks = number

Where number is the total number of tasks you want to run.

 Default value: No default is set.

 Example: To run two tasks on each of 12 available nodes for a total

of 24 tasks, enter the following:

node = 12

total_tasks = 24

user_priority

 Sets the initial priority of your job step. Priority only affects your

job steps. It orders job steps you submitted with respect to other

job steps submitted by you, not with respect to job steps submitted

by other users.

 Syntax:

user_priority = number

Where number is a number between 0 and 100, inclusive. A higher

number indicates the job step will be selected before a job step

with a lower number. Note that this keyword is not the UNIX nice

priority.

 This priority guarantees the order the jobs are considered for

dispatch. It does not guarantee the order in which they will run.

 Default value: The default priority is 50.

wall_clock_limit

 Sets the hard limit, soft limit, or both limits for the elapsed time for

which a job can run. In computing the elapsed time for a job,

LoadLeveler considers the start time to be the time the job is

dispatched.

 If you are running either the Backfill or Gang scheduler, you must

either set a wall clock limit in the job command file or the

administrator must define a wall clock limit value for the class to

which a job is assigned. In most cases, this wall clock limit value

should not be unlimited. For more information, see “Choosing a

scheduler” on page 35.

 Syntax:

wall_clock_limit = hardlimit,softlimit

An example is:

wall_clock_limit = 5:00,4:30

Job command file reference

Chapter 13. Job command file reference 323

|

|

For more information about the values and units you can use with

this keyword, and how limits are enforced, see “Using limit

keywords” on page 83.

Job command file variables

LoadLeveler has several variables you can use in a job command file. These

variables are useful for distinguishing between output and error files.

You can refer to variables in mixed case, but you must specify them using the

following syntax:

$(variable_name)

The following variables are available to you:

$(host)

The hostname of the machine from which the job was submitted. In a job

command file, the $(host) variable and the $(hostname) variable are

equivalent.

$(domain)

The domain of the host from which the job was submitted.

$(schedd_host)

The hostname of the scheduling machine.

$(schedd_hostname)

The hostname and domain name of the scheduling machine.

$(jobid)

The sequential number assigned to this job by the schedd daemon. The

$(jobid) variable and the $(cluster) variable are equivalent.

$(stepid)

The sequential number assigned to this job step when multiple queue

statements are used with the job command file. The $(stepid) variable and the

$(process) variable are equivalent.

In addition, the following keywords are also available as variables. However, you

must define them in the job command file. These keywords are described in detail

in “Job command file keyword descriptions” on page 294.

v $(executable)

v $(class)

v $(comment)

v $(job_name)

v $(step_name)

Note that for the $(comment) variable, the keyword definition must be a single

string with no blanks. Also, the executable statement automatically sets the

$(base_executable) variable, which is the file name of the executable without the

directory component. See Figure 21 on page 149 for an example of using the

$(base_executable) variable.

Run-time environment variables

The following environment variables are set by LoadLeveler for all jobs. These

environment variables are also set before running prolog and epilog programs. For

more information on prolog and epilog programs, see “Writing prolog and epilog

programs” on page 70.

Job command file reference

324 LoadLeveler: Using and Administering

|
|

LOADLBATCH

Set to yes to indicate the job is running under LoadLeveler.

LOADLBATCH

Set to yes to indicate the job is running under LoadLeveler.

LOADL_ACTIVE

The LoadLeveler version.

LOADL_CKPT_FILE

Identifies the directory and file name for checkpointing files. LoadLeveler

will only set this environmental variable if checkpointing is enabled.

LOADL_JOB_NAME

The three part job identifier.

LOADL_PID

The process ID of the starter process.

LOADL_PROCESSOR_LIST

A Blank-delimited list of hostnames allocated for the step. This

environment variable is limited to 128 hostnames. If the value is greater

than the 128 limit, the environment variable is not set.

LOADL_STARTD_PORT

The port number where the startd daemon runs.

LOADL_STEP_ACCT

The account number of the job step owner.

LOADL_STEP_ARGS

Any arguments passed by the job step.

LOADL_STEP_CLASS

The job class for serial jobs.

LOADL_STEP_COMMAND

The name of the executable (or the name of the job command file if the job

command file is the executable).

LOADL_STEP_ERR

The file used for standard error messages (stderr).

LOADL_STEP_GROUP

The UNIX group name of the job step owner.

LOADL_STEP_ID

The job step ID.

LOADL_STEP_IN

The file used for standard input (stdin).

LOADL_STEP_INITDIR

The initial working directory.

LOADL_STEP_NAME

The name of the job step.

LOADL_STEP_NICE

The UNIX nice value of the job step. This value is determined by the nice

keyword in the class stanza. For more information, see “Defining classes”

on page 83.

LOADL_STEP_OUT

The file used for standard output (stdout).

Job command file variables

Chapter 13. Job command file reference 325

LOADL_STEP_OWNER

The job step owner.

LOADL_STEP_TYPE

The job type (SERIAL, PARALLEL, or NQS)

Example 1

The following job command file creates an output file called stance.78.out, where

stance is the host and 78 is the job ID.

@ executable = my_job

@ arguments = 5

@ output = $(host).$(jobid).out

@ queue

Example 2

The following job command file creates an output file called

computel.step1.March05.

@ comment = March05

@ job_name = computel

@ step_name = step1

@ executable = my_job

@ output = $(job_name).$(step_name).$(comment)

@ queue

For additional information, see “Examples: Job command files” on page 147.

Job command file variables

326 LoadLeveler: Using and Administering

Chapter 14. Graphical user interface (GUI) reference

The LoadLeveler GUI is used to build jobs and submit them for processing. The

procedures for completing tasks using the GUI appear in Chapter 10, “Using

LoadLeveler’s GUI to build, submit, and manage jobs,” on page 189.

If this is the first time you are using a Motif-based GUI, you should refer to the

appropriate Motif documentation for general GUI information.

In “Customizing the GUI” on page 330 you will also find information on

customizing the GUI by:

v Modifying windows and buttons

v Creating pull-down menus

v Customizing window fields

v Modifying help panels

v Setting up administrative tasks

Note: LoadLeveler provides two types of graphical user interfaces. One interface is

for users whose machines interact fully with LoadLeveler. The second

interface is available to users of submit-only machines that participate on a

limited basis with LoadLeveler.

Starting the GUI

To start the GUI, check your PATH variable to ensure that it is pointing to the

LoadLeveler binaries. Also, check to see that your DISPLAY variable is set to your

display. Then, type one of the following to start the GUI in the background:

v xloadl_so & (if you are running a submit-only machine)

v xloadl & (for all other users)

Specifying GUI options

In general, you can specify GUI options in any of the following ways:

v Within the GUI using menu selections

v On the xloadl (or xloadl_so) command line. Enter xloadl -h or xloadl_so -h to

see a list of the available options.

v In the Xloadl file. See “Customizing the GUI” on page 330 for more information.

The LoadLeveler main window

LoadLeveler’s main window has three sub-windows, titled Jobs, Machines, and

Messages, as shown in Figure 33 on page 328. Each of these sub-windows has its

own menu bar.

 327

|

The menu bar on the Jobs window relates to actions you can perform on jobs. The

menu bar on the Machines window relates to actions you can perform on

machines. Similarly, the menu bar on the Messages window displays actions you

can perform related to LoadLeveler generated messages.

Figure 33. Main window of the LoadLeveler GUI

GUI basics

328 LoadLeveler: Using and Administering

When you select an item from a menu bar, a pull-down menu appears. You can

select an item from the pull-down menu to carry out an action or to bring up

another pull-down menu originating from the first one.

Getting help using the GUI

You can get help when using the GUI by pressing the Help key. This key is

function key 1 (F1) on most keyboards. To receive help on specific parts of the

LoadLeveler GUI, click the mouse on the area or field for which you want help

and press F1. A help screen appears describing that area. You can also get help by

using the Help pull-down menu and the Help push buttons available in pop-up

windows.

Before you invoke the GUI, make sure your PATH statement includes the directory

containing the LoadLeveler executables. Otherwise, some GUI functions may not

work correctly.

Differences between LoadLeveler’s GUI and other graphical

user interfaces

LoadLeveler’s GUI contains many items common to other GUIs. There are,

however, some differences that you should be aware of. These differences are:

v Accelerators or mnemonics do not appear on the menu bars.

v Submerged windows do not necessarily rise to the top when refreshed.

GUI typographic conventions

This book uses the following typographic conventions when describing the way

tasks are accomplished using the GUI.

Task step conventions

Each task step includes a user action and a system response. User actions

appear in UPPERCASE BOLDFACE type and the system response to an

action follows a � . For example:

SELECT

Refresh → Set Auto Refresh

 � A window appears.

An action is sometimes represented by itself, for example:

SELECT OK

Selection table and decision table conventions

Some actions require a selection or decision. Selection and decision actions

are presented in tables.

 Selection tables list all possible selections in the left column of the table.

The following is an example of a selection table:

 To Do This

Submit a job Refer to “Submitting a job command file” on page 200.

Cancel a job Refer to “Canceling a job” on page 203.

 Decision tables present a question or series of questions before indicating

the action. The following is an example of a decision table:

 Did the job you submitted complete processing?

GUI basics

Chapter 14. Graphical user interface (GUI) reference 329

Yes Submit another job.

No Check the status of the job.

Menu selection conventions

Selections from a menu bar are indicated with an →. For example, if a

menu bar included an option called Actions and Actions included an

option called Cancel, the instructions would read:

SELECT Actions → Cancel

64-bit support for the GUI

The LoadLeveler Graphical User Interface (xloadl or xloadl_so) accepts and

displays 64-bit information where appropriate.

Customizing the GUI

You can customize the GUI to suit your needs by overriding the default settings of

the LoadLeveler resource variables. For example, you can set the color, initial size,

and location of the main window.

This section tells you how to customize the GUI by modifying either (or both) of

the following files:

Xloadl For fully participating machines

Xloadl_so For submit-only machines

If the LoadLeveler administrator has set up these resource files, the files are

located in the /usr/lib/X11/app-defaults directory. Otherwise, the files are located in

the lib directory of the LoadLeveler release directory:

v For AIX, in /usr/lpp/LoadL/full/lib and /usr/lpp/LoadL/so/lib, respectively.

v For Linux, in /opt/ibmll/LoadL/full/lib and /opt/ibmll/LoadL/so/lib, respectively.

These files contain the default values for the graphical user interface. This section

discusses the syntax of these files, and gives you an overview of some of the

resources you can modify.

An administrator with root authority can make changes to the resources for the

entire installation by editing the Xloadl file. Any user can make local changes by

placing the resource names with their new values in the user’s .Xdefaults file.

Syntax of an Xloadl file

v Comments begin with !

v Resource variables may begin with *

v Colons follow resource variables

v Resource variable values follow colons.

Modifying windows and buttons

All of the windows and buttons that are part of the GUI have certain

characteristics in common. For example, they all have a foreground and

background color, as well as a size and a location. Each one of these characteristics

is represented by a resource variable. For example, the foreground characteristic is

represented by the resource variable foreground. In addition, every resource

variable has a value associated with it. The values of the resource variable

foreground are a range of colors.

GUI basics

330 LoadLeveler: Using and Administering

|

Before customizing a window, you need to locate the resource variables associated

with the desired window. To do this, search for the window identifier in your

Xloadl file. The following table lists the windows and their respective identifiers:

 Table 49. Window identifiers in the Xloadl file

Window Identifier

Account Report Data reporter

Build a Job builder

Checkpoint Fields ckpt

Jobs job_status

Limits limits

Machines machine_status

Messages message_area

Network network

Nodes nodes

Preferences preferences

Requirements requirements

Script script

Submit a Job submit

Task Geometry tgeometry

The following table lists the resource variables for all the windows and the buttons

along with a description of each resource variable. Use the information in this table

to modify your graphical user interface by changing the values of desired resource

variables. The values of these resource variables depend upon Motif requirements.

 Resource Variable Description

background The background color of the object

foreground The foreground color of the object

geometry The location of the object

height The height of the object

labelString The text associated with the object

width The width of the object

Creating your own pull-down menus

You can add a pull-down menu to both the Jobs window and the Machines

window.

To add a pull-down menu to the Jobs window, in the Xloadl file:

1. Set userJobPulldown to True

2. Set userJob.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item, userJob_Option1

4. To define more menu items, fill in the appropriate information for

userJob_Option2, userJob_Option3, and so on. You can define up to ten menu

items.

Customizing the GUI

Chapter 14. Graphical user interface (GUI) reference 331

For more information, refer to the comments in the Xloadl file.

To add a pull-down menu to the Machines window, in the Xloadl file:

1. Set userMachinePulldown to True

2. Set userMachine.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item,

userMachine_Option1

4. To define more menu items, fill in the appropriate information for

userMachine_Option2, userMachine_Option3, and so on. You can define up to

ten menu items.

Example – creating a new pull-down

Suppose you want to create a new menu bar item containing a selection which

executes the ping command against a machine you select on the Machines

window.

 The Xloadl definitions shown in the Figure 34 create a menu bar item called

“Commands”. The first item in the Commands pull-down menu is called “ping”.

When you select this item, the command ping -c1 is executed, with the machine

you selected on the Machines window passed to this command. Your output is

displayed in an informational window.

For more information, refer to the comments in the Xloadl file.

Customizing fields on the Jobs window and the Machines

window

You can control which fields are displayed and which fields are not displayed on

the Jobs window and the Machine window by changing the Xloadl file. Look in

the Xloadl file for “Resources for specifying lengths of fields displayed in the Jobs

and Machines windows”.

In most cases, you can remove a field from a window by setting its associated

resource value to 0. To remove the Arch field from the Machines window, enter the

following:

*mach_arch_len : 0

Note that the Job ID and Machine Name fields must always be displayed and

therefore cannot be set to 0.

All fields have a minimum length value. If you specify a smaller value, the

minimum is used.

*userMachinePulldown: True

*userMachine.labelString: Commands

*userMachine_Option1: True

*userMachine_Option1_command: ping -c1

*userMachine_Option1.labelString: ping

*userMachine_Option1_parameter: True

*userMachine_Option1_output: Window

Figure 34. Creating a new pull-down menu

Customizing the GUI

332 LoadLeveler: Using and Administering

Modifying help panels

Help panels have the same characteristics as all of the windows plus a few unique

ones:

 Resource Variable Values Description

help*work_area.width Any integer* The width of the help panel.

help*work_area.height Any integer* The height of the help panel.

help*scrollHorizontal [true|false]

The default is False.

Sets the scrolling option on or off.

help*wordWrap [true|false]

The default is True.

Sets word wrapping on or off.

Note:

* The work area and height depend upon your screen limitations.

Customizing the GUI

Chapter 14. Graphical user interface (GUI) reference 333

Customizing the GUI

334 LoadLeveler: Using and Administering

Chapter 15. Commands

LoadLeveler provides two types of commands: those that are available to all users

of LoadLeveler, and those that are reserved for LoadLeveler administrators. If

security services are not configured, then administrators are identified by the

LOADL_ADMIN keyword in the configuration file. If security services are

configured, the configuration file must identify the administrator’s group. Refer to

“Defining security mechanisms” on page 45 for more information.

The administrator commands can operate on the entire LoadLeveler job queue and

all machines configured. The user commands mainly affect those jobs submitted by

that user. Some commands, such as llhold, include options that can only be

performed by an administrator.

Table 50 lists all of the LoadLeveler commands, along with the intended users and

supported operating systems for each, and a reference to the full description of

each command.

 Table 50. LoadLeveler command summary

Command

name Intended users

Supported

operating

systems For more information, see...

llacctmrg Administrators only AIX and Linux “llacctmrg - Collect machine

history files” on page 337

llbind Both administrators

and general users

AIX and Linux “llbind - Bind job steps to a

reservation” on page 339

llcancel Both administrators

and general users

AIX and Linux “llcancel - Cancel a submitted job”

on page 341

llchres Both administrators

and general users

AIX and Linux “llchres - Change attributes of a

reservation” on page 343

llckpt Both administrators

and general users

AIX only “llckpt - Checkpoint a running job

step” on page 347

llclass Both administrators

and general users

AIX and Linux “llclass - Query class information”

on page 349

llctl Administrators only AIX and Linux “llctl - Control LoadLeveler

daemons” on page 353

lldbconvert Administrators only AIX and Linux “lldbconvert - Job migration

utility” on page 358

lldcegrpmaint DCE administrators

only

AIX only “lldcegrpmaint - LoadLeveler

DCE group maintenance utility”

on page 359

llextRPD Both administrators

and general users

AIX and Linux “llextRPD - Extract data from an

RSCT peer domain” on page 362

llextSDR Both administrators

and general users

AIX only “llextSDR - Extract adapter

information from the SDR” on

page 365

llfavorjob Administrators only AIX and Linux “llfavorjob - Reorder system

queue by job” on page 369

llfavoruser Administrators only AIX and Linux “llfavoruser - Reorder system

queue by user” on page 371

 335

|
|
|

||

|
||

|
|
||

||||
|

||
|
||
|

||
|
||
|

||
|
||
|

||
|
||
|

||
|
||
|

||||
|

||||
|

||
|
||
|
|

||
|
||
|

||
|
||
|
|

||||
|

||||
|

Table 50. LoadLeveler command summary (continued)

Command

name Intended users

Supported

operating

systems For more information, see...

llhold Both administrators

and general users

AIX and Linux “llhold - Hold or release a

submitted job” on page 372

llinit Administrators only AIX and Linux “llinit - Initialize machines in the

LoadLeveler cluster” on page 374

llmkres Both administrators

and general users

AIX and Linux “llmkres - Make a reservation” on

page 376

llmodify Both administrators

and general users

AIX and Linux “llmodify - Change attributes of a

submitted job step” on page 379

llpreempt Administrators only AIX and

Linux*

“llpreempt - Preempt a submitted

job step” on page 382

llprio Both administrators

and general users

AIX and Linux “llprio - Change the user priority

of submitted job steps” on page

384

llq Both administrators

and general users

AIX and Linux “llq - Query job status” on page

386

llqres Both administrators

and general users

AIX and Linux “llqres - Query a reservation” on

page 406

llrmres Both administrators

and general users

AIX and Linux “llrmres - Cancel a reservation”

on page 409

llrunscheduler Administrators only AIX and Linux “llrunscheduler - Run the central

manager’s scheduling algorithm”

on page 411

llstatus Both administrators

and general users

AIX and Linux “llstatus - Query machine status”

on page 412

llsubmit Both administrators

and general users

AIX and Linux “llsubmit - Submit a job” on page

423

llsummary Both administrators

and general users

AIX and Linux “llsummary - Return job resource

information for accounting” on

page 425

* - On LoadLeveler for Linux platforms, the suspend preempt method is not

supported.

LoadLeveler commands

336 LoadLeveler: Using and Administering

|

|
||

|
|
||

||
|
||
|

||||
|

||
|
||
|

||
|
||
|

|||
|
|
|

||
|
||
|
|

||
|
||
|

||
|
||
|

||
|
||
|

||||
|
|

||
|
||
|

||
|
||
|

||
|
||
|
|
|

|
|

llacctmrg - Collect machine history files

Purpose

Collects individual machine history files together into a single file.

Syntax

llacctmrg [-?] [-H] [-v] [-R] [-h hostlist] [-d directory]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-R Merges individual machine reservation history files into a single history file.

-h hostlist

Specifies a blank-delimited list of machines from which to collect data. The

default is all machines in the LoadLeveler cluster.

-d directory

Specifies the directory to hold the new global history file. If not specified, the

directory specified in the GLOBAL_HISTORY keyword in the configuration

file is used.

Description

This command by default collects data from all the machines identified in the

administration file. To override the default, specify a machine or a list of machines

using the -h flag.

When the llacctmrg command ends, accounting information is stored in a file

called globalhist.YYYYMMDDHHmm. Information such as the amount of resources

consumed by the job and other job-related data is stored in this file. In this file:

YYYY Indicates the year

MM Indicates the month

DD Indicates the day

HH Indicates the hour

mm Indicates the minute.

Note that when the collection of accounting information to the global history file is

complete, the accounting information is cleared in the history file.

For job data, you can use this file as input to the llsummary command. For

example, if you created the file globalhist.199808301050, you can issue llsummary

globalhist.199808301050 to process the accounting information stored in this file.

When the -R flag is used to merge reservation history files instead of job history

files, a file named reservation_globalhist.YYYYMMDDHHmm is created in the

specified directory. You can view reservation data with any text editor. For more

information on the format of the reservation history file, see the accounting

information in Chapter 3, “Configuring the LoadLeveler environment,” on page 31.

llacctmrg

Chapter 15. Commands 337

|

||

|
|

|
|
|

|
|
|
|
|

Data on processes which fork child processes will be included in the file only if the

parent process waits for the child process to end. Therefore, complete data may not

be collected for jobs which are not composed of simple parent/child processes. For

example, if a LoadLeveler job invokes an rsh command to execute some function

on another machine, the resources consumed on the other machine will not be

collected as part of the accounting data.

Examples

1. The following example collects data from machines named mars and pluto:

llacctmrg -h mars pluto

2. The following example collects data from the machine named mars and places

the data in an existing directory called merge:

llacctmrg -h mars -d merge

3. The following example collects reservation history data from all machines in

the LoadLeveler cluster:

llacctmrg -R

You should receive a response similar to the following:

llacctmrg: History transferred successfully from

 c94n04.ppd.pok.ibm.com (98 bytes).

A file named reservation_globlhist.200502100915 is generated in the global

history file location, assuming llacctmrg is issued at the time of 09:15

02/10/2005.

Results

The following shows a sample system response from the llacctmrg -h mars -d

merge command.

llacctmrg: History transferred successfully from mars (10080 bytes)

Security

LoadLeveler administrators can issue this command.

llacctmrg

338 LoadLeveler: Using and Administering

|
|

|

|

|
|

|
|
|

llbind - Bind job steps to a reservation

Purpose

llbind – Binds job steps to a reservation in LoadLeveler, or unbinds job steps from

the reservations to which they currently belong. The bound job steps will only be

scheduled to run on the nodes reserved by the reservation.

Syntax

llbind { -? | -H | -v | [-q] { -r | -R reservation_ID } job_step_list }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

-r Specifies an unbind operation. If the job steps are already bound to

a reservation, LoadLeveler will unbind the job steps from that

reservation. Otherwise, LoadLeveler eliminates any association

between the job steps and a reservation.

-R reservation_ID

Specifies a reservation ID to which the job steps will be bound.

Input for a reservation ID takes the form [host.]rid[.r] where:

v host - Is the name of the schedd machine to which the

reservation was submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A

reservation ID is required.

v r - Indicates that this is a reservation ID (r is optional).

job_step_list Specifies a blank-delimited list of job steps to be bound to the

reservation or unbound from their respective reservations. The

name of each job step should be in the form [host.]jobid[.stepid]

where:

v host - Is the name of the schedd machine to which the job was

submitted. The default is the local machine.

v jobid - Is the job ID assigned to the job when it was submitted.

The job ID is required.

v stepid - Is the step ID assigned to the job when it was

submitted. The default is that all steps of the job will be bound

or unbound.

Description

The llbind command is for LoadLeveler administrators and owner or users of a

reservation. Regular users can only bind their own job steps to a reservation that

they are allowed to use, while a LoadLeveler administrator can bind any job steps

to any reservation.

Bound job steps will be scheduled to run on the reserved nodes only.

llbind

Chapter 15. Commands 339

|
|

|

|
|
|

|

|

|

||

||

||
|
|

||

||
|
|
|

|
|
|

|
|

|
|

|

||
|
|
|

|
|

|
|

|
|
|

|

|
|
|
|

|

Only job steps in an idle-like state can be bound to a reservation. A job step that is

in an idle-like state that is already bound to a reservation can be bound to a new

reservation using the llbind command. The command will first unbind the job step

from the reservation it is currently bound to and then bind it to the requested

reservation.

Only existing job steps queued in LoadLeveler can be bound to a reservation

through this command. The LL_RES_ID environment variable can be used to bind

an interactive POE job to a reservation or cause llsubmit to both submit and bind

a batch job to a reservation. For additional information about setting the

LL_RES_ID environment variable to bind an interactive POE job to a reservation,

see Chapter 7, “Building and submitting jobs,” on page 145. The llqres command

can be used to view the list of job steps bound to the reservation.

This command is for the BACKFILL scheduler only.

Examples

1. To request to bind the job step c188f2n01.6.0 to reservation c188f1n03.2.r, issue:

llbind -R c188f1n03.2.r c188f2n01.6.0

You should receive a response similar to the following:

Request to bind job steps to reservation c188f1n03.2.r has been sent to LoadLeveler

2. To request to unbind the job step c188f2n01.6.0 from the reservation to which it

is currently bound, issue:

llbind -r c188f2n01.6.0

You should receive a response similar to the following:

Request to unbind job steps from their respective reservations has been sent to

LoadLeveler.

Security

LoadLeveler administrators and users can issue this command.

llbind

340 LoadLeveler: Using and Administering

|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

llcancel - Cancel a submitted job

Purpose

Cancels one or more jobs from the LoadLeveler queue.

Syntax

llcancel [-?] [-H] [-v] [-q] [-u userlist] [-h hostlist] [joblist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-u userlist

Is a blank-delimited list of users. When used with the -h option, only the

user’s jobs monitored on the machines in the hostlist are canceled. When used

alone, only the user’s jobs monitored by the machine issuing the command are

canceled.

-h hostlist

Is a blank-delimited list of machine names. All jobs monitored on machines in

this list are canceled. When issued with the -u option, the userlist is used to

further select jobs for cancellation.

joblist

Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the schedd machine to which the job was submitted

(delimited by dot). The default is the local machine.

v jobid is the job ID assigned to the job when it was submitted using the

llsubmit command. The jobid is required.

v stepid (delimited by dot) is the step ID assigned to the job when it was

submitted using the llsubmit command. The default is to include all steps of

the job.

The -u or -h flags override the joblist parameter.

When the -h flag is specified by a non-administrator, all jobs submitted from the

machines in hostlist by the user issuing the command are canceled.

When the -h flag is specified by an administrator, all jobs submitted by the

administrator are canceled, unless the -u is also specified, in which case all jobs

both submitted by users in userlist and monitored on machines in hostlist are

canceled.

Group administrators and class administrators are considered normal users unless

they are also LoadLeveler administrators.

llcancel

Chapter 15. Commands 341

Description

When you issue llcancel, the command is sent to the negotiator. You should then

use the llq command to verify your job was canceled. A job state of CA (Canceled)

indicates the job was canceled. A job state of RP (Remove Pending) indicates the

job is in the process of being canceled.

When cancelling a job from a submit-only machine, you must specify the machine

name that scheduled the job. For example, if you submitted the job from machine

A, a submit-only machine, and machine B, a scheduling machine, scheduled the

job to run, you must specify machine B’s name in the cancel command. If machine

A and B are in different sub-domains, you must specify the fully-qualified name of

the job in the cancel command. You can use the llq -l command to determine the

fully-qualified name of the job.

Examples

1. This example cancels the job step 3 that is part of the job 18 that is scheduled

by the machine named bronze:

llcancel bronze.18.3

2. This example cancels all the job steps that are a part of job 8 that are scheduled

by the machine named gold.

llcancel gold.8

Results

The following shows a sample system response for the llcancel gold.8 command.

llcancel: Cancel command has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llcancel

342 LoadLeveler: Using and Administering

llchres - Change attributes of a reservation

Purpose

llchres – Changes one or more of the attributes of a LoadLeveler reservation.

Syntax

llchres { -? | -H | -v | [-q] [-t start_time | -t {+|−} minutes]

 [-d [+|−] duration] [-n [+|−] number_of_nodes |

 -h all | -h [+|−] host_list | -j job_step | -f job_command_file]

 [-U [+|−] user_list] [-G [+|−] group_list] [-s {yes|no}]

 [-i {yes|no}] [-u user] [-g group] -R reservation }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-q Specifies quiet mode: print no messages other than error messages.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-t start_time Modifies the start_time for a reservation using a 24-hour clock. The

format [mm/dd[/[cc]yy]] HH:MM must be used.

-t {+|−} minutes

Modifies the start time for a reservation using minutes. When

minutes is preceded by a plus (+) sign or minus (−) sign, the

current start time is postponed or moved closer, respectively, by

the number of minutes specified.

-d [+|−] duration

Specifies a new duration for the reservation in minutes. If duration

is preceded by a plus (+) sign or minus (−) sign, the current

duration of the reservation is increased or decreased, respectively,

by the value specified.

-n [+|−] number_of_nodes

Specifies a new request for the number of nodes to reserve. If

number_of_nodes is preceded by a plus (+) sign or minus (−) sign,

the current number of nodes in the reservation is increased or

decreased, respectively, by the value specified.

-h all Reserves all machines currently in the LoadLeveler cluster that can

be used for a reservation.

-h [+|−] host_list

Specifies a change to the list of machines to be reserved. When a

blank-delimited host list is specified, it indicates that a new list of

hosts are to be reserved. Specifying a plus (+) sign before host list

adds the listed machines to the reservation. Specifying a minus (−)

sign removes the listed machines from the reservation. Note that

when a host list is specified, the first character of any host name

cannot be a plus (+) or minus (−) sign.

-j job_step Specifies a new request that a set of nodes that the job step can run

on be reserved. The job step must be in an idle-like state and takes

the form [host.]jobid.stepid where:

llchres

Chapter 15. Commands 343

|
|

|

|

|
||
||
||
||
||

|

||

||

||

||
|
|

||
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

||
|

|
|
|
|
|
|
|
|

||
|
|

v host - The name of the schedd machine to which the job was

submitted. The default is the local machine.

v jobid - The job ID assigned to the job when it was submitted.

The job ID is required.

v stepid - The step ID assigned to the job when it was submitted.

The step ID is required.

You must be an administrator or the owner of both the reservation

and job step to make this request. If the request to modify the

reservation is successful, the job step will be bound to the

reservation.

-f job_command_file

Specifies the full path to a new job_command_file that will be

submitted and the first job step used to determine what nodes to

reserve. The job ID of the newly created job will be displayed. All

job steps will be bound to the reservation, or if the modification

request fails, will be placed in the NotQueued state. The job ID of

the newly created job will be displayed.

-U [+|−] user_list

Specifies a new blank-delimited list of users who can use the

reservation. If the list of users is preceded by a plus (+) sign or

minus (−) sign, add those users to or remove those users from the

existing list of users that can use the reservation, respectively.

-G [+|−] group_list

Specifies a new blank-delimited list of LoadLeveler groups that can

use the reservation. If the list of groups is preceded by a plus (+)

sign or minus (−) sign, those groups will be added to or removed

from the existing list of groups, respectively. The first character of

any group name cannot be plus (+) sign or minus (−) sign.

-s {yes|no} SHARED mode is enabled when the reserved word yes is

specified. When the reserved word no is specified, SHARED mode

is disabled.

-i {yes|no} REMOVE_ON_IDLE mode is enabled when the reserved word yes

is specified. When the reserved word no is specified,

REMOVE_ON_IDLE mode is disabled.

-u user Specifies a new user ID that will own the reservation.

-g group Specifies a new LoadLeveler group that will own the reservation.

-R reservation Specifies the reservation ID to be modified. Input for reservation

ID takes the form [host.]rid[.r] where:

v host - Is the name of the schedd machine to which the

reservation was submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A

reservation ID is required.

v r - Indicates that this is a reservation ID (r is optional).

Note: When a plus (+) sign or minus (−) sign is used to increase or decrease a

value, there cannot be spaces between the plus (+) sign or minus (−) sign

and the value.

llchres

344 LoadLeveler: Using and Administering

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

||
|
|

||
|
|

||

||

||
|

|
|

|
|

|

|
|
|

Description

The llchres command is for LoadLeveler administrators and the owner of a

reservation. Either all requested changes will be made and a message indicating

the reservation request has been sent will be displayed, or none of the changes will

be made and a message describing the reason for the failure will be displayed

along with the message that the request was sent. If a connection error occurs and

the request cannot be sent, a message will be displayed.

Note that it is possible for a time out to occur while this command is waiting for a

response from the LoadLeveler central manager. Even if a time out occurs or the

command process is killed, the command may still succeed. To determine if the

request has been granted, issue the llqres command.

Modification requests are subject to resource availability checks and reservation

policies.

Notes on changing a reservation:

v Administrators can change the attributes of any reservation, including the user

ID that owns the reservation, while non-administrators can change attributes of

only the reservations they own and cannot change the reservation owner.

v A reservation owner who is not a LoadLeveler administrator cannot change the

start time, duration or reserved nodes if the start time is not at least later than

the current time by the number of minutes specified by the

RESERVATION_MIN_ADVANCE_TIME keyword.

v The new reservation start time must be later than the current time by at least the

amount of time specified by the RESERVATION_SETUP_TIME keyword.

v A reservation in the CANCEL or COMPLETE state cannot be changed.

v When a reservation is not in the WAITING state, the start time cannot be

changed.

v When a reservation is not in the WAITING state, the only ways to change

reserved nodes are to add a number of nodes, or to add or delete a list of nodes.

v A reserved node with a bound step running cannot be removed from the

reservation.

v When changing the reservation duration, the end time of the reservation must be

later than the current time.

v You cannot delete all reserved nodes from a reservation; a reservation must have

at least one reserved node.

v You cannot add a node that is already reserved to a reservation when using

llchres -h +host_list.

v You cannot delete a node that is not reserved from a reservation when using

llchres -h -host_list.

v If you want to change the owner of a reservation, the new owner must be able

to own an additional reservation (max_reservations for the user is not specified

or if specified, the quota is not used up yet). If you want to change the group

that owns the reservation, the new group must be able to own an additional

reservation (max_reservations for the group is not specified or if specified, the

quota is not used up yet). If the change request is granted, the new owner and

group must have the permission to own a new reservation (they cannot both

have max_reservations unspecified).

This command is for the BACKFILL scheduler only.

llchres

Chapter 15. Commands 345

|

|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

Examples

1. To have reservation c94n16.20.r start an hour later than currently scheduled

with four fewer nodes, issue:

llchres -t +60 -n -4 -R c94n16.20.r

You should receive a response similar to the following:

Request to change reservation c94n16.20.r has been sent to LoadLeveler

2. To change the duration from 20 to 50 minutes and enable only users chris, jay,

and dave to use the reservation c94n16.31.r, issue:

llchres -U chris jay dave -d 50 -R c94n16.31.r

You should receive a response similar to the following:

Request to change reservation c94n16.31.r has been sent to LoadLeveler

Security

LoadLeveler administrators and users can issue this command.

llchres

346 LoadLeveler: Using and Administering

|

|
|

|

|

|

|
|

|

|

|

|

|

llckpt - Checkpoint a running job step

Purpose

Checkpoints a single job step.

The llckpt command is not supported in LoadLeveler for Linux.

Syntax

llckpt { -? | -H | -v | [-k | -u] [-r] [-q] <jobstep>}

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-k Specifies that the job step is to be terminated after a successful checkpoint. The

default is for the job to continue. Note that you cannot use the -k and -u flags

together. If you need to restart the job on the same node, do not use the -k

flag.

-u Specifies that the job step is to be put on user hold after a successful

checkpoint. The default is for the job to continue. Note that you cannot use the

-k and -u flags together.

-r When this flag is issued, it specifies that the command is to return without

waiting for the checkpoint to complete. When using this flag you should be

aware that information relating to the success or failure of the checkpoint will

not be available to the command. The default is for the checkpoint to complete

before returning.

-q Specifies quiet mode: print no messages other than error messages.

jobstep

Specifies the name of a job step to be checkpointed using the form

host.jobid.stepid where:

v host: the name of the schedd machine to which the job was submitted

(default is the local machine)

v jobid: the job ID assigned to the job when it was submitted using the

llsubmit command (jobid is required)

v stepid: the step ID assigned to the job when it was submitted using the

llsubmit command (stepid is required)

Description

The llckpt command should be used to save the state of the job in the event it

does not complete. Use the command only with jobs that are marked as

checkpointable. You can mark a job step for checkpoint by specifying

checkpoint=yes or checkpoint=interval in the job command file. Use

checkpoint=yes to set checkpointing for an interactive job. For more information,

see “Checkpointing jobs” on page 125.

When a job is checkpointed it can later be restarted from the checkpoint file rather

than the beginning of the job. To restart a job from a checkpoint file, the original

llckpt

Chapter 15. Commands 347

|

||

job command file should be used with the value of the restart_from_ckpt keyword

set to yes. The name and location of the checkpoint file should be specified by the

ckpt_dir and ckpt_file keywords.

If you need to restart the job on the same nodes, do not use the -k flag. Instead,

use the -u flag to place the job in a hold state. You can later release the job from

the hold state by issuing the llhold -r command.

Examples

1. This example checkpoints the job step 1 that is part of job 12 which was

scheduled by the machine named iron. Upon successful completion of

checkpoint, the job step will return to the RUNNING state.

llckpt iron.12.1

2. This example checkpoints the job step 3 that is part of job 14 which was

scheduled by the machine named bronze. Upon successful completion of

checkpoint the job step will be put on user hold:

llckpt -u bronze.14.3

Results

When the -r option is not used, the llckpt command will wait for the checkpoint to

complete. Immediately upon executing the command llckpt iron.12.1 the following

message is displayed:

llckpt: The llckpt command will wait for the results of the checkpoint on

job step iron.12.1 before returning

Once the checkpoint has successfully completed, the following message is

displayed:

llckpt: Checkpoint of job step iron.12.1 completed successfully

If there was a problem taking the checkpoint, the second message would have this

form:

llckpt: Checkpoint FAILED for job step iron.12.1 with the following error:

primary error code = <numeric error number>,

secondary error code = <secondary numeric error/extended numeric error>,

error msg len = <length of message>, error msg = <text describing the error>

Where: primary error code is defined by /usr/include/sys/errno.h and secondary

error code is defined by /usr/include/sys/chkerror.h.

The -r option is used to return without waiting for the result of a checkpoint. The

following output is displayed for the command llckpt -r bronze.14.3:

llckpt: The llckpt command will not wait for the checkpoint of

job step bronze.14.3 to complete before returning.

Due to delays in communication between LoadLeveler daemons, status

information may not be returned at the same time that checkpoint termination is

received. This indicates that the checkpoint has completed but the success or

failure status is not known. When this happens, the following message is

displayed:

llckpt: Checkpoint of job step iron.12.1 completed. No status information is available.

Security

LoadLeveler administrators and users can issue this command.

llckpt

348 LoadLeveler: Using and Administering

llclass - Query class information

Purpose

Returns information about classes.

Syntax

llclass [-?] [-H] [-v] [-l] [classlist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-l Specifies that a long listing be generated for each class for which status is

requested. If -l is not specified, then the standard listing is generated.

classlist

Is a blank-delimited list of classes for which you are requesting status. If no

classlist is specified, all classes are queried.

 If you have more than a few classes configured for LoadLeveler, consider

redirecting the output to a file when you use the -l flag.

Examples

This example generates a long listing for classes named silver and gold:

llclass -l silver gold

Results

The Standard Listing: The standard listing is generated when you do not specify -l

with the llclass command.

The following is sample output from the llclass Parallel command, where there are

24 initiators of class Parallel configured in the cluster, with one job step of class

Parallel using 6 initiators currently running:

Name MaxJobCPU MaxProcCPU Free Max Description

 d+hh:mm:ss d+hh:mm:ss Slots Slots

Parallel 2+02:45:00 05:30:00 18 24 Parallel job class

The standard listing includes the following fields:

Name The name of the class.

MaxJobCPU

The hard job CPU limit of job steps for the specified class. For a

description of the job CPU limit for serial and parallel job steps, see 306.

MaxProcCPU

The hard CPU limit for the processes of the job steps of the specified class.

Free Slots

The number of initiators (slots) available for the specified class in the

llclass

Chapter 15. Commands 349

LoadLeveler cluster. A serial job step uses one initiator at run time. A

parallel job step with N tasks uses N initiators at run time.

Max Slots

The number of configured initiators (slots) for the specified class in the

LoadLeveler cluster.

Description

Lists the information provided in the class_comment keyword for the

specified class. The class_comment keyword is defined in the class stanza

of the LoadLeveler administration file.

The Long Listing: The long listing is generated when you specify the -l option on

the llclass command.

The following is sample output from the llclass -l Parallel command, where there

are 24 initiators of class Parallel configured in the cluster, with one job step of

class Parallel using 6 initiators currently running:

=============== Class Parallel ===============

 Name: Parallel

 Priority: 70

 Exclude_Users:

 Include_Users: aliceb johnmt loadl rhclark srherb wilson

 Exclude_Groups:

 Include_Groups: chemistry physics

 Admin: loadl brownap alice

 NQS_class: F

 NQS_submit:

 NQS_query:

 Max_processors: -1

 Maxjobs: -1

Resource_requirement: cons_res1(1) cons_res2(3)

 Class_comment: Parallel job class

 Class_ckpt_dir:

 Ckpt_limit: undefined, undefined

 Wall_clock_limit: 10+10:30:01, 9+14:55:00 (901801 seconds, 831300 seconds)

 Job_cpu_limit: 2+02:45:00, 2+01:30:00 (182700 seconds, 178200 seconds)

 Cpu_limit: 05:30:00, 05:00:01 (19800 seconds, 18001 seconds)

 Data_limit: 5.500 gb, 4.400 gb (5905580032 bytes, 4724464025 bytes)

 Core_limit: 8.000 gb, 8.000 gb (8589934592 bytes, 8589934592 bytes)

 File_limit: 1.500 tb, 1.200 tb (1649267441664 bytes, 1319413953331 bytes)

 Stack_limit: 400.000 mb, 300.000 mb (419430400 bytes, 314572800 bytes)

 Rss_limit: 3.000 pb, 2.000 pb (3377699720527872 bytes, 2251799813685248 bytes)

 Nice: 10

 Free_slots: 18

 Maximum_slots: 24

 Execution_factor: 1

 Max_total_tasks: 30

 Max_proto_instances: 2

 Preempt_class: ALL { large } ENOUGH { small medium }

 Start_class: (No_Class < 3) && (85ba < 10)

The long listing includes these fields:

Admin

The list of administrators for the specified class.

Class_ckpt_dir

The name of the directory containing the checkpointing files of job steps of

the specified class.

Class_comment

Lists the information provided in the class_comment keyword for the

specified class. The class_comment keyword is defined in the class stanza

of the LoadLeveler administration file.

llclass

350 LoadLeveler: Using and Administering

|

Ckpt_limit

Hard and soft checkpoint limits of a job step of the specified class.

Core_limit

The hard and soft core size limits of processes of job steps of the specified

class.

Cpu_limit

The hard and soft CPU limits of processes of job steps of the specified

class.

Data_limit

The hard and soft data area limits of processes of job steps of the specified

class.

Exclude_Groups

Groups who are not allowed to submit jobs of the specified class.

Exclude_Users

Users who are not permitted to submit jobs of the specified class.

Execution_factor

Obsolete keyword.

Free_slots

The number of available initiators (slots) for the specified class in the

LoadLeveler cluster. A serial job step uses one initiator of the appropriate

class at run time. A parallel job step with N tasks uses N initiators at run

time.

File_limit

The hard and soft file size limits of processes of job steps of the specified

class.

Include_Groups

Groups having permission to submit jobs of the specified class.

Include_Users

Users who are permitted to submit jobs of the specified class.

Job_cpu_limit

The hard and soft job CPU limits of job steps of the specified class. For a

description of the job CPU limit for serial and parallel job steps, see 306.

Maximum_slots

The total number of configured initiators (slots) for the specified class in

the LoadLeveler cluster.

Maxjobs

The maximum number of job steps of the specified class that can run at

any time in the LoadLeveler cluster.

Max_processors

The maximum number of processors than can be used for a parallel job

step of the specified class.

Max_total_tasks

Used for Gang and Backfill scheduling only. Max_total_tasks sets the

maximum number of tasks allowed to run at any given time for job steps

of the specified class in the LoadLeveler cluster.

Max_proto_instances

The maximum number of protocol instances allowed for a job step of the

specified class.

llclass

Chapter 15. Commands 351

|
|

|
|
|

Name The name of the class

Nice The nice value of jobs of the specified class.

NQS_class

Indicates whether this class is a gateway for an NQS system.

NQS_query

The NQS queues to query where the job has been dispatched.

NQS_submit

The NQS queue where the job will be submitted.

Preempt_class

Used for Gang and Backfill scheduling only, Preempt_class sets the

preemption rule for job steps of the specified class.

Priority

The system priority of the specified class relative to other classes.

Resource_requirement

The default consumable resource requirements for job steps of the specified

class.

Rss_limit

The hard and soft rss size limits of processes of job steps of the specified

class.

Stack_limit

The hard and soft stack size limits of processes of job steps of the specified

class.

Start_class

Used for Gang and Backfill scheduling only, Start_class sets the starting

rule for job steps of the specified class.

Wall_clock_limit

The hard and soft wall clock (elapsed time) limits of job steps of the

specified class.

Related Information

Each machine periodically updates the central manager with a snapshot of its

environment. Since the information returned by llclass is a collection of these

snapshots, all taken at varying times, the total picture may not be completely

consistent.

Security

LoadLeveler administrators and users can issue this command.

llclass

352 LoadLeveler: Using and Administering

|
|
|

llctl - Control LoadLeveler daemons

Purpose

Controls LoadLeveler daemons on all members of the LoadLeveler cluster.

Syntax

llctl [-?] [-H] [-v] [-q] [-g | -h <hostname>] <keyword>

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-g Indicates that the command applies globally to all machines, except

submit-only machines, that are listed in the administration file.

-h host

Indicates that the command applies to only the host machine in the

LoadLeveler cluster. If neither -h nor -g is specified, the default is the machine

on which the llctl command is issued.

keyword

Must be specified after all flags and can be the following:

purge list_of_machines

Forces a schedd to delete any queued transaction to the machines in the

list_of_machines. If all jobs on the listed machines have completed, and

there are no messages pending to that machine, this option is not

necessary.

 This option is intended for recovery and cleanup after a machine has

permanently crashed or was inadvertently removed from the LoadLeveler

cluster before all activity on it was quiesced. Do not use this option unless

the specified list_of_machines are guaranteed not to return to the

LoadLeveler cluster.

 If you need to return the machine to the cluster later, you must clear all

files from the spool and execute directory of the machine which was

deleted.

capture eventname

Captures accounting data for all jobs running on the designated machines.

eventname is the name you associate with the data, and must be a character

string containing no blanks. For more information, see “Collecting job

resource data based on events” on page 58.

drain [schedd|startd [classlist |allclasses]]

When you issue drain with no options, the following happens: (1) no more

LoadLeveler jobs can begin running on this machine, and (2) no more

LoadLeveler jobs can be submitted through this machine. When you issue

drain schedd, the following happens: (1) the schedd machine accepts no

more LoadLeveler jobs for submission, (2) job steps in the Starting or

Running state in the schedd queue are allowed to continue running, and

(3) job steps in the Idle state in the schedd queue are drained, meaning

llctl

Chapter 15. Commands 353

they will not get dispatched. When you issue drain startd, the following

happens: (1) the startd machine accepts no more LoadLeveler jobs to be

run, and (2) job steps already running on the startd machine are allowed to

complete. When you issue drain startd classlist, the classes you specify

which are available on the startd machine are drained (made unavailable).

When you issue drain startd allclasses, all available classes on the startd

machine are drained.

flush

Terminates running jobs on this machine and sends them back, in the Idle

state, to the negotiator to await redispatch (provided restart=yes in the job

command file). No new jobs are sent to this machine until resume is

issued. Forces a checkpoint if jobs are enabled for checkpointing. However,

the checkpoint gets canceled if it does not complete within the time period

specified in the ckpt_time_limit keyword in the job command file.

purgeschedd

Requests that all jobs scheduled by the specified host machine be purged

(removed). To use this keyword, you must first specify

schedd_fenced=true in the machine stanza for this host. The -g option

cannot be specified with this keyword. For more information, see “How do

I recover resources allocated by a schedd machine?” on page 537.

reconfig

Forces all daemons to reread the administration and configuration files.

recycle

Stops all LoadLeveler daemons and restarts them.

resume [schedd|startd [classlist |allclasses]]

When you issue resume with no options, job submission and job execution

on this machine is resumed. When you issue resume schedd, the schedd

machine resumes the submission of jobs. When you issue resume startd,

the startd machine resumes the execution of jobs. When you issue resume

startd classlist, the startd machine resumes the execution of those job

classes you specify which are also configured (defined on the machine).

When you issue resume startd allclasses, the startd machine resumes the

execution of all configured classes.

start [drained]

When you issue start with no options it starts the LoadLeveler daemons on

the machine or machines designated, either explicitly or implicitly. When

you issue start without the -g or -h flag the LoadLeveler daemons are

started on the same machine that issued the command. When you issue

start with either the -g or -h flag, rshell (rsh) is used to start the

LoadLeveler daemons on all machines specified in the administration file,

or on the machine specified by the -h flag. You must have rsh privileges in

order to use either the -g or -h flag.

 When you issue start with the drained option the LoadLeveler daemons

are started, but the startd daemon is started in the drained state.

 LoadLeveler commands that run rshell include llctl version and llctl start.

stop

Stops the LoadLeveler daemons on the specified machine.

suspend

Suspends all jobs on this machine. This is not supported for parallel jobs.

llctl

354 LoadLeveler: Using and Administering

version

Displays release number, service level, service level date, and operating

system information for every LoadLeveler executable.

 When you issue llctl version with either the -g or -h flag, rshell (rsh) is

used to run the command on all machines specified in the administration

file, or on the machine specified by the -h flag. You must have rsh

privileges in order to use llctl version with either the -g or -h flag.

 LoadLeveler commands that run rshell include llctl version and llctl start.

Description

This command sends a message to the master daemon on the target machine

requesting that action be taken on the members of the LoadLeveler cluster. Note

the following when using this command:

v To perform the control operations of the llctl command, you must be a

LoadLeveler administrator. The only exception to this rule is the ″start″

operation.

v LoadLeveler will fail to start if any value has been set for the MALLOCTYPE

environment variable.

v After you make changes to the administration and configuration files for a

running cluster, be sure to issue llctl reconfig. This command causes the

LoadLeveler daemons to reread these files, and prevents problems that can occur

when the LoadLeveler commands are using a new configuration while the

daemons are using an old configuration.

Note: Changes to SCHEDULER_TYPE will not take effect at reconfiguration.

The administrator must stop and restart or recycle LoadLeveler when

changing SCHEDULER_TYPE.

v The llctl drain startd classlist command drains classes on the startd machine, and

the startd daemon remains operational. If you reconfigure the daemon, the

draining of classes remains in effect. However, if the startd goes down and is

brought up again (either by the master daemon or by a LoadLeveler

administrator), the startd daemon is configured according to the global or local

configuration file in effect, and therefore the draining of classes is lost.

Draining all the classes on a startd machine is not equivalent to draining the

startd machine. When you drain all the classes, the startd enters the Idle state.

When you drain the startd, the startd enters the Drained state. Similarly,

resuming all the classes on a startd machine is not equivalent to resuming the

startd machine.

v If a job step is running on a machine that receives the llctl recycle command, or

the llctl stop and llctl start commands, the running job step is terminated. If the

restart option in the job command file was set to yes, then the job step will be

restarted when LoadLeveler is restarted. If the job step is checkpointable, it will

be restarted from the last valid checkpoint file when LoadLeveler is restarted.

v If you find that the llctl -g command (even if it is specified with additional

options) is taking a long time to complete, you should consider using the AIX

command dsh to send llctl commands (omitting the -g flag) to multiple nodes in

a parallel fashion.

v When a node running a schedd daemon fails, resources that have been allocated

to any of the jobs scheduled by that schedd are unavailable until the schedd is

restarted. Administrators can, however, recover these resources by using the llctl

command’s purgeschedd keyword to purge (remove) all of the jobs scheduled

by the schedd on the down node. The purgeschedd keyword can only work in

llctl

Chapter 15. Commands 355

conjunction with the schedd_fenced keyword, in the administration file, which

causes the central manager to ignore (fence) the schedd daemon running on the

target node. You must reconfigure the central manager so it can recognize this

fence. To use the purgeschedd keyword:

1. Recognize that a node running a schedd daemon is down, and that the node

will be down long enough to necessitate that you recover the resources

allocated to jobs scheduled by that schedd.

2. Add the statement ″schedd_fenced = true″ to the failed node’s administration

file machine stanza.

3. Reconfigure the central manager node so that the central manager recognizes

the fenced schedd daemon.

4. Invoke ″llctl -h host purgeschedd″ to purge all of the jobs scheduled by the

schedd on the failed node.

5. Once the failed node is working again, remove all of the files in the

LoadLeveler spool directory. Remove the ″schedd_fenced = true″ statement

from the administration file, then reconfigure the central manager node

before starting schedd on the machine.

Examples

1. This example stops LoadLeveler on the machine named iron:

llctl -h iron stop

2. This example starts the LoadLeveler daemons on all members of the

LoadLeveler cluster (with the exception of the submit-only machines), starting

with the central manager, as defined in the machine stanzas of the

administration file:

llctl -g start

3. This example causes the LoadLeveler daemons on machine iron to re-read the

administration and configuration files, which may contain new configuration

information for the iron machine:

llctl -h iron reconfig

4. This example drains the classes medium and large on the machine named iron.

llctl -h iron drain startd medium large

5. This example drains the classes medium and large on all machines.

llctl -g drain startd medium large

6. This example stops all the jobs on the system, then allows only jobs of a certain

class (medium) to run.

llctl -g drain startd allclasses

llctl -g flush

llctl -g resume

llctl -g resume startd medium

7. This example resumes the classes medium and large on the machine named iron.

llctl -h iron resume startd medium large

8. This example illustrates how to capture accounting information on a work shift

called day on the machine iron:

llctl -h iron capture day

You can capture accounting information on all the machines in the LoadLeveler

cluster by using the -g option, or you can collect accounting information on the

local machine by simply issuing the following:

llctl capture day

Capturing information on the local machine is the default. For more

information, see “Collecting job resource data based on events” on page 58.

llctl

356 LoadLeveler: Using and Administering

9. For this example, assume the machine earth has crashed while running jobs. Its

hard disk needs to be replaced. You try to cancel the jobs that were running on

that machine. The schedd marks the job Remove Pending until it gets

confirmation from earth that the jobs were removed. Since earth will be

reinstalled, you need to inform schedd that it should not wait for confirmation.

Assume the schedd is named mars, and the running jobs are named mars.1.0

and mars.1.1. First you want to tell the negotiator to remove the jobs:

llcancel mars.1.0

llcancel mars.1.1

Next, tell the schedd not to wait for confirmation from earth before marking the

jobs removed:

llctl -h mars purge earth

Results

The following shows the result of the llctl -h mars purge earth command:

llctl: Sent purge command to host mars

Security

LoadLeveler administrators can issue this command.

llctl

Chapter 15. Commands 357

lldbconvert - Job migration utility

Purpose

lldbconvert – Administrators can use the lldbconvert utility to convert jobs from

LoadLeveler 3.2 format to LoadLeveler 3.3 format.

Syntax

lldbconvert [-d] [-D] [-H] [?] [-v] [-o OpSys]

Flags

-o OpSys Converts LoadLeveler 3.2 spool to LoadLeveler 3.3 spool, forcing

OpSys test to: ’OpSys == ″OpSys″’ if it occurs in Requirements or

Preferences.

-d Displays contents of input spool (no conversion).

-D Converts LoadLeveler 3.2 spool to LoadLeveler 3.3 spool and

displays contents of output spool after conversion.

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

Description

On machines where jobs need to be migrated, log in as loadl (or the primary

LoadLeveler user ID defined in /etc/LoadL.cfg) and run lldbconvert from the local

LoadLeveler spool directory.

The -o flag is needed when the operating system specified in the requirement

statement no longer matches the operating system after the migration, for example,

if it changes from AIX52 to AIX53. This flag converts requirements statements in

the form OpSys=="your_os". Statements in other formats (such as those with

your_os not enclosed in double quotes) are not converted.

When you create the LoadL_admin file for the version to which you are migrating,

you should preserve all of the job class definitions used in the version from which

you are migrating. For example, if a converted job needs to run as a large class

job, and class large is not defined in the LoadLeveler 3.3 LoadL_admin file, the

job will never be run.

lldbconvert only converts job steps that are in one of the following states: Idle,

Hold, Deferred, or NotQueued. If the conversion is successful, you will receive

further instructions from lldbconvert on what to do before starting LoadLeveler on

the given machine.

Once you run lldbconvert, do not move the converted job queues to another

schedd machine.

Security

LoadLeveler administrators can issue this command.

lldbconvert

358 LoadLeveler: Using and Administering

|
|

|

|
|

|

|

|

||
|
|

||

||
|

||

||

||
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|

lldcegrpmaint - LoadLeveler DCE group maintenance utility

Purpose

This command extracts the names of the DCE groups associated with the

DCE_ADMIN_GROUP and DCE_SERVICES_GROUP keywords from the

LoadLeveler configuration file. It will create these groups if they do not already

exist. This command also adds the DCE principal names of the LoadLeveler

daemons to the group specified by the DCE_SERVICES_GROUP keyword.

The lldcegrpmaint command is not supported in LoadLeveler for Linux.

Syntax

lldcegrpmaint [-?] [-H] [-v] <config_pathname> <admin_pathname>

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

config_pathname

Pathname of the LoadLeveler configuration file.

admin_pathname

Pathname of the LoadLeveler administration file.

Description

The lldcegrpmaint command is available to DCE administrators who have logged

in to DCE as cell_admin. The command performs the following functions:

1. Extracts the names of the DCE groups associated with the

DCE_ADMIN_GROUP and DCE_SERVICES_GROUP keywords from the

LoadLeveler global configuration file. These groups are known generically as

the LoadL-admin group and the LoadL-services group. The LoadL-admin

group contains the DCE principal names of users who have administrative

authority for LoadLeveler. The LoadL-services group contains the DCE

principal names of all the LoadLeveler daemons which run in the current

LoadLeveler cluster. The lldcegrpmaint command will create these groups if

they do not already exist.

2. Populates the LoadL-services group with the DCE principal names of the

LoadLeveler daemons. These names are derived from the DCE hostnames

associated with the dce_host_name keyword in the LoadLeveler administration

file, and LoadLeveler related information defined in the

/usr/lpp/ssp/config/spsec_defaults file. In order for this step to work, the

machine stanzas in the administration file must contain the DCE hostnames of

all the machines in the LoadLeveler cluster. The llextSDR command can be

used to retrieve the DCE hostnames.

Before running the lldcegrpmaint command, a DCE administrator should make

sure that basic DCE Security setup steps have been performed. If SMIT panels are

used, the steps under the ″RS/6000 SP Security″ panel should be performed in

sequence (from top to bottom) to properly update the DCE Registry. This measure

is important for LoadLeveler, and for any other function that exploits DCE

lldcegrpmaint

Chapter 15. Commands 359

Security. For the purposes of the lldcegrpmaint command, the important actions

are: (1) ″Create dcehostnames″ and (2) ″Configure SP Trusted Services to use DCE

Authentication.″

Note: lldcegrpmaint does not add the names associated with the LOADL_ADMIN

keyword in the configuration file to the LoadL-admin group. It is the

administrator’s responsibility to add appropriate DCE principals to this group.

Examples

In this example, it is assumed that the DCE cell name is /.../c163.ppd.pok.ibm.com

and that LoadLeveler configuration and administration files are named

/u/loadl/LoadL_config and /u/loadl/LoadL_admin, respectively, and contain the

statements:

 DCE_ENABLEMENT=TRUE

 DCE_ADMIN_GROUP=LoadL-admin4

 DCE_SERVICES_GROUP=LoadL-services4

and

 c163n02.ppd.pok.ibm.com: type = machine central_manager = true

 machine_mode = general

 schedd_host = true

 dce_host_name = c163n02.ppd.pok.ibm.com

 c163n03.ppd.pok.ibm.com: type = machine central_manager = false

 machine_mode = general

 schedd_host = true

 dce_host_name = c163n03.ppd.pok.ibm.com

It is also assumed that there is no override specification in the file

/spdata/sys1/spsec/spsec_overrides and that the file

/usr/lpp/ssp/config/spsec_defaults contains the following:

 SERVICE:LoadL/Master:kw:root:system

 SERVICE:LoadL/Negotiator:kw:root:system

 SERVICE:LoadL/Schedd:kw:root:system

 SERVICE:LoadL/Startd:kw:root:system

 SERVICE:LoadL/Starter:kw:root:system

 SERVICE:LoadL/Kbdd:kw:root:system

 SERVICE:LoadL/GSmonitor:kw:root:system

Executing the command:

 lldcegrpmaint /u/loadl/LoadL_config /u/loadl/LoadL_admin

results in:

1. The creation of the DCE groups:

/.../c163.ppd.pok.ibm.com/LoadL-admin4

/.../c163.ppd.pok.ibm.com/LoadL-services4

2. The population of the DCE group LoadL-services4 with the DCE principals:

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Master

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Negotiator

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Schedd

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Startd

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Starter

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Kbdd

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/GSmonitor

/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Master

/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Negotiator

/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Schedd

/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Startd

lldcegrpmaint

360 LoadLeveler: Using and Administering

/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Starter

/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Kbdd

/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/GSmonitor

Security

DCE Administrators can issue this command.

lldcegrpmaint

Chapter 15. Commands 361

llextRPD - Extract data from an RSCT peer domain

Purpose

Extracts the necessary data from an RSCT peer domain (or local node if there is no

active domain) to set up the administration file.

The llextRPD command is not supported on all LoadLeveler for Linux platforms.

The supported platforms are:

v RHEL 3 and RHEL 4 on IBM IA-32 xSeries servers

v SLES 9 on IBM IA-32 xSeries servers

Syntax

llextRPD [-H | -? | -v |[-m] [-a adapter_name]]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-m Specifies that only machine stanzas are to be generated. The adapter stanzas

(and the corresponding adapter_stanzas statement of the machine stanza) will

be suppressed in the final output. This option is for Dynamic Adapter

Configuration support for peer domains with AIX RSCT.

 LoadLeveler will dynamically detect and handle adapters and adapter changes

for any machine in these domains which do not specify an adapter stanza in

the administration file.

-a adapter_name

Specifies that the interface name of the given adapter_name on each node is

used as the label (machine stanza name) of the generated machine stanza.

 If you do not specify an adapter (or if an adapter is specified but does not

exist on a particular node) then the label used for that machine is the Name

field from the RSCT IBM.PeerNode class for the machine in the cluster. This

default naming behaves the same as the llextSDR command does when

extracting data from the SDR for a PSSP domain.

Note: If an administrator wants to configure LoadLeveler to communicate

using the Switch Network Interface for High Performance Switch (HPS)

adapters in a peer domain they should use the -a flag with ml0 specified

as the adapter_name. ml0 is guaranteed to be present on every node that

contains an HPS adapter.

It is recommended that you do not specify sn as the adapter name. If

you do, the machine will be named with the IP name of the sn adapter.

If that IP name becomes unavailable because the adapter changes,

LoadLeveler will not be able to contact any daemons on that machine.

Description

The command extracts the data for LoadLeveler to setup the administration file. If

you plan to use the llextRPD command to construct machine and adapter stanzas

for the LoadLeveler administration file, RSCT is required.

llextRPD

362 LoadLeveler: Using and Administering

|
|
|
|

|
|
|

The llextRPD command must be run on one of the nodes in an active RSCT peer

domain to obtain the RSCT peer nodes and network interface data from that

cluster. If you are not running the command in an active RSCT peer domain you

will just get information from the local machine. Adapter stanza names for HPS

adapters are not included in the machine stanza alias. If you run an application

which requires LoadLeveler to recognize a node by the interface name of a HPS

adapter you must manually add the adapter stanza name for the HPS adapter as

an alias in the machine stanza.

Since it is possible to have nodes defined to both the RSCT peer and the PSSP

domains at the same time the system administrator must be very cautious when

extracting and merging data from different domains to ensure duplicate or

conflicting information does not end up in the LoadLeveler administration file. Use

the llextRPD command to extract data from peer domains and the llextSDR

command to extract data from PSSP domains.

Examples

1. The following example extracts the data from an RSCT peer domain:

llextRPD -a ml0

Results:

#llextRPD: Cluster = "llcluster" ID = "0Jt9zGF7nbDWwWjjTDrxjG" on

 Thu Mar 17 15:24:13 2005

c121san10.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c121s0n10.ppd.pok.ibm.com c121s1n10.ppd.pok.ibm.com

 c121san10.ppd.pok.ibm.com c121f2rp02.ppd.pok.ibm.com

 alias = c121f2rp02.ppd.pok.ibm.com

c121s0n10.ppd.pok.ibm.com: type = adapter

 adapter_name = sn0

 network_type = switch

 interface_address = 192.168.0.10

 interface_name = c121s0n10.ppd.pok.ibm.com

 multilink_address = 10.10.10.10

 logical_id = 2

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni0

 network_id = 1

c121s1n10.ppd.pok.ibm.com: type = adapter

 adapter_name = sn1

 network_type = switch

 interface_address = 192.168.1.10

 interface_name = c121s1n10.ppd.pok.ibm.com

 multilink_address = 10.10.10.10

 logical_id = 0

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni1

 network_id = 1

c121san10.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 10.10.10.10

 interface_name = c121san10.ppd.pok.ibm.com

 multilink_list = sn0,sn1

c121f2rp02.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.66.74

 interface_name = c121f2rp02.ppd.pok.ibm.com

llextRPD

Chapter 15. Commands 363

device_driver_name = ent0

c121san04.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c121s0n04.ppd.pok.ibm.com c121s1n04.ppd.pok.ibm.com

 c121san04.ppd.pok.ibm.com c121f1rp04.ppd.pok.ibm.com

 alias = c121f1rp04.ppd.pok.ibm.com

c121s0n04.ppd.pok.ibm.com: type = adapter

 adapter_name = sn0

 network_type = switch

 interface_address = 192.168.0.4

 interface_name = c121s0n04.ppd.pok.ibm.com

 multilink_address = 10.10.10.4

 logical_id = 11

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni0

 network_id = 1

c121s1n04.ppd.pok.ibm.com: type = adapter

 adapter_name = sn1

 network_type = switch

 interface_address = 192.168.1.4

 interface_name = c121s1n04.ppd.pok.ibm.com

 multilink_address = 10.10.10.4

 logical_id = 9

 adapter_type = Switch_Network_Interface_For_HPS

 device_driver_name = sni1

 network_id = 1

c121san04.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 10.10.10.4

 interface_name = c121san04.ppd.pok.ibm.com

 multilink_list = sn0,sn1

c121f1rp04.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.66.68

 interface_name = c121f1rp04.ppd.pok.ibm.com

 device_driver_name = ent0

2. The following example extracts the data from an RSCT peer domain for a

dynamic adapter configuration:

llextRPD -m -a ml0

Results:

#llextRPD: Cluster = "acc97" ID = "28jek7RdrHdGwr5C6zQwWm" on

 Thu Mar 17 14:37:33 2005

c97ml0n13.ppd.pok.ibm.com: type = machine

 alias = c97n13.ppd.pok.ibm.com

c97ml0n09.ppd.pok.ibm.com: type = machine

 alias = c97n09.ppd.pok.ibm.com

c97ml0n01.ppd.pok.ibm.com: type = machine

 alias = c97n01.ppd.pok.ibm.com

c97ml0n05.ppd.pok.ibm.com: type = machine

 alias = c97n05.ppd.pok.ibm.com

Security

LoadLeveler administrators and users can issue this command.

llextRPD

364 LoadLeveler: Using and Administering

llextSDR - Extract adapter information from the SDR

Purpose

Extracts adapter information from the system data repository (SDR) and creates

adapter and machine stanzas for each node in an RS/6000 SP partition. You can

use the information in these stanzas in the LoadLeveler administration file. This

command writes the stanzas to standard output.

The llextSDR command is not supported in LoadLeveler for Linux.

Syntax

llextSDR [-?] [-H] [-v] [-a adapter_name]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-a adapter_name

Specifies that the interface name of the given adapter on each node is used as

the label (machine stanza name) of the generated machine stanza. If you do

not specify an adapter, the label used is the initial_hostname field of the Node

class in the SDR.

Description

In the SDR, the Node class contains an entry for each node in the partition. The

Adapter class contains an entry for each adapter configured on a node. This

command extracts the information in the Adapter class and creates an adapter

stanza. This command also creates a machine stanza which identifies the node and

the adapters attached to the node. The generated machine stanza also includes the

spacct_excluse_enable keyword, whose value is obtained from the

spacct_excluse_enable attribute in the class of the SDR. For more information, see

“Defining adapters” on page 81 or “Defining machines” on page 78.

The partition for which information is extracted is either the default partition or

that specified with the SP_NAME environment variable. For the control

workstation, the default partition is the default system partition. For an SP node,

the default partition is the partition to which the node belongs.

You must issue this command on a machine with the ssp.clients file set installed. If

you issue this command from a non-SP workstation, you must set SP_NAME to

the IP address of the appropriate SDR instance for the partition.

Since it is possible to have nodes defined to both the PSSP and the RSCT peer

domains at the same time the system administrator must be very cautious when

extracting and merging data from different domains to ensure duplicate or

conflicting information does not end up in the LoadLeveler administration file. Use

the llextSDR command to extract data from PSSP domains and the llextRPD

command to extract data from peer domains.

llextSDR

Chapter 15. Commands 365

Examples

1. The following example creates adapter and machine stanzas for all nodes in a

partition:

llextSDR

2. The following example creates machine stanzas with each node’s css0 interface

name as the label:

llextSDR -a css0

Results

You may need to alter or add information to the stanzas produced by this

command when you incorporate the stanzas into the administration file. For

example, administrators may want to have each network_type field use a value

that reflects the type of nodes installed on the network. Users will need to know

the values used for network_type so that they can specify an appropriate value in

their job command files.

Also, the output of this command includes fully-qualified machine names. If your

existing administration file uses short names, you may need to change either the

command output or your existing administration file so that you use either all

fully qualified names or all short names.

This is sample output for the llextSDR command:

#llextSDR: System Partition = "c97s" on Thu Mar 17 16:43:13 2005

c98n05.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c97san04.ppd.pok.ibm.com c97s2n04.ppd.pok.ibm.com

 c97sn04.ppd.pok.ibm.com c98n05.ppd.pok.ibm.com

 spacct_excluse_enable = false

 dce_host_name = c98n05.ppd.pok.ibm.com

 alias = c97san04.ppd.pok.ibm.com c97s2n04.ppd.pok.ibm.com

 c97sn04.ppd.pok.ibm.com

c97san04.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 9.114.59.196

 interface_name = c97san04.ppd.pok.ibm.com

 multilink_list = css0,css1

c97s2n04.ppd.pok.ibm.com: type = adapter

 adapter_name = css1

 network_type = switch

 interface_address = 9.114.59.4

 interface_name = c97s2n04.ppd.pok.ibm.com

 multilink_address = 9.114.59.196

 switch_node_number = 3

 css_type = SP_Switch2_Adapter

c97sn04.ppd.pok.ibm.com: type = adapter

 adapter_name = css0

 network_type = switch

 interface_address = 9.114.59.132

 interface_name = c97sn04.ppd.pok.ibm.com

 multilink_address = 9.114.59.196

 switch_node_number = 3

 css_type = SP_Switch2_Adapter

c98n05.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

llextSDR

366 LoadLeveler: Using and Administering

interface_address = 9.114.59.70

 interface_name = c98n05.ppd.pok.ibm.com

 .

 .

 .

c97n05.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c97san02.ppd.pok.ibm.com c97s2n02.ppd.pok.ibm.com

 c97sn02.ppd.pok.ibm.com c97n05.ppd.pok.ibm.com

 spacct_excluse_enable = false

 dce_host_name = c97n05.ppd.pok.ibm.com

 alias = c97san02.ppd.pok.ibm.com c97s2n02.ppd.pok.ibm.com

 c97sn02.ppd.pok.ibm.com

c97san02.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 9.114.59.194

 interface_name = c97san02.ppd.pok.ibm.com

 multilink_list = css0,css1

c97s2n02.ppd.pok.ibm.com: type = adapter

 adapter_name = css1

 network_type = switch

 interface_address = 9.114.59.2

 interface_name = c97s2n02.ppd.pok.ibm.com

 multilink_address = 9.114.59.194

 switch_node_number = 1

 css_type = SP_Switch2_Adapter

c97sn02.ppd.pok.ibm.com: type = adapter

 adapter_name = css0

 network_type = switch

 interface_address = 9.114.59.130

 interface_name = c97sn02.ppd.pok.ibm.com

 multilink_address = 9.114.59.194

 switch_node_number = 1

 css_type = SP_Switch2_Adapter

c97n05.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.59.66

 interface_name = c97n05.ppd.pok.ibm.com

This is sample output for the llextSDR -a css0 command:

#llextSDR: System Partition = "c97s" on Thu Mar 17 17:24:07 2005

c97sn04.ppd.pok.ibm.com: type = machine adapter_stanzas =

 c97san04.ppd.pok.ibm.com c97s2n04.ppd.pok.ibm.com

 c97sn04.ppd.pok.ibm.com c98n05.ppd.pok.ibm.com

 spacct_excluse_enable = false

 alias = c97san04.ppd.pok.ibm.com c97s2n04.ppd.pok.ibm.com

 c98n05.ppd.pok.ibm.com

c97san04.ppd.pok.ibm.com: type = adapter

 adapter_name = ml0

 network_type = multilink

 interface_address = 9.114.59.196

 interface_name = c97san04.ppd.pok.ibm.com

 multilink_list = css0,css1

c97s2n04.ppd.pok.ibm.com: type = adapter

 adapter_name = css1

 network_type = switch

llextSDR

Chapter 15. Commands 367

interface_address = 9.114.59.4

 interface_name = c97s2n04.ppd.pok.ibm.com

 multilink_address = 9.114.59.196

 switch_node_number = 3

 css_type = SP_Switch2_Adapter

c97sn04.ppd.pok.ibm.com: type = adapter

 adapter_name = css0

 network_type = switch

 interface_address = 9.114.59.132

 interface_name = c97sn04.ppd.pok.ibm.com

 multilink_address = 9.114.59.196

 switch_node_number = 3

 css_type = SP_Switch2_Adapter

c98n05.ppd.pok.ibm.com: type = adapter

 adapter_name = en0

 network_type = ethernet

 interface_address = 9.114.59.70

 interface_name = c98n05.ppd.pok.ibm.com

Security

LoadLeveler administrators and users can issue this command.

llextSDR

368 LoadLeveler: Using and Administering

llfavorjob - Reorder system queue by job

Purpose

Sets specified jobs to a higher system priority than all jobs that are not favored.

This command also unfavors previously favored jobs, restoring the original priority,

when you specify the -u flag.

Syntax

llfavorjob [-?] [-H] [-v] [-q] [-u] <joblist>

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-u Unfavors previously favored jobs, requeuing them according to their original

priority levels.

joblist

Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the schedd machine to which the job was submitted

(delimited by dot). The default is the local machine.

v jobid is the job ID assigned to the job by LoadLeveler when it was submitted

using the llsubmit command. jobid is required.

v stepid (delimited by dot) Is the job step ID assigned to the job by

LoadLeveler when it was submitted using the llsubmit command. The

default is to include all members of the job.

Description

If this command is issued against jobs that are already running, it has no effect. If

the job vacates, however, and returns to the queue, the job gets re-ordered with the

new priority.

If more than one job is affected by this command, then the jobs are ordered by the

sysprio expression and are scanned before the not favored jobs. However, favored

jobs which do not match the job requirements with available machines may run

after not favored jobs. This command remains in effect until reversed with the -u

option.

Examples

1. This example assigns job steps 12.4 on the machine iron and 8.2 on zinc the

highest priorities in the system, with the job steps ordered by the sysprio

expression:

llfavorjob iron.12.4 zinc.8.2

2. This example unfavors job steps 12.4 on the machine iron and 8.2 on the

machine zinc:

llfavorjob -u iron.12.4 zinc.8.2

llfavorjob

Chapter 15. Commands 369

Security

LoadLeveler administrators can issue this command.

llfavorjob

370 LoadLeveler: Using and Administering

llfavoruser - Reorder system queue by user

Purpose

Sets a user’s job(s) to the highest priority in the system, regardless of the current

setting of the job priority. Jobs already running are not affected. This command

also unfavors the user’s jobs, restoring the original priority, when you specify the -u

flag.

Syntax

llfavoruser [-?] [-H] [-v] [-q] [-u] <userlist>

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-u Unfavors previously favored users, reordering their jobs according to their

original priority levels. If -u is not specified, the user’s jobs are favored.

userlist

Is a blank-delimited list of users whose jobs are given the highest priority. If -u

is specified, userlist jobs are unfavored.

Description

This command affects your current and future jobs until you remove the favor.

When the central manager daemon is restarted, any favor applied to users is

revoked.

The user’s jobs still remain ordered by user priority (which may cause jobs for the

user to swap sysprio). If more than one user is affected by this command, the jobs

of favored users are ordered by sysprio and are scanned before the jobs of not

favored users. However, jobs of favored users which do not match job

requirements with available machines may run after jobs of not favored users.

Examples

1. This example grants highest priority to all queued jobs submitted by users

ellen and fred according to the sysprio expression:

llfavoruser ellen fred

2. This example unfavors all queued jobs submitted by users ellen and fred:

llfavoruser -u ellen fred

Security

LoadLeveler administrators can issue this command.

llfavoruser

Chapter 15. Commands 371

llhold - Hold or release a submitted job

Purpose

Places jobs in user hold or system hold and releases jobs from both types of hold.

Users can only move their own jobs into and out of user hold. Only LoadLeveler

administrators can move jobs into and release them from system hold.

Syntax

llhold [-?] [-H] [-v] [-q] [-s] [-r] [-u <userlist>] [-h <hostlist>] [<joblist>]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-s Puts jobs in system hold. Only a LoadLeveler administrator can use this

option.

 If neither -s nor -r is specified, LoadLeveler puts the jobs in user hold.

-r Releases a job from hold. A job step in user hold can be released by the owner

or a LoadLeveler administrator. A job step in system hold can only be released

by a LoadLeveler administrator. If a job step that is in both system hold and

user hold is released by a LoadLeveler administrator, the job step will be

released from system hold but remains in user hold. If the owner releases a job

step that is in both system hold and user hold, the job step is released from

user hold but remains in system hold.

 Only a LoadLeveler administrator can release jobs from system hold. Only an

administrator or the owner of a job can release it from user hold.

 If neither -s nor -r is specified, LoadLeveler puts the jobs in user hold.

-u userlist

Is a blank-delimited list of users. When used with the -h option, only the

user’s jobs monitored on the machines in the hostlist are held or released.

When used alone, only the user’s jobs monitored on the schedd machine are

held or released.

-h hostlist

Is a blank-delimited list of machine names. All jobs monitored on machines in

this list are held or released. When issued with the -u option, the userlist is

used to further select jobs for holding or releasing.

 When issued by a non-administrator, this option only acts upon jobs that user

has submitted to the machines in hostlist.

 When issued by an administrator, all jobs monitored on the machines are acted

upon unless the -u option is also used. In that case, the userlist is also part of

the selection process, and only jobs both submitted by users in userlist and

monitored on the machines in the hostlist are acted upon.

joblist

Is a blank-delimited list of jobs of the form host.jobid.stepid where:

llhold

372 LoadLeveler: Using and Administering

||
|
|
|
|
|
|

|
|

|

v host is the name of the schedd machine to which the job was submitted

(delimited by dot). The default is the local machine.

v jobid is the job ID assigned to the job when it was submitted using the

llsubmit command. jobid is required.

v stepid (delimited by dot) is the step ID assigned to the job by LoadLeveler

when it was submitted using the llsubmit command. The default is to

include all steps of the job.

Description

This command does not affect a job step that is running unless the job step

attempts to enter the Idle state. At this point, the job step is placed in the Hold

state.

To ensure a job is released from both system hold and user hold, the administrator

must issue the command with -r specified to release it from system hold. The

administrator or the submitting user can reissue the command to release the job

from user hold.

This command will fail if:

v A nonadministrator attempts to move a job into or out of system hold.

v A nonadministrator attempts to move a job submitted by someone else into or

out of user hold.

Examples

1. This example places job 23, job step 0 and job 19, job step 1 on hold:

llhold 23.0 19.1

2. This example releases job 23, job step 0, job 19, job step 1, and job 20, job step 3

from a hold state:

llhold -r 23.0 19.1 20.3

3. This example places all jobs from users abe, barbara, and carol2 in system hold:

llhold -s -u abe barbara carol2

4. This example releases from a hold state all jobs on machines bronze, iron, and

steel:

llhold -r -h bronze iron steel

5. This example releases from a hold state all jobs on machines bronze, iron, and

steel that smith submitted:

llhold -r -u smith -h bronze iron steel

Results

The following shows a sample system response for the llhold -r -h bronze

command:

llhold: Hold command has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llhold

Chapter 15. Commands 373

llinit - Initialize machines in the LoadLeveler cluster

Purpose

Initializes a new machine as a member of the LoadLeveler cluster

Syntax

llinit [-?] [-H] [-q] [-prompt] [-local pathname] [-release pathname]

 [-cm machine] [-debug]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-q Specifies quiet mode: print no messages other than error messages.

-prompt

Prompts or leads you through a set of questions that help you to complete the

llinit command.

-local pathname

pathname is the local directory in which the spool, execute, and log

subdirectories will be created. The default, if this flag is not used, is the home

directory.

 There must be a unique local directory for each LoadLeveler cluster member.

-release pathname

pathname is the release directory, where the LoadLeveler bin, lib, man, include,

and samples subdirectories are located. The default, if this flag is not used, is

the /usr/lpp/LoadL/full directory on AIX or the /opt/ibmll/LoadL/full directory

on Linux.

-cm machine

machine is the central manager machine, where the negotiator daemon runs.

-debug

Displays debug messages during the execution of llinit.

Description

This command runs once on each machine during the installation process. It must

be run by the user ID you have defined as the LoadLeveler user ID. The log, spool,

and execute directories are created with the correct modes and ownerships. The

LoadLeveler configuration and administration files, LoadL_config and

LoadL_admin, respectively, are copied from LoadLeveler’s release directory to

LoadLeveler’s home directory. The local configuration file, LoadL_config.local, is

copied from LoadLeveler’s release directory to LoadLeveler’s local directory.

llinit initializes a new machine as a member of the LoadLeveler cluster by doing

the following:

v Creates the following LoadLeveler subdirectories with the given permissions:

– spool subdirectory, with permissions set to 700.

– execute subdirectory, with permissions set to 1777.

– log subdirectory, with permissions set to 775.
v Copies the LoadL_config and LoadL_admin files from the release directory

samples subdirectory into the loadl home directory.

llinit

374 LoadLeveler: Using and Administering

v Copies the LoadL_config.local file from the release directory samples

subdirectory into the local directory.

v Creates symbolic links from the loadl home directory to the spool, execute, and

log subdirectories and the LoadL_config.local file in the local directory (if home

and local directories are not identical).

v Creates symbolic links from the home directory to the bin, lib, man, samples,

and include subdirectories in the release directory.

v Updates the LoadL_config with the release directory name.

v Updates the LoadL_admin with the central manager machine name.

Before running llinit ensure that your HOME environment variable is set to

LoadLeveler’s home directory. To run llinit you must have:

v Write privileges in the LoadLeveler home directory

v Write privileges in the LoadLeveler release directory

v Write privileges in the LoadLeveler local directory.

Examples

The following example initializes a machine, assigning /var/loadl as the local

directory, /usr/lpp/LoadL/full as the release directory, and the machine named

bronze as the central manager.

llinit -local /var/loadl -release /usr/lpp/LoadL/full -cm bronze

Ensure that the local directory exists before running the preceding command.

Results

The command:

llinit -local /home/ll_admin -release /usr/lpp/LoadL/full -cm mars

will yield the following output:

llinit: creating directory "/home/ll_admin/spool"

llinit: creating directory "/home/ll_admin/log"

llinit: creating directory "/home/ll_admin/execute"

llinit: set permission "700" on "/home/ll_admin/spool"

llinit: set permission "775" on "/home/ll_admin/log"

llinit: set permission "1777" on "/home/ll_admin/execute"

llinit: creating file "/home/ll_admin/LoadL_admin"

llinit: creating file "/home/ll_admin/LoadL_config"

llinit: creating file "/home/ll_admin/LoadL_config.local"

llinit: editing file /home/ll_admin/LoadL_config

llinit: editing file /home/ll_admin/LoadL_admin

llinit: creating symbolic link "/home/ll_admin/bin -> \

 /usr/lpp/LoadL/full/bin"

llinit: creating symbolic link "/home/ll_admin/lib -> \

 /usr/lpp/LoadL/full/lib"

llinit: creating symbolic link "/home/ll_admin/man -> \

 /usr/lpp/LoadL/full/man"

llinit: creating symbolic link "/home/ll_admin/samples -> \

 /usr/lpp/LoadL/full/samples"

llinit: creating symbolic link "/home/ll_admin/include -> \

 /usr/lpp/LoadL/full/include"

llinit: program complete.

Security

LoadLeveler administrators can issue this command.

llinit

Chapter 15. Commands 375

|

llmkres - Make a reservation

Purpose

llmkres – Creates a LoadLeveler reservation. A set of nodes can be reserved in

advance for a period of time to run both interactive and batch jobs. For additional

information on running interactive jobs with reservations, see Chapter 7, “Building

and submitting jobs,” on page 145.

Syntax

llmkres { -? | -H | -v | [-q] -t start_time -d duration { -n number_of_nodes |

 -h host_list | -h all | -j job_step | -f job_command_file }

 [-U user_list] [-G group_list] [-s {yes|no}] [-i {yes|no}] [-g group] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

-t start_time Specifies the start time of the reservation using the format

[mm/dd[/[cc]yy]] HH:MM. Hours must be specified using a

24-hour clock.

-d duration Specifies the duration of the reservation in minutes.

-n number_of_nodes

Specifies the number of nodes to reserve.

-h host_list Specifies a blank-delimited list of machines to reserve.

-h all Reserves all machines currently in the LoadLeveler cluster that can

be used for a reservation.

-j job_step Specifies a job step whose requirements will be used to determine

what nodes to reserve. The job step must be in an idle-like state

and take the form [host.]jobid.stepid where:

v host - The name of the schedd machine to which the job was

submitted. The default is the local machine.

v jobid - The job ID assigned to the job when it was submitted.

The job ID is required.

v stepid - The step ID assigned to the job when it was submitted.

The step ID is required.

You must be an administrator or the job step owner to make this

request. If the request to make the reservation is successful, the job

step will be bound to the reservation. If the request is not

successful, there is no change to the status of the job step.

-f job_command_file

Specifies the path to a job_command_file that will be submitted and

the first job step used to determine what nodes to reserve. All job

llmkres

376 LoadLeveler: Using and Administering

|
|

|

|
|
|
|

|
||
||
||

|

||

||

||
|
|

||

||
|
|

||

|
|

||

||
|

||
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

steps will be bound to the reservation, or if the reservation request

fails, be placed in the NotQueued state. The job ID of the newly

created job will be displayed.

-U user_list Specifies a blank-delimited list of users who can use the

reservation.

-G group_list Specifies a blank-delimited list of LoadLeveler groups whose users

can use the reservation.

-s {yes|no} Specifies if the SHARED option is selected for the reservation. For

a SHARED reservation, after all bound job steps that can run on

the reserved nodes are scheduled to run, the remaining resources

can be used to run job steps not bound to the reservation. Only

bound job steps can be scheduled to run on a reservation that is

not shared. The default is not to share the reservation.

-i {yes|no} Specifies if the REMOVE_ON_IDLE option is selected for the

reservation. For a REMOVE_ON_IDLE reservation, if all bound job

steps are finished or if all bound job steps are Idle and none can

run on the reserved nodes, the reservation will be removed

(canceled) automatically by LoadLeveler. If this option is not set,

the reservation will remain, regardless of being used or not. The

default is not to remove the reservation automatically.

-g group Specifies a LoadLeveler group that will own the reservation. The

default is what is specified as the default_group in the user stanza

or No_Group. Ownership of a reservation by a group does not

imply that all of the members of the group can use the reservation,

but rather is used as a count toward the maximum number of

reservations that a group can own.

Description

The llmkres command is for users authorized by LoadLeveler administrators. The

user ID requesting the creation of a reservation becomes the owner of the

reservation and can use the reservation. A unique reservation ID will be displayed

upon successful creation of the reservation, otherwise a message will be printed

out to indicate a failure.

Note that it is possible for a time out to occur while this command is waiting for a

response from the LoadLeveler central manager. Even if a time out occurs or the

command process is killed, the command may still succeed. To determine if the

request has been granted, issue the llqres command.

The owner of a reservation maintains certain privileges beyond those allowed for

users of the reservation. The owner of a reservation and LoadLeveler

administrators can always use the reservation. The owner of a reservation (and the

LoadLeveler administrator) can cancel or change a reservation. Users of a

reservation are allowed to bind their jobs to a reservation. When a reservation is

created, the -U and -G flag can be used to specify who can use the reservation.

This command is for the BACKFILL scheduler only.

Examples

1. To reserve 3 nodes for 2 hours starting at 2pm of the current year allowing

members of the LoadLeveler group loadlusr to use the reservation, issue:

llmkres -t 01/16 14:00 -d 120 -n 3 -G loadlusr

llmkres

Chapter 15. Commands 377

|
|
|

||
|

||
|

||
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|
|

|

Note that if you specify a date that has already passed in the current year, you

must include the year or an error will occur.

You should receive a response similar to the following:

The reservation c94n16.pok.ibm.com.20.r has been successfully made.

2. To reserve nodes based on the requirements of one user job, issue:

llmkres -t 01/17/2005 02:00 -d 420 -f weather.cmd -i yes

You should receive a response similar to the following:

The job “c94n16.pok.ibm.com.25” has been submitted.

The reservation c94n16.pok.ibm.com.31.r has been successfully made.

3. To reserve two nodes for use by the reservation owner and two additional

users issue:

llmkres -t 01/17 13:30 -d 240 -h c94n01 c94n16 -U jay chris

You should receive a response similar to the following:

The reservation c94n16.pok.ibm.com.55.r has been successfully made.

Security

LoadLeveler administrators and users can issue this command.

llmkres

378 LoadLeveler: Using and Administering

|
|

|

|

|

|

|

|
|
|

|
|

|

|

|

|

|

llmodify - Change attributes of a submitted job step

Purpose

Changes the attributes or characteristics of a submitted job.

Syntax

llmodify [-?] | [-H] | [-v] | [-q] | {-x <execution_factor> |

 -c <consumable_cpus> | -m <consumable_real_memory> |

 -W <wclimit_add_min> | -C <job_class> | -a <account_no> |

 -s <q_sysprio> | -p {preempt|nopreempt} } <jobstep>

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-x <execution_factor>

For Gang scheduling only, specifies the execution factor value. Valid values are

1 and 99. This is a LoadLeveler administrator only option.

99 Makes a job step in RUNNING or STARTING state non-preemptable.

All other job steps running on the same nodes are preempted until the

non-preemptable job step finishes running or its execution factor is

lowered.

1 Returns a job step to the normal preemptable state. This value is the

default.

-c <consumable_cpus>

Specifies the consumable CPU value for an idle-like job step.

 Allows the ConsumableCpus resource requirement to be reset to the specified

value. This value can be any integer equal to or greater than zero (0) and

should follow the rules for the resources keyword in the job command file.

-m <consumable_real_memory>

Specifies the consumable real memory value for an idle-like job step.

 Allows the ConsumableMemory resource requirement to be reset to the

specified value. No units should be specified, as megabytes (MB) is assumed.

This value can be any integer equal or greater than zero (0).

-W <wclimit_add_min>

Specifies additional time in minutes to add to the wall clock limits of a

running-like job step. This option is for preventing a job step from being killed

due to the wall clock limits. This is a LoadLeveler administrator-only option.

 Both the hard limit and soft limit are increased by the specified value. This

value can be any integer greater than 0.

 The increase will only be effective if a limit was originally set and not already

exceeded. If you attempt to modify the wall clock limit for a job step that is

approaching its current wall clock limit, it is possible for the current wall clock

limit to expire before it can be changed.

llmodify

Chapter 15. Commands 379

||
||
||
||

|
|
|

||
|
|
|

||
|

|
|
|
|

|
|

|
|
|
|

Specifying llmodify -W will fail if the job step is extended into a reservation.

The reservations in conflict must be canceled before the request to increase the

job step’s wall clock limit can be granted.

-C <job_class>

Specifies the job class name.

 Allows the job class name to be reset to the specified value for an idle-like job

step. This value can be any string without white spaces.

-a <account_no>

Specifies the account number.

 Allows the account number to be reset to the specified value for an idle-like

job step.

-s q_sysprio

Specifies the job step priority.

 This option allows the q_sysprio for a job step to be reset to the specified

integer value. The new job step priority will be fixed. Once the priority has

been modified, it will no longer be changed if the central manager recalculates

priorities. This is a LoadLeveler administrator-only option.

-p {preempt|nopreempt}

Specifies whether a job is preemptable or nonpreemptable.

jobstep

Is the name of a job step to be modified using the form of host.jobid.stepid

v host : The name of the schedd machine to which the job was submitted. The

default is the local machine.

v jobid : The ID assigned to the job when it was submitted using the llsubmit

command. A jobid is required.

v stepid : The step ID assigned to the job when it was submitted using the

llsubmit command. A stepid is required.

Description

All options are for the job step owner or a LoadLeveler administrator on an

idle-like job step with the following exceptions:

v -p, -s, -x, and -W are LoadLeveler administrator only options

v -x 1 is valid for a job step in any state

v -x 99 is valid only for a job step in RUNNING or STARTING state

v -W is valid only for a job step in a running-like state

A request to mark a job step nonpreemptable will fail if the job step’s expected end

time extends into an existing reservation.

At the time a job step is modified, LoadLeveler does not check to make certain that

the job step with the modified values can be scheduled to run.

To determine if a modification request is successful, issue the llq -x -l command

and check the following field in the output.

 Options Field to check

-x Execution Factor

-c or -m Resources

-W Wall Clk Hard Limit/Wall Clk Soft Limit

-C Class

llmodify

380 LoadLeveler: Using and Administering

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

-a Account

-s q_sysprio

-p Preemptable

An idle-like state is one of the following job states:

v Idle

v Deferred

v User Hold

v System Hold

v User & System Hold

v Not Queued

v Vacated

v Vacate Pending

v Rejected

v Reject Pending

A running-like state is one of the following job states:

v Checkpointing

v Pending

v Preempted

v Preempt Pending

v Resume Pending

v Running

v Starting

Examples

1. This example puts the job step c163n07.12.0 in a non-preemptable state:

llmodify -p nopreempt c163n07.12.0

2. To extend the wall clock limits of job step c163n07.12.0 by 30 minutes:

llmodify -W 30 c163n07.12.0

Results

The following shows a sample system response for llmodify -s 109 c163n07.12.0:

llmodify: request has been sent to LoadLeveler.

llmodify returns the following exit values:

0 The command ran successfully.

-1 An error occurred.

Security

LoadLeveler administrators and users can issue this command.

llmodify

Chapter 15. Commands 381

||

||

|

|

|

|

|

|
||
||

llpreempt - Preempt a submitted job step

Purpose

Preempts the job steps specified in the joblist argument using the preempt method

specified in the preempt_method argument or resumes the jobs steps specified in the

joblist argument. Only jobs that have been preempted with the preempt method of

suspend through the llpreempt command or the ll_preempt subroutine can be

resumed with this command. The llpreempt command cannot resume a job step

that was preempted through the PREEMPT_CLASS rules or a job step that was

preempted with a preempt method other than suspend.

Syntax

llpreempt -? | -H | -v | [-q] [-r | -m method] { [-u userlist]

 [-h hostlist] | [joblist] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

-r Resumes the specified jobs. This option is valid only for jobs that were

preempted by the suspend method.

-m preempt_method

su Indicates preempted jobs that are to be suspended. Suspended jobs will

stay in the preempted state until the action is undone with the -r flag.

The suspend method is the only valid preempt method for the GANG

scheduler. This is the default.

 Preemption using the suspend method is not supported by the

LoadLeveler for Linux platforms. On these platforms, the llpreempt

command will have no effect if the suspend method is specified either

explicitly as a command line option (-m su), or implicitly through the

default_preempt_method = su configuration keyword. Note that su is

the default value of the default_preempt_method keyword.

vc Indicates that preempted jobs are to be vacated. The preempted jobs

will be terminated and remain in the job queue. The job will be

rescheduled to run as soon as resources for the job are available.

rm Indicates that preempted jobs are to be removed. The preempted jobs

will be terminated and removed from the job queue. In order to rerun

the job, you must resubmit the job to LoadLeveler.

sh Indicates that preempted jobs are to be put into system hold. The

preempted jobs will be terminated and remain in the job queue in

system hold state. The jobs will remain in system hold until released

by a LoadLeveler administrator using the llhold command. After being

released, the job will go into the idle state where it will be rescheduled

to run as soon as resources for the job are available.

uh Indicates that preempted jobs are to be put into user hold. The

preempted jobs will be terminated and remain in the job queue in user

llpreempt

382 LoadLeveler: Using and Administering

|
|
|
|
|
|
|

||
||

||
|

|

||
|
|
|

|
|
|
|
|
|

||
|
|

||
|
|

||
|
|
|
|
|

||
|

hold state. The jobs will remain in the user hold until released by the

owner of the job step or by a LoadLeveler administrator using the

llhold command. After being released, the job will go into the idle

state where it will be rescheduled to run as soon as resources for the

job are available.

-u userlist

Specifies a blank-delimited list of user names. When used with the -h option,

only the user’s job steps monitored on the machines in the hostlist are

preempted. When used alone, only the user’s jobs monitored by the machine

issuing the command are preempted.

-h hostlist

Specifies a blank-delimited list of host names. All job steps monitored by these

hosts are preempted. When used with the -u option, only the specified user’s

job steps monitored by these hosts are preempted.

joblist

Specifies a blank-delimited list of job step IDs for the job steps to be

preempted. Each job step ID must be in the form host.jobid.stepid where:

v host - The name of the schedd machine to which the job step was submitted.

The default is the local machine.

v jobid - The job ID assigned to the job when it was submitted using the

llsubmit command. A jobid is required.

v stepid - The step ID assigned to the job when it was submitted using the

llsubmit command. The default is to include all of the steps of the job.

If the -u or -h option is specified, the joblist is ignored.

Description

This is a LoadLeveler administrator command used for Gang, Backfill, and external

schedulers only. Regular users do not have the authority to run this command.

This command can only be used when the preemption function is enabled (Gang,

Backfill, or external schedulers with preemption enabled). The only preempt

method allowed when running the GANG scheduler is suspend (su).

Examples

1. This example requests that job step c163n07.12.0 be preempted by the default

preempt method:

llpreempt c163n07.12.0

2. This example requests that job step c163n07.12.0 be resumed:

llpreempt -r c163n07.12.0

3. This example requests that all job steps owned by user frank and monitored by

host c52n01 be preempted by the system hold method:

llpreempt -m sh -u frank -h c52n01

Results

The following shows a sample system response for the llpreempt command:

llpreempt: request has been sent to LoadLeveler.

Security

LoadLeveler administrators can issue this command.

llpreempt

Chapter 15. Commands 383

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|

|

|
|

|

|

llprio - Change the user priority of submitted job steps

Purpose

Changes the user priority of one or more job steps in the LoadLeveler queues. You

can adjust the priority by supplying a + (plus) or − (minus) immediately followed

by an integer value. llprio does not affect a job step that is running, even if its

priority is lower than other jobs steps, unless the job step goes into the Idle state.

Syntax

llprio [-?] [-H] [-v] [-q] [+<integer> | −<integer> | -p <priority>] <joblist>

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

+ | − integer

Operates on the current priority of the job step, making it higher (closer to

execution) or lower (further from execution) by adding or subtracting the value

of integer.

-p priority

Is the new absolute value for priority. The valid range is 0–100 (inclusive)

where 0 is the lowest possible priority and 100 is highest.

joblist

Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the schedd machine to which the job step was submitted

(delimited by dot). The default is the local machine.

If the job step was submitted from a submit-only machine, this is the name

of the machine where the schedd daemon that sent the job to the negotiator

resides.

v jobid is the job ID assigned to the job when it was submitted using the

llsubmit command. jobid is required.

v stepid (delimited by dot) is the job step ID assigned to the job when it was

submitted using the llsubmit command. stepid defaults to all steps of the

job.

Description

The user priority of a job step ranges from 0 to 100 inclusively, with higher

numbers corresponding to greater priority. The default priority is 50. Only the

owner of a job step or the LoadLeveler administrator can change the priority of

that job step. Note that the priority is not the UNIX nice priority.

Priority changes resulting in a value less than 0 become 0.

Priority changes resulting in a value greater than 100 become 100.

Any change to a job step’s priority applied by a user is relative only to that user’s

other job steps in the same class. If you have three job steps enqueued, you can

llprio

384 LoadLeveler: Using and Administering

|
|
|

reorder those three job steps with llprio but the result does not affect job steps

submitted by other users, regardless of their priority and position in the queue.

For more information, see “Setting and changing the priority of a job” on page 183.

Examples

1. This example raises the priority of job 4, job step 1 submitted to machine

bronze by a value of 25:

llprio +25 bronze.4.1

2. This example sets the priority of job 18, job step 4 submitted to machine silver

to 100, the highest possible value:

llprio -p 100 silver.18.4

Results

The following shows a sample system response for the llprio -p 100 silver.18.4

command:

llprio: Priority command has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llprio

Chapter 15. Commands 385

llq - Query job status

Purpose

Returns information about job steps in the LoadLeveler queues.

Syntax

llq [-?] [-H] [-v] [-x] [-s] [-l] [-w] [joblist] [-u userlist] [-h hostlist]

 [-c classlist] [-R reservation_list] [-f category_list] [-r category_list]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-x Provides extended information about the selected job. If the -x flag is used

with the -r, -s, or -f flag, an error message is generated.

 CPU usage and other resource consumption information on active jobs can

only be reported using the -x flag if the LoadLeveler administrator has enabled

it by specifying A_ON and A_DETAIL for the ACCT keyword in the

LoadLeveler configuration file.

 Normally, llq connects with the central manager to obtain job information.

When you specify -x, llq connects to the schedd machine that received the

specified job to get extended job information. However, some statistics,

including those corresponding to System Priority and q_sysprio, are available

only from the central manager. Do not use the -x option if you need these

statistics.

 When specified without -l, CPU usage for active jobs is reported in the short

format.

Note: Using both the -l and -x options without a joblist specification can

produce a very long report and excessive network traffic.

-s Provides information on why a selected list of jobs remain in the NotQueued,

Idle or Deferred state. Along with this flag, users must specify a list of jobs.

The user can also optionally supply a list of machines to be considered when

determining why the jobs cannot run. If a list of machines is not provided, the

default is the list of machines in the LoadLeveler cluster. For each job, llq

determines why the job remains in one of the given states instead of Running.

-l Specifies that a long listing be generated for each job for which status is

requested. Fields included in the long listing are shown in “Results” on page

389.

 If -l is not specified, then the standard listing is generated as shown in

“Results” on page 389.

-w Provides AIX Workload Manager (WLM) CPU and real memory statistics for

jobs in the running state. This flag can be used with a joblist, steplist, or a

single stepid. All other flags except -h will result in an error message.

 When the -w flag is augmented with a single stepid, the -h flag can be used in

conjunction with -w to specify a single hostname.

llq

386 LoadLeveler: Using and Administering

||
||

||
|
|

|
|

This flag can only be used when ENFORCE_CONSUMABLE_RESOURCES is

enabled in the configuration file. Otherwise, an error message is produced.

 The following statistics are displayed for every node the job is running on:

v Current CPU resource consumption as a percentage of the total resources

available

v Total CPU time consumed in milliseconds

v Current real memory consumption as a percentage of the total resources

available

v The highest number of resident memory pages used

joblist

Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the schedd machine to which the job was submitted

(delimited by dot). The default is the local machine.

If the job was submitted from a submit-only machine, this is the name of the

machine where the schedd daemon that sent the job to the negotiator

resides.

v jobid is the job id assigned to the job when it was submitted using the

llsubmit command.

v stepid (delimited by dot) Is the step id assigned to the job when it was

submitted using the llsubmit command. The default is to include all the job

steps of the job associated with the jobid.

-u userlist

Is a blank-delimited list of users. Only job steps belonging to users in this list

are queried.

-h hostlist

Is a blank-delimited list of machines. If the -s flag is not specified, only job

steps monitored on machines in this list are queried. If the -s flag is specified,

the list of machines is considered when determining why a job remains in the

Idle state.

 When the -h flag is used with the -w flag, only a single machine name can be

specified to obtain the WLM statistics for that machine.

-c classlist

Is a blank-delimited list of classes. Only job steps belonging to classes in this

list are queried.

-f category_list

Is a blank-delimited list of categories you want to query. Each category you

specify must be preceded by a percent sign. The category_list cannot contain

duplicate entries. This flag allows you to create a customized version of the

standard llq listing. You cannot use this flag with the -l flag. The output fields

produced by this flag all have a fixed length. The output is displayed in the

order in which you specify the categories. category_list can be one or more of

the following:

%a Account number

%c Class

%cc Completion code

%dc Completion date

%dd Dispatch Date

%dh Hold date

%dq Queue date (″Submitted″ date of ″standard″ llq output)

%gl LoadLeveler group

llq

Chapter 15. Commands 387

|
|

|

|
|

|

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

||

%gu UNIX group

%h Hostname (first hostname if more than one machine is allocated to the

job step)

%id Step ID

%is Virtual image size

%jn Job name

%jt Job type

%nh Number of hosts allocated to the job step

%o Job owner

%p User priority

%R Reservation ID

%sn Step name

%st Status

-r category_list

Is a blank-delimited list of formats (categories) you want to query. Each

category you specify must be preceded by a percent sign. The category_list

cannot contain duplicate entries. This flag allows you to create a customized

version of the standard llq listing. You cannot use this flag with the -l flag. The

output produced by this flag is considered raw, in that the fields can be

variable in length. Output fields are separated by an exclamation point (!). The

output is displayed in the order in which you specify the formats. category_list

can be one or more of the formats listed under the -f flag.

-R reservation_list

Is a blank-delimited list of reservation IDs. Only job steps bound to

reservations in this list are queried. Input for the reservation IDs take the form

[host.]rid[.r] where:

v host - Is the name of the schedd machine to which the reservation was

submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A reservation

ID is required.

v r - Indicates that this is a reservation ID (r is optional).

 If a job step is not specified and if -u, -h, -c, or -R is not specified, all jobs are

queried.

If a job step is specified, you cannot specify -u, -h, -c, or -R, except in the cases of

-w and -s, for which the -h flag has special meaning.

When -u, -h, -c, or -R are used in combination, the result is the intersection of the

job steps selected by each flag.

Description

The llq command returns information about job steps in the LoadLeveler queues.

Examples

1. This example generates a long listing for job 8, job step 2 submitted to machine

gold:

llq -l gold.8.2

2. This example generates a standard listing for all job steps of job name 12

submitted to the local machine:

llq 12

llq

388 LoadLeveler: Using and Administering

||

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|

3. This example generates a standard listing for all job steps owned by either rich

or nathan and bound to reservation 6:

llq -u rich nathan -R 6

4. This example generates an extended listing for all job steps of class batch or

class highprio, being monitored on either c94n07 or c94n09:

llq -x -c batch highprio -h c94n07 c94n09

5. The following example generates a standard listing for all job steps bound to

reservation c94n04.2.r:

llq -R c94n04.2.r

You should receive a response similar to the following:

Id Owner Submitted ST PRI Class Running On

------------------------ ---------- ----------- -- --- ------------ -----------

c94n04.5.0 zhong 2/8 08:17 I 50 classA

1 job step(s) in query, 1 waiting, 0 pending, 0 running, 0 held, 0 preempted

6. The following example generates a customized listing for all job steps:

llq -f %id %o %R

You should receive a response similar to the following:

Step Id Owner Reservation ID

------------------------ ----------- ------------------------

c94n04.5.0 zhong c94n04.2.r

c94n04.4.0 zhong

2 job step(s) in queue, 1 waiting, 0 pending, 0 running, 1 held, 0 preempted

Results

Standard listing: The standard listing is generated when you do not specify the -l

option with the llq command.

The following is sample output from the llq -h mars command, where the machine

mars has two jobs running and one job waiting:

Id Owner Submitted ST PRI Class Running On

------------------------ ---------- ----------- -- --- ------------ -----------

mars.498.0 brownap 5/20 11:31 R 100 silver mars

mars.499.0 brownap 5/20 11:31 R 50 No_Class mars

mars.501.0 brownap 5/20 11:31 I 50 silver

3 job step(s) in query, 1 waiting, 0 pending, 2 running, 0 held, 0 preempted

The standard listing includes the following fields:

Id Job identifier presented in the format: host.jobid.stepid. If the llq command

returns information about a job owned by a schedd in the same domain,

then the domain of the hostname will not appear in the output. However,

when the llq command reports information about a job owned by a schedd

in a different domain, the fully qualified hostname is always included. Due

to space limitations, the domain of the host may be truncated to fit in the

space allocated to the Id field. If the domain is truncated, a dash (-) will

appear at the end to indicate that characters have been left out. To see the

full job ID, run llq with the -l flag.

llq

Chapter 15. Commands 389

|
|

|

|
|

|

|
|

|

|

|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|

|

Owner

Userid of the job submitter.

Submitted

Date and time of job submission.

ST For more information, see “LoadLeveler job states” on page 18.

PRI User priority of the job step, where the values are defined with the

user_priority keyword in the job command file or changed by the llprio

command, which is described in “llprio - Change the user priority of

submitted job steps” on page 384

Class Job class.

Running On

If running, the name of the machine the job step is running on. This is

blank when the job is not running. For a parallel job step, only the first

machine is shown.

Customized, formatted standard listing: A customized and formatted standard

listing is generated when you specify llq with the -f flag.

The following is sample output from this command:

 llq -f %id %c %dq %dd %gl %h

Step Id Class Queue Date Disp. Date LL Group Running On

----------------- ---------- ----------- ----------- ---------- ---------------

ll6.2.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll6.pok.ibm.com

ll6.1.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll6.pok.ibm.com

ll6.3.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll5.pok.ibm.com

3 job step(s) in queue, 0 waiting, 0 pending, 3 running, 0 held, 0 preempted

Customized, unformatted standard listing: A customized and unformatted (raw)

standard listing is generated when you specify llq with the -r flag. Output fields

are separated by an exclamation point (!).

The following is sample output from this command:

llq -r %id %c %dq %dd %gl %h

ll6.pok.ibm.com.2.0!No_Class!04/08/2005 09:19!04/08/2005 09:21!No_Group!ll6.pok.ibm.com

ll6.pok.ibm.com.1.0!No_Class!04/08/2005 09:19!04/08/2005 09:21!No_Group!ll6.pok.ibm.com

ll6.pok.ibm.com.3.0!No_Class!04/08/2005 09:19!04/08/2005 09:21!No_Group!ll5.pok.ibm.com

WLM CPU and real memory statistics listing: If the LoadLeveler interface to AIX

Workload Manager (WLM) is enabled, then the -w option can be used to obtain

CPU and real memory statistics of job steps in running state. Note that Large Page

memory information is not included in the statistics since WLM does not manage

Large Page memory.

The following is the output of llq -w c209f1n05.13.0 where c209f1n05.13.0 is a

CPU intensive parallel job step currently running on the 2 nodes c209f1n05 and

c209f1n01:

llq

390 LoadLeveler: Using and Administering

||

=============== Job Step c209f1n05.ppd.pok.ibm.com.13.0 ===============

 c209f1n05.ppd.pok.ibm.com:

 Resource: CPU

 snapshot: 99

 total: 80172

 Resource: Real Memory

 snapshot: 1

 high water: 2561

 c209f1n01.ppd.pok.ibm.com:

 Resource: CPU

 snapshot: 100

 total: 79303

 Resource: Real Memory

 snapshot: 1

 high water: 1919

The output listing associated with the -w option includes these fields:

Resource

The resource being enforced by WLM. This is either CPU or Real Memory.

snapshot

Current CPU or Real Memory consumption as a percentage of the total

resources available.

total Total CPU time consumed in milliseconds. CPU resource only.

high water

The highest number of resident memory pages used. Real Memory

resource only.

The long listing: The long listing is generated when you specify the -l option with

the llq command. This section contains sample output for two llq commands: one

querying a serial job and one querying a parallel job. Following the sample output

is an explanation of all possible fields displayed by the llq command.

The following is sample output for the llq -l command for the serial job step

c271f2rp01.ppd.pok.ibm.com.8.0:

llq

Chapter 15. Commands 391

=============== Job Step c271f2rp01.ppd.pok.ibm.com.8.0===============

 Job Step Id: c271f2rp01.ppd.pok.ibm.com.8.0

 Job Name: c271f2rp01.ppd.pok.ibm.com.8

 Step Name: job_step_1

 Structure Version: 10

 Owner: wilson

 Queue Date: Sat Mar 19 13:59:13 EDT 2005

 Status: Running

 Reservation ID:

 Requested Res. ID:

 Execution Factor: 1

 Dispatch Time: Sat Mar 19 13:59:19 EDT 2005

 Completion Date:

 Completion Code:

 User Priority: 50

 user_sysprio: 0

 class_sysprio: 45

 group_sysprio: 0

 System Priority: -255

 q_sysprio: -255

 previous q_sysprio: 97

 Notifications: Complete

 Virtual Image Size: 15 kb

 Large Page: N

 Checkpointable: no

 Ckpt Start Time:

Good Ckpt Time/Date:

 Ckpt Elapse Time: 0 seconds

Fail Ckpt Time/Date:

 Ckpt Accum Time: 0 seconds

 Checkpoint File:

 Ckpt Execute Dir:

 Restart From Ckpt: no

 Restart Same Nodes: no

 Restart: no

 Preemptable: yes

 Preempt Wait Count: 0

 Hold Job Until:

 Cmd: /u/wilson/LL_SERIAL/c_cpu_60_sleep_60

 Args: arg_01 arg_02 arg_3

 Env:

 In: /dev/null

 Out: job1.c271f2rp01.8.0.out

 Err: job1.c271f2rp01.8.0.err

Initial Working Dir: /u/wilson/LL_SERIAL

 Dependency:

 Resources: ConsumableMemory(100.000 mb) ConsumableVirtualMemory(150.000 mb) ConsumableCpus(1)

 Requirements: (Arch == "R6000") && ((OpSys == "AIX52") || (OpSys == "AIX53"))

 Preferences: (Machine == { "c271f2rp01.ppd.pok.ibm.com" "c271f2rp02.ppd.pok.ibm.com" })

 && (Feature == "ESSL")

Figure 35. llq -l output for a serial job step (Part 1 of 2)

llq

392 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|

The following listing is sample output for the llq -l -x

c271f2rp01.ppd.pok.ibm.com.16.0 command, where

c271f2rp01.ppd.pok.ibm.com.16.0 is a parallel, non-checkpointing job step:

 Step Type: Serial

 Min Processors:

 Max Processors:

 Allocated Host: c271f2rp02.ppd.pok.ibm.com

 Node Usage: shared

 Submitting Host: c271f2rp01.ppd.pok.ibm.com

 Notify User: wilson@c271f2rp01.ppd.pok.ibm.com

 Shell: /bin/ksh

 LoadLeveler Group: No_Group

 Class: small

 Ckpt Hard Limit: undefined

 Ckpt Soft Limit: undefined

 Cpu Hard Limit: 00:02:00 (120 seconds)

 Cpu Soft Limit: 00:02:00 (120 seconds)

 Data Hard Limit: 5.500 gb (5905580032 bytes)

 Data Soft Limit: 4.400 gb (4724464025 bytes)

 Core Hard Limit: 8.000 gb (8589934592 bytes)

 Core Soft Limit: 8.000 gb (8589934592 bytes)

 File Hard Limit: 1.500 tb (1649267441664 bytes)

 File Soft Limit: 1.200 tb (1319413953331 bytes)

 Stack Hard Limit: 400.000 mb (419430400 bytes)

 Stack Soft Limit: 300.000 mb (314572800 bytes)

 Rss Hard Limit: 3.000 pb (3377699720527872 bytes)

 Rss Soft Limit: 2.000 pb (2251799813685248 bytes)

Step Cpu Hard Limit: 2+02:45:00 (182700 seconds)

Step Cpu Soft Limit: 2+01:30:00 (178200 seconds)

Wall Clk Hard Limit: 10+10:30:01 (901801 seconds)

Wall Clk Soft Limit: 9+14:55:00 (831300 seconds)

 Comment: Job 3 of Serial test suite 15.

 Account: 99999

 Unix Group: usr

 NQS Submit Queue:

 NQS Query Queues:

Negotiator Messages:

 Bulk Transfer: No

Adapter Requirement:

 Step Cpus: 1

Step Virtual Memory: 150.000 mb

 Step Real Memory: 100.000 mb

Step Adapter Memory: 0 bytes

Figure 35. llq -l output for a serial job step (Part 2 of 2)

llq

Chapter 15. Commands 393

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|

=============== Job Step c271f2rp01.ppd.pok.ibm.com.16.0 ===============

 Job Step Id: c271f2rp01.ppd.pok.ibm.com.16.0

 Job Name: c271f2rp01.ppd.pok.ibm.com.16

 Step Name: parallel_job_step_1

 Structure Version: 10

 Owner: wilson

 Queue Date: Sat Mar 19 15:31:02 EDT 2005

 Status: Running

 Reservation ID:

 Requested Res. ID:

 Execution Factor: 1

 Dispatch Time: Sat Mar 19 15:31:07 EDT 2005

 Completion Date:

 Completion Code:

 User Priority: 50

 user_sysprio: 0

 class_sysprio: 35

 group_sysprio: 0

 System Priority:

 q_sysprio:

 previous q_sysprio: 97

 Notifications: Complete

 Virtual Image Size: 421 kb

 Large Page: N

 Checkpointable: no

 Ckpt Start Time:

Good Ckpt Time/Date:

 Ckpt Elapse Time: 0 seconds

Fail Ckpt Time/Date:

 Ckpt Accum Time: 0 seconds

 Checkpoint File:

 Ckpt Execute Dir:

 Restart From Ckpt: no

 Restart Same Nodes: no

 Restart: no

 Hold Job Until:

 Env: LANG=en_US LOGIN=wilson PATH= ...

 In: /dev/null

 Out: poe5_1.c271f2rp01.16.0.out

 Err: poe5_1.c271f2rp01.16.0.err

Initial Working Dir: /u/wilson/LL_PARA

Figure 36. llq -l -x output for a parallel, non-checkpointing job step (Part 1 of 4)

llq

394 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Dependency:

 Resources: ConsumableMemory(100.000 mb) ConsumableVirtualMemory(400.000 mb) spice2g6(2)

 Step Type: General Parallel

 Node Usage: shared

 Submitting Host: c271f2rp01.ppd.pok.ibm.com

 Notify User: wilson@c271f2rp01.ppd.pok.ibm.com

 Shell: /bin/ksh

 LoadLeveler Group: No_Group

 Class: large

 Ckpt Hard Limit: undefined

 Ckpt Soft Limit: undefined

 Cpu Hard Limit: 03:30:30 (12630 seconds)

 Cpu Soft Limit: 02:00:00 (7200 seconds)

 Data Hard Limit: 5.200 gb (5583457484 bytes)

 Data Soft Limit: 4.100 gb (4402341478 bytes)

 Core Hard Limit: 8.000 gb (8589934592 bytes)

 Core Soft Limit: 5.500 gb (5905580032 bytes)

 File Hard Limit: 1.500 tb (1649267441664 bytes)

 File Soft Limit: 1.200 tb (1319413953331 bytes)

 Stack Hard Limit: 400.000 mb (419430400 bytes)

 Stack Soft Limit: 200.000 mb (209715200 bytes)

 Rss Hard Limit: 3.500 pb (3940649673949184 bytes)

 Rss Soft Limit: 2.500 pb (2814749767106560 bytes)

Step Cpu Hard Limit: 2+12:45:00 (218700 seconds)

Step Cpu Soft Limit: 2+02:30:00 (181800 seconds)

Wall Clk Hard Limit: 01:40:00 (6000 seconds)

Wall Clk Soft Limit: 01:40:00 (6000 seconds)

 Comment: Test job 1 of Parallel test suite 8.

 Account: 99999

 Unix Group: usr

 User Space Windows: 12

 NQS Submit Queue:

 NQS Query Queues:

Negotiator Messages:

 Bulk Transfer: No

Adapter Requirement: (css0,LAPI,not_shared,US,LOW,1),(css0,MPI,shared,US,HIGH,1)

 Step Cpus: 0

Step Virtual Memory: 2.344 gb

 Step Real Memory: 600.000 mb

Step Adapter Memory: 12.000 mb (12582912 bytes)

Figure 36. llq -l -x output for a parallel, non-checkpointing job step (Part 2 of 4)

llq

Chapter 15. Commands 395

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

--------------- Detail for c271f2rp01.ppd.pok.ibm.com.16.0 ---------------

 Running Host: c271f2rp01.ppd.pok.ibm.com

 Machine Speed: 1.000000

 Starter User Time: 00:00:00.160000

Starter System Time: 00:00:00.170000

 Starter Total Time: 00:00:00.330000

 Starter maxrss: 2640

 Starter ixrss: 5356

 Starter idrss: 18268

 Starter isrss: 0

 Starter minflt: 0

 Starter majflt: 0

 Starter nswap: 0

 Starter inblock: 0

 Starter oublock: 0

 Starter msgsnd: 0

 Starter msgrcv: 0

 Starter nsignals: 1

 Starter nvcsw: 163

 Starter nivcsw: 1560

 Step User Time: 00:03:30.360000

 Step System Time: 00:00:00.990000

 Step Total Time: 00:03:31.350000

 Step maxrss: 22820

 Step ixrss: 170284

 Step idrss: 80582968

 Step isrss: 0

 Step minflt: 37654

 Step majflt: 0

 Step nswap: 0

 Step inblock: 0

 Step oublock: 0

 Step msgsnd: 0

 Step msgrcv: 0

 Step nsignals: 0

 Step nvcsw: 3033

Figure 36. llq -l -x output for a parallel, non-checkpointing job step (Part 3 of 4)

llq

396 LoadLeveler: Using and Administering

The long listing includes these fields:

Job Step ID

The job step identifier.

Job Name

The name of the job.

Step Name

The name of the job step

Structure Version

An internal version identifier.

Owner

The userid of the user submitting the job.

Queue Date

The date and time that LoadLeveler received the job.

Job Accounting Key

The Job Accounting Key is a unique identifier for a LoadLeveler job step.

The accounting key is stored in the AIX accounting record for each process

associated with a LoadLeveler job step. This field can be used to correlate

 Step nivcsw: 488

--

Node

 Name :

 Requirements : (Arch == "R6000") && ((OpSys == "AIX52") || (OpSys == "AIX53"))

 Preferences : (Machine == { "c271f2rp01.ppd.pok.ibm.com" "c271f2rp02.ppd.pok.ibm.com" })

 && (Feature == "ESSL")

 Node minimum : 2

 Node maximum : 2

 Node actual : 2

 Allocated Hosts : c271f2rp01.ppd.pok.ibm.com:RUNNING:sn0(2502,LAPI,US,1M),

 sn1(2502,MPI,US,1M),sn0(2504,LAPI,US,1M),sn1(2504,MPI,US,1M),

 sn0(2506,LAPI,US,1M),sn1(2506,MPI,US,1M)

 + c271f2rp02.ppd.pok.ibm.com:RUNNING:sn0(2502,LAPI,US,1M),

 sn1(2502,MPI,US,1M),sn0(2504,LAPI,US,1M),sn1(2504,MPI,US,1M),

 sn0(2506,LAPI,US,1M),sn1(2506,MPI,US,1M)

 Master Task

 Executable : /bin/poe

 Exec Args : /u/wilson/LL_PARA/ivp_cpu_110_120_sleep_130 -ilevel 6 -labelio yes

 Num Task Inst: 1

 Task Instance: c271f2rp01:-1

 Task

 Num Task Inst: 6

 Task Instance: c271f2rp01:0:sn0(2502,LAPI,US,1M),sn1(2502,MPI,US,1M)

 Task Instance: c271f2rp01:1:sn0(2504,LAPI,US,1M),sn1(2504,MPI,US,1M)

 Task Instance: c271f2rp01:2:sn0(2506,LAPI,US,1M),sn1(2506,MPI,US,1M)

 Task Instance: c271f2rp02:3:sn0(2502,LAPI,US,1M),sn1(2502,MPI,US,1M)

 Task Instance: c271f2rp02:4:sn0(2504,LAPI,US,1M),sn1(2504,MPI,US,1M)

 Task Instance: c271f2rp02:5:sn0(2506,LAPI,US,1M),sn1(2506,MPI,US,1M)

Figure 36. llq -l -x output for a parallel, non-checkpointing job step (Part 4 of 4)

llq

Chapter 15. Commands 397

|
|
|
|

AIX accounting records with LoadLeveler accounting records. The Job

Accounting Key is stored in the history file and can be displayed using the

llsummary -l command.

 This keyword is not applicable on LoadLeveler for Linux platforms.

 For more information on the Job Accounting Key, see “Correlating AIX and

LoadLeveler accounting records” on page 60.

Status The status (state) of the job. For more information, see “LoadLeveler job

states” on page 18.

Reservation ID

The reservation ID that a job step is bound to. If a job step is not bound to

any reservation, this field will be blank.

Requested Res. ID

The reservation ID that a job step is requested to be bound to, but has not

yet been bound to. This field will be set when a job submitted with a

request to bind has been successfully submitted, but the bind has not yet

occurred. The bind may never occur if either the owner of the job step is

not allowed to use the reservation, or if the reservation does not exist.

 If a job command file is used to select nodes to reserve in a make or

change reservation request and the request fails, all steps of the job, if

submitted successfully, will have MAKERES as their Requested Res. ID

and the steps will be in the NQ state.

Execution Factor

Used only for Gang scheduling, Execution factor is used to prevent

preemption of a job step.

Dispatch Time

The time the job was dispatched.

Completion Date

Date and time job completed or exited.

Completion Code

The status returned by the wait3 UNIX system call.

User Priority

The priority of the job step, as specified by the user in the job command,

or changed by the llprio command.

user_sysprio

The user system priority of the job step, where the value is defined in the

administration file.

class_sysprio

The class priority of the job step, where the value is defined in the

administration file.

group_sysprio

The group priority of the job step, where the value is defined in the

administration file.

System Priority

The overall system priority of the job step, where the value is defined by

the SYSPRIO expression in the configuration file.

llq

398 LoadLeveler: Using and Administering

|
|
|

|

|
|

||
|

|
|
|

|
|
|
|
|
|

|
|
|
|

q_sysprio

The adjusted system priority of the job step. For more information, see

“Example: How does a job’s priority affect dispatching order?” on page

183.

previous q_sysprio

The previous adjusted system priority of the job step. For more

information, see “Example: How does a job’s priority affect dispatching

order?” on page 183.

Notifications

The notification status for the job step, where:

always

Indicates notification is sent through the mail for all four notification

categories below.

complete

Indicates notification is sent through the mail only when the job step

completes.

error

Indicates notification is sent through the mail only when the job step

terminates abnormally.

never

Indicates notification is never sent.

start

Indicates notification is sent through the mail only when starting or

restarting the job step.

Virtual Image Size

The value of the image_size keyword (if specified) or the size of the

executable associated with the executable keyword (if specified) or the size

of the job command file.

Large Page

Indicates whether Large Page memory should be used to run this job step.

Can be Y (use Large Page memory if available), N (No), or M (Mandatory).

Checkpointable

Indicates if LoadLeveler considers the job step checkpointable (yes, no, or

interval).

Ckpt Start Time

The start time of the current checkpoint in progress. Blank if no checkpoint

running.

Good Ckpt Time/Date

Time and date stamp of the last successful checkpoint.

Ckpt Elapse Time

Amount of time taken to perform the last successful checkpoint.

Fail Ckpt Time/Date

Time and date stamp of the last failed checkpoint.

Ckpt Accum Time

Accumulated time, in seconds, the job step has spent checkpointing.

Checkpoint File

Location of the directory and file name to be used for checkpoint data.

llq

Chapter 15. Commands 399

|
|
|
|

Ckpt Execute Dir

The directory where the job step’s executable will be saved for

checkpointable jobs.

Restart From Ckpt

Indicates if a job has been restarted from an existing checkpoint (yes or

no).

Restart Same Nodes

Indicates if a job step should be restarted on the same nodes after vacate

(yes or no).

Restart

Restart status (yes or no).

Preemptable

Indicates whether a job step is preemptable (yes or no).

Preempt Wait Count

Specifies the number of job steps that an idle job step must preempt before

it can be started.

Hold Job Until

Job step is deferred until this date and time.

Cmd The name of the executable associated with the executable keyword (if

specified) or the name of the job command file.

Args Arguments that were passed to the executable.

Env Environment variables to be set before executable runs. Appears only when

the -x option is specified.

In The file to be used for stdin.

Out The file to be used for stdout.

Err The file to be used for stderr.

Initial Working Dir

The directory from which the job step is run. The relative directory from

which the stdio files are accessed, if appropriate.

Dependency

Job step dependencies as specified at job submission.

Resources

Reflects the settings for the resources keyword in the job command file.

Requirements

Job step requirements as specified at job submission.

Preferences

Job step preferences as specified at job submission.

Task_geometry

Reflects the settings for the task_geometry keyword in the job command

file.

Blocking

Reflects the settings for the blocking keyword in the job command file.

Step Type

Type of job step:

v Serial

v General parallel

llq

400 LoadLeveler: Using and Administering

|
|
|

|
|

|
|
|

Min Processors

The minimum number of processors needed for this job step.

Max Processors

The maximum number of processors that can be used for this job step.

Allocated Hosts

The machines that have been allocated for this job step.

Node Usage

A request that a node be shared or not shared or that a time-slice is not

shared. The user specifies this request while submitting the job.

Submitting Host

The name of the machine to which the job is submitted.

Notify User

The user to be notified by mail of a job’s status.

Shell The shell to be used when the job step runs.

LoadLeveler Group

The LoadLeveler group associated with the job step.

Class The class of the job step as specified at job submission.

Ckpt Hard Limit

Checkpoint hard limit as specified at job step submission.

Ckpt Soft Limit

Checkpoint soft limit as specified at job step submission.

Cpu Hard Limit

CPU hard limit as specified at job submission.

Cpu Soft Limit

CPU soft limit as specified at job submission.

Data Hard Limit

Data hard limit as specified at job submission.

Data Soft Limit

Data soft limit as specified at job submission.

Core Hard Limit

Core hard limit as specified at job submission.

Core Soft Limit

Core soft limit as specified at job submission.

File Hard Limit

File hard limits as specified at job submission.

File Soft Limit

File soft limit as specified at job submission.

Stack Hard Limit

Stack hard limit as specified at job submission.

Stack Soft Limit

Stack soft limit as specified at job submission.

Rss Hard Limit

RSS hard limit as specified at job step submission.

Rss Soft Limit

RSS soft limit as specified at job step submission.

llq

Chapter 15. Commands 401

Step Cpu Hard Limit

Job step CPU hard limit as specified at job submission.

Step Cpu Soft Limit

Job step CPU soft limit as specified at job submission.

Wall Clk Hard Limit

Wall clock hard limit as specified at job submission.

Wall Clk Soft Limit

Wall clock soft limit as specified at job submission.

Comment

The comment specified by the comment keyword in the job command file.

Account

The account number specified in the job command file.

Unix Group

The effective UNIX group name.

NQS Submit Queue

The name of the NQS pipe queue to which the NQS job will be routed.

NQS Query Queues

The NQS queue names you can use to monitor the job.

DCE Principal

The DCE principal name associated with the process that submitted the job

to LoadLeveler.

User Space Windows

The number of switch adapter windows assigned to the job step.

Negotiator Messages

Informational messages for the job step if it is in the Idle or NotQueued

state.

Bulk Transfer

Indicates that the value will be Yes or No depending on whether the

application requested that the communication subsystem use bulk transfer

by specifying bulkxfer=yes in the job command file.

Adapter Requirement

Reflects the settings of the network keyword in the job command file.

Step Cpus

The total ConsumableCpus for the job step.

Step Virtual Memory

The total ConsumableVirtualMemory for the job step.

Step Real Memory

The total ConsumableMemory for the job step.

Step Adapter Memory

The total adapter pinned memory for the job step.

When -x and -l options are specified, llq also displays the information listed below.

If several LoadL_starter processes are used for running this job step, then the

values reported are either cumulative totals or the maximum values. The same is

true for the processes of the job step.

llq

402 LoadLeveler: Using and Administering

|
|
|
|

For more information on the maxrss, ixrss, idrss, isrss, minflt, majflt, nswap,

inblock, oublock, msgsnd, msgrcv, nsignals, nvcsw, and nivcsw fields, see the

AIX and Linux documentation for the rusage fields under the

getrusage/getrusage64 subroutine.

Only minflt, majflt, and nswap are supported in LoadLeveler for Linux.

Running Host

For a serial job step, the machine that is running this job step. For a

parallel job step, the first machine that has been allocated for this job step.

Machine Speed

For a serial job step, the value associated with the ″speed″ keyword of the

machine that is running this job step. For a parallel job step, the value

associated with the ″speed″ keyword of the first machine that has been

allocated for this job step.

Starter User Time/Step User Time

CPU user time of Starter/Step processes. Cumulative total.

Starter System Time/Step System Time

CPU system time of Starter/Step processes. Cumulative total.

Starter Total Time/Step Total Time

CPU total time of Starter/Step processes. Cumulative total.

Starter maxrss/Step maxrss

Maximum resident set size utilized. Maximum value.

Starter ixrss/Step ixrss

An integral value indicating the amount of memory used by the text

segment that was also shared among other processes (expressed in units of

kilobytes * seconds-of-execution).

Starter idrss/Step Starter idrss

An integral value of the amount of unshared memory in the data segment

of a process (expressed in units of kilobytes * seconds-of-execution).

Starter isrss/Step isrss

Depending on the Operating System, this field may contain the integral

value of unshared stack size.

Starter minflt/Step minflt

Number of page faults (reclaimed). Cumulative total.

Starter majflt/Step majflt

Number of page faults (I/O required). Cumulative total.

Starter nswap/Step nswap

Number of times swapped out. Cumulative total.

Starter inblock/Step inblock

Number of times file system performed input. Cumulative total.

Starter oublock/Step oublock

Number of times file system performed output. Cumulative total.

Starter msgsnd/Step msgsnd

Number of IPC messages sent. Cumulative total.

Starter msgrcv/Step msgrcv

Number of IPC messages received. Cumulative total.

llq

Chapter 15. Commands 403

Starter nsignals/Step nsignals

Number of signals delivered. Cumulative total.

Starter nvcsw/Step nvcsw

Number of context switches due to voluntarily giving up processor.

Cumulative total.

Starter nivcsw/Step nivcsw

Number of involuntary context switches. Cumulative total.

 Other fields displayed for parallel jobs are:

(Node) Name

Blank value. Reserved for future use.

(Node) Requirements

Job step requirements as specified at job submission.

(Node) Preferences

Job step preferences as specified at job submission.

(Node) Node minimum

Minimum number of machines of this Node type required to run this job

step.

(Node) Node maximum

Maximum number of machines of this Node type that can be used to run

this job step.

(Node) Node actual

Actual number of machines of this Node type that are used in the running

of this job step.

(Node) Allocated Hosts

v The machines of this Node type that have been allocated for this job

step. The format is:

hostname:task status:adapter usage, ... ,adapter usage + ... +

hostname:task status:adapter usage, ... ,adapter usage

v The adapter usage information has the format: adapter name(adapter

window ID, network protocol, mode, adapter window memory)

(Node/Master Task) Executable

The executable associated with the master task.

(Node/Master Task) Exec Args

The arguments passed to the master task executable.

(Node/Master Task) Num Task Inst

The number of task instances of the master task.

(Node/Master Task) Task Instance

v Task instance information has the format: hostname:task ID:adapter

usage, ... ,adapter usage

v Adapter usage information has the format: adapter name(adapter

window ID, network protocol, mode, adapter window memory)

(Node/Task) Num Task Inst

The number of task instances.

(Node/Task) Task Instance

v Task instance information has the format: hostname:task ID:adapter

usage, ... ,adapter usage

llq

404 LoadLeveler: Using and Administering

v Adapter usage information has the format: adapter name(adapter

window ID, network protocol, mode, adapter window memory)

Security

LoadLeveler administrators and users can issue this command.

llq

Chapter 15. Commands 405

llqres - Query a reservation

Purpose

llqres – Returns information about reservations in LoadLeveler.

Syntax

llqres { -? | -H | -v | [-l|-r] [-s] [[-u user_list] [-g group_list]

 [-h host_list] [-b begin_time] [-e end_time] | -R reservation_list] }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-l Specifies that a long listing be generated for each reservation to be

queried.

-r Specifies raw mode for output. Each reservation will occupy one

line with the output fields separated by an exclamation point (!).

-s Specifies that short host names will be used in the output of

machine names.

-u user_list Specifies a blank-delimited list of users. Reservations to be queried

are owned by one of these users.

-g group_list Specifies a blank-delimited list of LoadLeveler groups. Reservations

to be queried are owned by one of these groups.

-h host_list Specifies a blank-delimited list of machines. Reservations to be

queried use one or more of these machines.

-b begin_time Reservations to be queried are active at or after the specified begin

time. The -b flag can be used together with the -e flag to query

reservations expected to be active between the begin and end

times. The begin_time must be specified using the format

[mm/dd[/[cc]yy]] HH:MM. Hours must be specified using a

24-hour clock.

-e end_time Reservations to be queried are active at or before the specified end

time. The -e flag can be used together with the -b flag to query

reservations expected to be active between the begin and end

times. The end_time must be specified using the format

[mm/dd[/[cc]yy]] HH:MM. Hours must be specified using a

24-hour clock.

-R reservation_list

Specifies a blank-delimited list of reservation IDs to be queried.

Input for reservation IDs take the form [host.]rid[.r] where:

v host - Is the name of the schedd machine to which the

reservation was submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A

reservation ID is required.

v r - Indicates that this is a reservation ID (r is optional).

llqres

406 LoadLeveler: Using and Administering

|
|

|

|

|
||
||

|

||

||

||
|
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|
|
|
|
|

||
|
|
|
|
|

|
|
|

|
|

|
|

|

When -R is specified, -u, -g, and -h are ignored.

Description

All users can issue this command. Reservations satisfying all criteria specified by

-u, -g, -h, -b, and -e will be queried if more than one of these options are present.

By default, the llqres command queries all existing reservations.

This command is for the BACKFILL scheduler only.

Examples

1. When issuing the llqres command, you should receive output similar to the

following:

Id Owner ST Start Time Duration #Nodes

----------- ----- -- ----------- -------- ------

c94n16.30.r loadl A 3/16 14:00 120 3

c94n16.31.r dave W 3/17 02:00 420 4

c94n16.35.r carol W 3/17 13:30 240 2

When issuing the llqres -l command, you should receive output similar to the

following:

=============== Reservation c94n16.ppd.pok.ibm.com.30.r ===============

 ID: c94n16.ppd.pok.ibm.com.30.r

 Creation Time: Wed Mar 16 08:12:23 EDT 2005

 Owner: loadl

 Group: No_Group

 Start Time: Wed Mar 16 14:00:00 EDT 2005

 Duration: 120 minutes

Expected End Time: Wed Mar 16 16:00:00 EDT 2005

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: ACTIVE

 Modified By: loadl

Modification Time: Wed Mar 16 10:21:14 EDT 2005

 Users: 0

 Groups: 1

 loadlusr

 Nodes: 3

 c94n01.ppd.pok.ibm.com

 c94n11.ppd.pok.ibm.com

 c94n12.ppd.pok.ibm.com

 Job Steps: 0

=============== Reservation c94n16.ppd.pok.ibm.com.31.r ===============

 ID: c94n16.ppd.pok.ibm.com.31.r

 Creation Time: Wed Mar 16 10:55:18 EDT 2005

 Owner: dave

 Group: No_Group

 Start Time: Thu Mar 17 02:00:00 EDT 2005

 Duration: 420 minutes

Expected End Time: Thu Mar 17 09:00:00 EDT 2005

 SHARED: no

 REMOVE_ON_IDLE: yes

 Status: WAITING

 Modified By: dave

Modification Time: Wed Mar 16 10:55:18 EDT 2005

 Users: 0

 Groups: 0

 Nodes: 4

 c94n01.ppd.pok.ibm.com

 c94n02.ppd.pok.ibm.com

 c94n12.ppd.pok.ibm.com

 c94n16.ppd.pok.ibm.com

llqres

Chapter 15. Commands 407

|

|

|
|
|

|

|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Job Steps: 1

 c94n16.ppd.pok.ibm.com.25.0

=============== Reservation c94n16.ppd.pok.ibm.com.35.r ===============

 ID: c94n16.ppd.pok.ibm.com.35.r

 Creation Time: Wed Mar 16 10:58:19 EDT 2005

 Owner: carol

 Group: No_Group

 Start Time: Thu Mar 17 13:30:00 EDT 2005

 Duration: 240 minutes

Expected End Time: Thu Mar 17 17:30:00 EDT 2005

 SHARED: no

 REMOVE_ON_IDLE: no

 Status: WAITING

 Modified By: carol

Modification Time: Wed Mar 16 10:58:19 EDT 2005

 Users: 2

 jay

 iris

 Groups: 0

 Nodes: 2

 c94n01.ppd.pok.ibm.com

 c94n02.ppd.pok.ibm.com

 Job Steps: 0

2. To determine if any reservations will be active on the machine c94n01 before

performing an hours worth of maintenance beginning at 8:00 on 3/18/2005,

issue the following command:

llqres -b 03/18/2005 8:00 -e 3/18/2005 9:00 -h c94n01

You should receive output similar to the following:

Id Owner ST Start Time Duration #Nodes

----------- ----- -- ----------- -------- ------

c94n16.31.r dave W 3/18 02:00 420 4

3. There are no job steps associated with a reservation in the following example.

The short form is used for host names:

llqres -r -s -R c94n16.30.r

You should receive output similar to the following:

c94n16.30.r!Wed Mar 16 08:12:23 EDT 2005!loadl!No_Group!Wed Mar 16 14:00:00 EDT

2005!120!Wed Mar 16 16:00:00 EDT 2005!no!no!ACTIVE!loadl!Wed Mar 16 10:21:14 EDT

2005!0!!1!loadlusr!3!c94n01,c94n11,c94n12!0!

4. There are job steps associated with a reservation in the following example. The

short form is used for host names:

llqres -r -s -R c94n16.31.r

You should receive output similar to the following:

c94n16.31.r!Wed Mar 16 10:35:18 EDT 2005!dave!No_Group!Thu Mar 17 02:00:00 EDT

2005!420!Thu Mar 17 09:00:00 EDT 2005!no!yes!WAITING!dave!Wed Mar 16 10:55:18

EDT 2005!0!!0!!4!c94n01,c94n02,c94n12,c94n16!1!c94n16.25.0

llqres

408 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|
|
|

|
|

|

|

|
|
|

|

llrmres - Cancel a reservation

Purpose

llrmres – Cancels a reservation in LoadLeveler.

Syntax

llrmres { -? | -H | -v | [-q] { [-u user_list] [-g group_list] [-h host_list] |

 [-R {all|reservation_list}] } }

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

-u user_list Specifies a blank-delimited list of user IDs. Reservations to be

canceled are owned by one of these users.

-g group_list Specifies a blank-delimited list of LoadLeveler groups. Reservations

to be canceled are owned by one of these groups.

-h host_list Specifies a blank-delimited list of machines. Reservations to be

canceled use one or more of these machines.

-R {all | reservation_list}

Specifies a blank-delimited list of reservation IDs to be canceled. A

LoadLeveler administrator can specify the reserved word all to

cancel all reservations in the system. Nonadministrators can specify

the reserved word all to cancel all of the reservations that they

own. Input for the reservation IDs take the form [host.]rid[.r]

where:

v host - Is the name of the schedd machine to which the

reservation was submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A

reservation ID is required.

v r - Indicates that this is a reservation ID (r is optional).

Description

The llrmres command is for LoadLeveler administrators and owners of a

reservation. Owners of a reservation can cancel their own reservation. A

LoadLeveler administrator can cancel any reservation. The state of a job step will

not be changed directly by the cancellation of a reservation. Reservations satisfying

all criteria specified by the -u, -g, and -h flags will be canceled if more than one of

these options are present. The llqres command can be used to see the status of the

reservation.

This command is for the BACKFILL scheduler only.

llrmres

Chapter 15. Commands 409

|
|

|

|

|
||
||

|

||

||

||
|
|

||

||
|

||
|

||
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|
|
|

|

Examples

1. To request to cancel all reservations owned by user ID iris that use machine

c188f2n01, issue the following command. Note that this request can be made

either by an administrator or the user iris.

llrmres -u iris -h c188f2n01

You should receive a response similar to the following:

The request to remove reservations has been sent to the central manager.

2. To request that the LoadLeveler administrator cancel all reservations, issue:

llrmres -R all

You should receive a response similar to the following:

The request to remove reservations has been sent to the central manager.

Security

LoadLeveler administrators and users can issue this command.

llrmres

410 LoadLeveler: Using and Administering

|

|
|
|

|

|

|

|

|

|

|

|

|

llrunscheduler - Run the central manager’s scheduling algorithm

Purpose

llrunscheduler – Runs the central manager’s scheduling algorithm when the

internal scheduling interval is disabled.

Syntax

llrunscheduler [-?] | [-H] | [-v] | [-q]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level,

service level date, and lowest level of the operating system to run

this release.

-q Specifies quiet mode: print no messages other than error messages.

Description

The llrunscheduler command is used to run the central manager’s scheduling

algorithm when the internal scheduling interval has been disabled so that an

external program can control when the central manager attempts to schedule job

steps. The llrunscheduler command sends a request to the central manager to run

the scheduling algorithm. The central manager’s scheduling algorithm will run

only once each time the llrunscheduler command is invoked. Each time the

scheduling algorithm runs, the central manager will schedule as many job steps as

the current available resources allow.

The request to run the scheduling algorithm is ignored if the internal scheduling

interval has not been disabled by setting the NEGOTIATOR_INTERVAL

configuration keyword to 0. If NEGOTIATOR_INTERVAL is set to 0, the llstatus

command will report that the scheduler interval is disabled.

Security

LoadLeveler administrators can issue this command.

llrunscheduler

Chapter 15. Commands 411

|
|

|

|
|

|

|

|

||

||

||
|
|

||

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|

llstatus - Query machine status

Purpose

Returns status information about machines in the LoadLeveler cluster. It does not

provide status on any NQS machine.

Syntax

llstatus [-?] [-H][-R][-F] [-v] [-l] [-a][-f category_list] [-r category_list] [hostlist]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-R Lists all of the machine consumable resources associated with all of the

machines in the LoadLeveler cluster (when specified alone). When a host list is

specified, the option only displays machine consumable resources associated

with the specified hosts. This option should not be used with any other option.

-F Lists all of the floating consumable resources associated with the LoadLeveler

cluster. This option should not be used with any other option.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-l Specifies that a long listing be generated for each machine for which status is

requested. If -l is not specified, the standard list, described below, is generated.

-a Displays information for each virtual adapter followed by information for each

physical adapter it manages.

-f category_list

Is a blank-delimited list of categories you want to query. Each category you

specify must be preceded by a percent sign. The category_list cannot contain

duplicate entries. This flag allows you to create a customized version of the

standard llstatus listing. The output fields produced by this flag all have a

fixed length. The output is displayed in the order in which you specify the

categories. category_list can be one or more of the following:

%a Hardware architecture

%act Number of job steps dispatched by the schedd daemon on this

machine

%cm Custom Metric value

%cpu Number of CPUs on this machine

%d Available disk space in the LoadLeveler execute directory

%i Number of seconds since last keyboard or mouse activity

%inq Number of job steps in the job queue of this schedd machine

%l Berkeley one-minute load average

%m Physical memory on this machine

%mt Maximum number of initiators that can be used simultaneously on this

machine

%n Machine name

llstatus

412 LoadLeveler: Using and Administering

%o Operating system on this machine

%r Number of initiators used by the startd daemon on this machine

%sca Availability of the schedd daemon

%scs State of the schedd daemon

%sta Availability of the startd daemon

%sts State of the startd daemon

%v Available swap space (free paging space) of this machine

-r category_list

Is a blank-delimited list of categories you want to query. Each category you

specify must be preceded by a percent sign. The category_list cannot contain

duplicate entries. This flag allows you to create a customized version of the

standard llstatus listing. The output produced by this flag is considered raw, in

that the fields can be variable in length. The output is displayed in the order in

which you specify the formats. Output fields are separated by an exclamation

point (!). category_list can be one or more of the categories listed under the -f

flag.

hostlist

Is a blank-delimited list of machines for which status is requested.

Description

If no hostlist is specified, all machines are queried.

If you have more than a few machines configured for LoadLeveler, consider

redirecting the output to a file when using the -l flag.

Each machine periodically updates the central manager with a snapshot of its

situation. Since the information returned by using llstatus is a collection of such

snapshots, all taken at varying times, the total picture may not be completely

consistent.

Certain resources such as remote direct-memory access (RDMA) have their

available value always calculated by startd. Available ConsumableCpus resources

are calculated by startd if the value is specified as all in the administration file.

When the value of a resource is calculated by startd, the llstatus command

appends a plus (+) sign to the resource name in the output reports. Resources that

are automatically created, such as RDMA, have a less than (<) sign appended to

them.

Examples

This example requests a long status listing for machines named silver and gold:

llstatus -l silver gold

Results

The Standard Listing: The standard listing is generated when you do not specify

the -l option with the llstatus command.

The following is sample output from the llstatus command, where there are two

nodes in the cluster.

llstatus

Chapter 15. Commands 413

|
|
|
|

|
|
|
|
|
|
|

The standard listing includes the following fields:

Name Hostname of the machine.

Schedd

State of the schedd daemon, which can be one of the following:
v Down

v Drned (Drained)

v Drning (Draining)

v Avail (Available)

For more information, see “The schedd daemon” on page 9.

InQ Number of job steps in the job queue of this schedd machine.

Act Number of job steps dispatched by the schedd daemon on this machine.

Startd State of the startd daemon, which can be:
v Busy

v Down

v Drned (Drained)

v Drning (Draining)

v Flush

v Idle

v None

v Run (Running)

v Suspnd (Suspend)

For more information, see “The startd daemon” on page 10.

Run The number of initiators used by the startd daemon to run LoadLeveler

jobs on this machine. One initiator is used for each serial job step and one

initiator is used for each task of a parallel job step.

LdAvg Berkeley one-minute load average on this machine.

Idle The number of seconds since keyboard or mouse activity in a login session

was detected. Highest number displayed is 9999.

Arch The hardware architecture of the machine as listed in the configuration file.

OpSys

The operating system on this machine.

Total Machines

The standard listing includes the following summary fields:

machines

The number of machines in the cluster that have made a status

report to the Central Manager.

Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys

k10n09.ppd.pok.ibm.com Avail 3 1 Run 1 2.72 0 R6000 AIX53

k10n12.ppd.pok.ibm.com Avail 0 0 Idle 0 0.00 365 R6000 AIX53

R6000/AIX53 2 machines 3 jobs 1 running

Total Machines 2 machines 3 jobs 1 running

The Central Manager is defined on k10n09.ppd.pok.ibm.com

The GANG scheduler is in use

All machines on the machine_list are present.

llstatus

414 LoadLeveler: Using and Administering

jobs The number of job steps in LoadLeveler job queues.

running

The number of initiators used by all the startd daemons in the

LoadLeveler cluster. One initiator is used for each serial job step.

One initiator is used for each task of a parallel job step.

Consumable Resources Listing: The llstatus command, issued with the -R option,

generates a listing of all of the consumable resources associated with all of the

machines in the LoadLeveler cluster. When a host list is specified, this option will

only display resources associated with the specified hosts.

The following is sample output from this command:

 llstatus -R

Floating Consumable Resources Listing: The llstatus command, issued with the

-F option, generates a listing of all of the floating consumable resources associated

with all of the machines in the LoadLeveler cluster. This option should not be

specified with any other option.

The following is sample output from this command:

 llstatus -F

Floating Resource Available Total

------------------------------ ------------- ---------------

EDA_licenses 20 29

Frame5 15 20

WorkBench6 5 7

XYZ_software 6 6

Customized, Formatted Standard Listing: A customized and formatted standard

listing is generated when you specify llstatus with the -f option.

The following is sample output from this command:

 llstatus -f %n %scs %inq %m %v %sts %l %o

Machine Consumable Resource(Available, Total)

------------------------------ ---

c209f1n01.ppd.pok.ibm.com ConsumableCpus(4,4)+ ConsumableMemory(1.000 gb,1.000 gb) n01_res(123,500)

c209f1n02.ppd.pok.ibm.com ConsumableCpus(4,4)+ n02_res(123,500) Frame5(10,10)

c209f1n05.ppd.pok.ibm.com ConsumableCpus(4,4)+ ConsumableMemory(1.000 gb,1.000 gb) spice2g6(250,360)

Resources with "+" appended to their names have the Total value reported from Startd.

Figure 37. Sample llstatus -R command output

llstatus

Chapter 15. Commands 415

Name Schedd InQ Memory FreeVMemory Startd LdAvg OpSys

ll5.pok.ibm.com Avail 0 128 22708 Run 0.23 AIX53

ll6.pok.ibm.com Avail 3 224 16732 Run 0.51 AIX53

R6000/AIX53 2 machines 3 jobs 3 running

Total Machines 2 machines 3 jobs 3 running

The Central Manager is defined on ll5.pok.ibm.com

The GANG scheduler is in use

All machines on the machine_list are present.

Customized, Unformatted Standard Listing: A customized and unformatted (raw)

standard listing is generated when you specify llstatus with the -r flag. Output

fields are separated by an exclamation point (!).

The following is sample output from this command:

llstatus -r %n %scs %inq %m %v %sts %l %o

ll5.pok.ibm.com!Avail!0!128!22688!Running!0.14!AIX53

ll6.pok.ibm.com!Avail!3!224!16668!Running!0.37!AIX53

Adapter Status Listing: When llstatus is issued with the -a flag information is

generated about the status of the adapters associated with all the machines in the

LoadLeveler cluster.

The following is sample output from this command:

llstatus -a

c271f2rp02.ppd.pok.ibm.com

ml0(multilink,c271f2san02.ppd.pok.ibm.com,10.10.10.6,)

networks(striped,c271f2san02.ppd.pok.ibm.com,10.10.10.6,,-1,500/512,500M/512M,1,READY)

network1(aggregate,,,10.10.10.6,-1,500/512,500M/512M,1,READY)

 sn0(switch,c271f2s0n02.ppd.pok.ibm.com,192.168.0.6,10.10.10.6,2,250/256,250M/256M,1,READY)

 sn1(switch,c271f2s1n02.ppd.pok.ibm.com,192.168.1.6,10.10.10.6,0,250/256,250M/256M,1,READY)

en0(ethernet,c271f2rp02.ppd.pok.ibm.com,9.114.175.82,)

v For a switch adapter, the information format is: adapter_name(network_type,

interface_name, interface_address, multilink_address, switch_node_number

or adapter_logical_id, available_adapter_windows/total_adapter_windows,

available_device_memory/total_device_memory, adapter_fabric_connectivity,

adapter_state)

v For non-switch adapters, the format is: adapter_name(network_type,

interface_name, interface_address, multilink_address)

The Long Listing: The long listing is generated when you specify the -l option

with the llstatus command. Following the sample output is an explanation of all

possible fields displayed by the llstatus command.

The following is sample output from the llstatus -l c271f2rp02 command:

llstatus

416 LoadLeveler: Using and Administering

===

Name = c271f2rp02.ppd.pok.ibm.com

Machine = c271f2rp02.ppd.pok.ibm.com

Arch = R6000

OpSys = AIX53

SYSPRIO = (0 - QDate)

MACHPRIO = ((Memory + FreeRealMemory) - ((LoadAvg * 1000) + CustomMetric))

VirtualMemory = 8378972 kb

Disk = 41116 kb

KeyboardIdle = 7

Tmp = 41116 kb

LoadAvg = 0.425903

ConfiguredClasses = Parallel(12) 85ba(2) misc(2) tiny(1) No_Class(7) small(14) large(1) medium(1)

AvailableClasses = Parallel(12) 85ba(2) misc(2) tiny(1) No_Class(7) small(8) large(1) medium(1)

DrainingClasses =

DrainedClasses =

Pool = 1 7

FabricConnectivity = 1:1

Adapter = ml0(multilink,c271f2san02.ppd.pok.ibm.com,10.10.10.6,)

 networks(striped,c271f2san02.ppd.pok.ibm.com,10.10.10.6,,-1,500/512,500M/512M,1,READY)

 network1(aggregate,,,10.10.10.6,-1,500/512,500M/512M,1,READY)

 en0(ethernet,c271f2rp02.ppd.pok.ibm.com,9.114.175.82,)

Feature = OSL ESSL

Max_Starters = 500

Total Memory = 7168 mb

Memory = 6144 mb

FreeRealMemory = 5291 mb

LargePageSize = 16.000 mb

LargePageMemory = 1.000 gb

FreeLargePageMemory = 816.000 mb

PagesFreed = 0

PagesScanned = 0

PagesPagedIn = 0

PagesPagedOut = 0

ConsumableResources = ConsumableCpus(4,4) ConsumableMemory(5.273 gb,5.859 gb) spice2g6(38,50)

ConfigTimeStamp = Fri Mar 18 16:57:31 EDT 2005

Figure 38. Sample output from llstatus -l c271f2rp02 (Part 1 of 2)

llstatus

Chapter 15. Commands 417

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|

The long listing includes these fields:

Adapter

Network adapter information associated with this machine.

v For a switch adapter, the information format is:

adapter_name(network_type, interface_name, interface_address,

multilink_address, switch_node_number or adapter_logical_id,

available_adapter_windows/total_adapter_windows,

available_device_memory/total_device_memory,

adapter_fabric_connectivity, adapter_state)

v For non-switch adapters, the format is: adapter_name(network_type,

interface_name, interface_address, multilink_address)

Arch Hardware architecture of this machine.

AvailableClasses

List of available classes and the associated number of available initiators

on this machine.

Completed

The number of job steps in this state on this schedd machine.

Config Time Stamp

Date and time of last configuration or reconfiguration.

ConfiguredClasses

List of configured classes and the associated number of configured

initiators on this machine.

Cpus = 4

Speed = 1.000000

Subnet = 9.114.175

MasterMachPriority = 0.000000

CustomMetric = 1

StartdAvail = 1

State = Running

EnteredCurrentState = Fri Mar 18 17:10:08 EDT 2005

START = ((LoadAvg < 8.000000) && ((tm_hour > 8) && (tm_hour < 20)))

SUSPEND = F

CONTINUE = T

VACATE = F

KILL = F

Machine Mode = general

Running = 6

ScheddAvail = 1

ScheddState = Avail

ScheddRunning = 0

Pending = 0

Starting = 0

Idle = 1

Unexpanded = 0

Held = 0

Removed = 0

RemovedPending = 0

Completed = 3

TotalJobs = 1

Running steps = c271f2rp02.ppd.pok.ibm.com.6.0 c271f2rp01.ppd.pok.ibm.com.4.0

ReservationPermitted= T

Reservations = c94n13.ppd.pok.ibm.com.70.r c94n13.ppd.pok.ibm.com.36.r

 c94n13.ppd.pok.ibm.com.71.r c94n13.ppd.pok.ibm.com.53.r

 c94n13.ppd.pok.ibm.com.72.r c94n13.ppd.pok.ibm.com.73.r

 c94n13.ppd.pok.ibm.com.74.r c94n13.ppd.pok.ibm.com.75.r

TimeStamp = Fri Mar 18 17:10:08 EDT 2005

Figure 38. Sample output from llstatus -l c271f2rp02 (Part 2 of 2)

llstatus

418 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|

ConsumableResources

List of consumable resources associated with this machines. Each element

of this list has the format: resource_name(available, total).

CONTINUE

The expression, defined following C conventions in the configuration file,

that evaluates to true or false (T/F). This determines whether suspended

jobs are continued on this machine.

Cpus Number of CPUs on this machine.

CustomMetric

This value can be the number assigned to the CUSTOM_METRIC keyword

or the exit code of the executable associated with the

CUSTOM_METRIC_COMMAND keyword or the default value of 1.

Disk Available space, in kilobytes (less 512KB) in LoadLeveler’s execute

directory on this machine.

DrainedClasses

List of classes which have been drained. If a job step is in a class named on

this list, that job step will not start on this machine.

DrainingClasses

List of classes which are currently being drained on this machine. If a job

step is in a class named on this list, that job step will not start on this

machine.

Entered Current State

Date and time when machine state was set.

FabricConnectivity

Represents the current state of connectivity between the machine and the

switch through the switch adapters. The format of the field is: network_id:

connectivity, network_id: connectivity... where connectivity is either 1

or 0. A value of 1 indicates an active connection from the machine to a

given network_id through one of the switch adapters.

 If a machine does not have switch adapters, the FabricConnectivity field

has no meaning and should be ignored by the user.

Feature

Set of all features on this machine.

FreeLargePageMemory

Free Large Page memory.

 In LoadLeveler for Linux, the FreeLargePageMemory field has no meaning

and should be ignored by the user.

FreeRealMemory

Free real memory, in megabytes, on this machine. This value should track

closely with the ″fre″ value of the vmstat command and the ″free″ value of

the svmon -G command whose units are 4KB blocks.

Held The number of job steps in this state on this schedd machine.

Idle The number of job steps in this state on this schedd machine.

Keyboard Idle

Number of seconds since last keyboard or mouse activity.

KILL The expression, defined following C conventions in the configuration file,

llstatus

Chapter 15. Commands 419

|
|
|
|
|
|

|
|

|
|

that evaluates to true or false (T/F). This determines whether jobs running

on this machine should be sent the SIGKILL signal.

LargePageMemory

Configured Large Page physical memory.

 In LoadLeveler for Linux, the LargePageMemory field has no meaning and

should be ignored by the user.

LargePageSize

The size of a Large Page memory block.

 In LoadLeveler for Linux, the LargePageSize field has no meaning and

should be ignored by the user.

LoadAvg

Berkely one-minute load average on machine.

Machine

Fully qualified name of the machine.

Machine Mode

The type of job this machine can run. This can be: batch, interactive, or

general.

MACHPRIO

Actual expression that determines machine priority, defined in the

configuration file.

MasterMachPriority

The machine priority for the parallel master node.

Max_Starters

Maximum number of initiators that can be used simultaneously on this

machine.

Memory

Regular physical memory, in megabytes, on this machine.

Name Hostname of the machine.

OpSys

Operating system on this machine.

PagesFreed

Pages freed per second. This value corresponds to the ″fr″ value of the

vmstat command output.

 In LoadLeveler for Linux, the PagesFreed field has no meaning and should

be ignored by the user.

PagesPaged In

Pages paged in from paging space per second. This value corresponds to

the ″pi″ value of the vmstat command output.

 In LoadLeveler for Linux, the PagesPagedIn field has no meaning and

should be ignored by the user.

PagesPagedOut

Pages paged out to paging space per second. This value corresponds to the

″po″ value of the vmstat command output.

 In LoadLeveler for Linux, the PagesPagedOut field has no meaning and

should be ignored by the user.

llstatus

420 LoadLeveler: Using and Administering

|
|

|
|

|
|

|
|

|
|

PagesScanned

Pages scanned by the page-replacement algorithm per second. This value

corresponds to the ″sr″ value of the vmstat command output.

 In LoadLeveler for Linux, the PagesScanned field has no meaning and

should be ignored by the user.

Pending

The number of job steps in this state on this schedd machine.

Pool The identifier of the pool where this startd machine is located.

Removed

The number of job steps in this state on this schedd machine.

Remove Pending

The number of job steps in this state on this schedd machine.

ReservationPermitted

Indicates whether or not the reservation can be reserved. It is displayed as

T or F (true or false).

Reservations

The IDs of reservations that will use the node now or in the future.

Running

The number of initiators used by the startd daemon to run LoadLeveler

jobs. One initiator is used for each serial job step. One initiator is used for

each task of a parallel job step.

Running steps

The list of job steps currently running on this machine.

ScheddAvail

Flag indicating if machine is running a schedd daemon (0=no, 1=yes).

ScheddRunning

The number of job steps submitted to this machine that are running

somewhere in the LoadLeveler cluster.

ScheddState

The state of the schedd daemon on this machine.

Speed Speed associated with the machine.

START

The expression, defined following C conventions in the configuration file,

that evaluates to true or false (T/F). This determines whether jobs can be

started on this machine.

StartdAvail

Flag indicating if machine is running a startd daemon (0=no, 1=yes).

Starting

The number of job steps in this state on this schedd machine.

State State of the startd daemon, which can be:

v Busy

v Down

v Drained

v Draining

v Flush

v Idle

v None

llstatus

Chapter 15. Commands 421

|
|

|
|
|

|
|

v Running

v Suspend

For more information, see “The startd daemon” on page 10.

Subnet

The TCP/IP subnet that this machine resides on.

SUSPEND

The expression, defined following C conventions in the configuration file,

that evaluates to true or false (T/F). This determines whether running jobs

should be suspended on this machine.

SYSPRIO

Actual expression that determines overall system priority of a job step.

Defined in the configuration file.

TimeStamp

The date and time the central manager last received a status update from

this schedd machine.

Tmp Available space, in kilobytes (less than 512 KB) in the /tmp directory on

this machine.

Total Jobs

The number of total job steps submitted to this schedd machine.

TotalMemory

The sum of configured regular and Large Page memory.

Unexpanded

The number of job steps in this state on this schedd machine.

VACATE

The expression, defined following C conventions in the configuration file,

that evaluates to true or false (T/F). This determines whether suspended

jobs are vacated on this machine.

Virtual Memory

Available swap space (free paging space) in kilobytes, on this machine.

Security

LoadLeveler administrators and users can issue this command.

llstatus

422 LoadLeveler: Using and Administering

llsubmit - Submit a job

Purpose

Submits a job to LoadLeveler to be dispatched based upon job requirements in the

job command file.

You can submit both LoadLeveler jobs and NQS jobs. To submit NQS jobs, the job

command file must contain the shell script to be submitted to the NQS node.

Syntax

llsubmit [-H] [-?] [-v] [-q] [<cmdfile> | –]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-q Specifies quiet mode: print no messages other than error messages.

cmdfile

Is the name of the job command file containing LoadLeveler commands.

– Specifies that LoadLeveler commands that would normally be in the job

command file are read from stdin. When entry is complete, press Ctrl-D to end

the input.

Related Information

v Users with uid or gid equal to 0 are not allowed to issue the llsubmit

command.

v When a LoadLeveler job ends, you may receive UNIX mail notification

indicating the job exit status. For example, you could get the following mail

message:

Your LoadLeveler job

myjob1

exited with status 139.

The return code 139 is from the user’s job, and is not a LoadLeveler return code.

v For more information on writing a program to filter job scripts, see “Filtering a

job script” on page 70.

v The llsubmit command will display an error and fail to submit the job if the

resources keyword in the job command file does not match the resources to be

enforced and LoadLeveler is set to check for the resources specification. For

more information, see “Defining usage policies for consumable resources” on

page 56.

v If the LL_RES_ID environment variable is set, the llsubmit command will set the

requested reservation ID of the submitted job steps using the value of the

LL_RES_ID environment variable. When the central manager receives the job

steps from the schedd, it will bind the job steps to a reservation, if specified. If

the job steps cannot be bound to the reservation, they will be placed in the

NotQueued state and the requested reservation ID will keep the same value. If

the value of LL_RES_ID is set to blank, it will be treated as if it were unset.

llsubmit

Chapter 15. Commands 423

|
|
|
|
|
|
|

v If unspecified, default requirements are added to jobs requiring that the

architecture and operating systems of machines selected to run the job be the

same as those on the submitting machine. If you want to submit a job from one

type of machine (for example, one with Arch = R6000 and OpSys = AIX52) to

run on another type of machine (for example, one with Arch = i386 and OpSys

= Linux2), you must specify a requirements statement that includes the Arch

and OpSys requirements. The explicitly coded Arch and OpSys requirements

override the default values.

For LoadLeveler for Linux, the llsubmit command will display an error and fail to

submit the job if it is an NQS job.

Examples

In this example, a job command file named qtrlyrun.cmd is submitted:

llsubmit qtrlyrun.cmd

Results

The following shows the results of the llsubmit qtrlyrun.cmd command issued

from the machine earth:

llsubmit: The job "earth.505" has been submitted.

Note that 505 is the job ID generated by LoadLeveler.

Security

LoadLeveler administrators and users can issue this command.

llsubmit

424 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|

llsummary - Return job resource information for accounting

Purpose

Returns job resource information on completed jobs for accounting purposes.

You must enable the recording of accounting data in order to generate any of the

four throughput reports. To do this, specify ACCT=A_ON in your LoadL_config

file. For detailed usage of the ACCT keyword, see “Gathering job accounting data”

on page 57.

Syntax

llsummary [-?] [-H] [-v] [-x] [-l] [-s <MM/DD/YYYY> to <MM/DD/YYYY>]

 [-e <MM/DD/YYYY> to <MM/DD/YYYY>] [-g <group>]

 [-G <unixgroup>] [-a <allocated>] [-r <report>] [-j <jobname>]

 [-d <section>] [-c <class>] [-u <user>] [<filelist>]

Flags

-? Provides a short usage message.

-H Provides extended help information.

-v Displays the name of the command, release number, service level, service level

date, and lowest level of the operating system to run this release.

-x Provides extended information. Using -x can produce a very long report. This

option is meaningful only when used with the -l option. You must enable the

recording of accounting data in order to collect information with the -x flag. To

do this, specify ACCT=A_ON A_DETAIL in your LoadL_config file.

-l Specifies that the long form of output is displayed.

-s Specifies a range for the start date (queue date) for accounting data to be

included in this report. The format for entering the date is either

MM/DD/YYYY (where MM is month, DD is day, and YYYY is year),

MM/DD/YY (where YY is a two-digit year value), or a string of digits

representing the number of seconds since 1970. If a two-digit year value is

used, then 69-99 maps to 1969-1999, and 00-68 maps to 2000-2068. The default

is to include all the data in the report.

-e Specifies a range for the end date (completion date) for accounting data to be

included in this report. The format for entering the date is either

MM/DD/YYYY (where MM is month, DD is day, and YYYY is year),

MM/DD/YY (where YY is a two-digit year value), or a string of digits

representing the number of seconds since 1970. The default is to include all the

data in the report.

-u user

Specifies the user ID for whom accounting data is reported.

-c class

Specifies the class for which accounting data is reported. For reports of all

formats (short, long and extended), llsummary will report information about

every job which contains at least one step of the specified class. For the short

format, llsummary also reports a job count and step count for each class; for

these counts, a job’s class is determined by the class of its first step.

-g group

Specifies the LoadLeveler group for which accounting data is reported. For

llsummary

Chapter 15. Commands 425

|
|
|
|

reports of all formats (short, long and extended), llsummary reports

information about every job which contains at least one step of the specified

group. For the short format, llsummary also reports a job count and step count

for each group; for these counts, a job’s group is determined by the group of

its first step.

-G unixgroup

Specifies the UNIX group for which accounting data is reported.

-a allocated

Specifies the hostname that was allocated to run the job. You can specify the

allocated host in short or long form.

-r report

Specifies the report type. You must enable the recording of accounting data in

order to collect information with the -r flag. To do this, specify ACCT=A_ON

A_DETAIL in your LoadL_config file. You can choose one or more of the

following reports:

resource

Provides CPU usage for all submitted jobs, including those that did not

run. This is the default.

avgthroughput

Provides average queue time, run time, and CPU time for jobs that ran

for at least some period of time.

maxthroughput

Provides maximum queue time, run time, and CPU time for jobs that

ran for at least some period of time.

minthroughput

Provides minimum queue time, run time, and CPU time for jobs that

ran for at least some period of time.

throughput

Selects all throughput reports.

numeric

Reports CPU times in seconds rather than hours, minutes, and seconds

-d section

Specifies the category (data section) for which you want to generate a report.

You can specify one or more of the following: user, group, unixgroup, class,

account, day, week, month, jobid, jobname, allocated.

-j host.jobid

The job for which accounting data is reported. host is the name of the machine

to which the job was submitted. The default is the local machine. jobid is the

job ID assigned to the job when it was submitted using the llsubmit

command. The entire host.jobid string is required.

filelist

Is a blank-delimited list of files containing the accounting data. If not specified,

the default is the local history file on the machine from which the command

was issued. You can use the llacctmrg command to combine history files on

different schedd machines into a single history file.

Related Information

In order to create an accounting report with the llsummary command, you must

have read access to a history file. If a history file name is not specified as an

llsummary

426 LoadLeveler: Using and Administering

argument, llsummary uses the history file in the LoadLeveler spool directory of

the local machine as input. By default, the permissions of the spool directory are

set by the llinit command to 700 at install time. However, these permissions may

be changed by a system administrators with root privileges.

The file permissions of the history file created by a LoadL_schedd daemon are

controlled by the HISTORY_PERMISSION configuration keyword. A specification

such as HISTORY_PERMISSION = rw-rw-r-- will result in permission settings of

664. The default settings are 660.

Examples

The following example requests summary reports (standard listing) of all the jobs

submitted on your machine between the days of January 12, 2005 and March 12,

2005:

llsummary -s 01/12/2005 to 03/12/2005

Results

The Standard Listing: The standard listing is generated when you do not specify

-l, -r, or -d with llsummary.

This sample report includes summaries of the following data:

v Number of jobs, Total CPU usage, per user.

v Number of jobs, Total CPU usage, per class.

v Number of jobs, Total CPU usage, per group.

v Number of jobs, Total CPU usage, per account number.

The following is an example of the standard listing:

 Name Jobs Steps Job Cpu Starter Cpu Leverage

 krystal 15 36 0+00:09:50 0+00:00:10 59.0

 lixin3 18 54 0+00:08:28 0+00:00:16 31.8

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

 Class Jobs Steps Job Cpu Starter Cpu Leverage

 small 9 21 0+00:01:03 0+00:00:06 10.5

 large 12 36 0+00:13:45 0+00:00:11 75.0

 osl2 3 9 0+00:00:27 0+00:00:02 13.5

 No_Class 9 24 0+00:03:01 0+00:00:06 30.2

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

 Group Jobs Steps Job Cpu Starter Cpu Leverage

 No_Group 12 30 0+00:09:32 0+00:00:09 63.6

 chemistry 7 18 0+00:04:50 0+00:00:05 58.0

engineering 14 42 0+00:03:56 0+00:00:12 19.7

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

 Account Jobs Steps Job Cpu Starter Cpu Leverage

 33333 16 39 0+00:05:54 0+00:00:11 32.2

 22222 15 45 0+00:12:05 0+00:00:13 55.8

 99999 2 6 0+00:00:18 0+00:00:01 18.0

 TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

The standard listing includes the following fields:

Name User ID submitting jobs.

Class Class specified or defaulted for the jobs.

Group User’s login group.

llsummary

Chapter 15. Commands 427

Account

Account number specified for the jobs.

Jobs Count of the total number of jobs submitted by this user, class, group, or

account.

Steps Count of the total number of job steps submitted by this user, class, group,

or account.

Job CPU

Total CPU time consumed by user’s jobs.

Starter CPU

Total CPU time consumed by LoadLeveler starter processes on behalf of

the user jobs.

Leverage

Ratio of job CPU to starter CPU.

The -r Listing: The following is sample output from the llsummary -r throughput

command. Only the user output is shown; the class, group, and account lines are

not shown.

 Name Jobs Steps AvgQueueTime AvgRealTime AvgCPUTime

 loadl 1 4 0+00:00:03 0+00:05:27 0+00:05:17

 user1 2 6 0+00:03:05 0+00:03:45 0+00:03:04

 ALL 3 10 0+00:01:52 0+00:04:26 0+00:03:58

 Name Jobs Steps MinQueueTime MinRealTime MinCPUTime

 loadl 1 4 0+00:00:01 0+00:02:49 0+00:02:44

 user1 2 6 0+00:02:02 0+00:03:43 0+00:03:02

 ALL 3 10 0+00:00:01 0+00:02:49 0+00:02:44

 Name Jobs Steps MaxQueueTime MaxRealTime MaxCPUTime

 loadl 1 4 0+00:00:06 0+00:12:58 0+00:12:37

 user1 2 6 0+00:06:21 0+00:03:48 0+00:03:07

 ALL 3 10 0+00:06:21 0+00:12:58 0+00:12:37

The -r listing includes the following fields:

AvgQueueTime

Average amount of time the job spent queued before running for this user,

class, group, or account.

AvgRealTime

Average amount of accumulated wall clock time for jobs associated with

this user, class, group, or account.

AvgCPUTime

Average amount of accumulated CPU time for jobs associated with this

user, class, group, or account.

MinQueueTime

Time of the job that spent the least amount of time in queue before

running for this user, class, group, or account.

MinRealTime

Time of the job with the least amount of wall clock time for this user, class,

group, or account.

MinCPUime

Time of the job with the least amount of CPU time for this user, class,

group, or account.

llsummary

428 LoadLeveler: Using and Administering

The MaxQueueTime, MaxRealTime, and MaxCPUTime fields display the time of

the job with the greatest amount of queue, wall clock, and CPU time, respectively.

The ALL line for the Average listing displays the average time for all users, classes,

groups, and accounts. The ALL line for the Minimum listing displays the time of

the job with the least amount of time for all users, classes, groups, and accounts.

The ALL line for the Maximum listing displays the time of the job with the

greatest amount of time for all users, classes, groups, and accounts.

The Long Listing: If you specify both the -x and -l options when running the

llsummary command, the generated output you receive will resemble the listing

below. In this sample, c271f2rp01.ppd.pok.ibm.com 16 is a parallel job consisting

of one job step with six tasks.

Note: Job statistics for the running hosts are available separately.

In this sample, you will find system defined events named started and completed.

The listing also shows two installation defined events named user_event_1 and

user_event_2. These two installation defined events are the result of accounting

snapshots made while the job was running. A LoadLeveler administrator made the

snapshots by issuing the commands, llctl -g capture user_event_1 and llctl -g

capture user_event_2.

================== Job c271f2rp01.ppd.pok.ibm.com 16 ==================

 Job Id: c271f2rp01.ppd.pok.ibm.com 16

 Job Name: c271f2rp01.ppd.pok.ibm.com.16

 Structure Version: 210

 Owner: wilson

 Unix Group: usr

 Submitting Host: c271f2rp01.ppd.pok.ibm.com

 Submitting Userid: 15829

 Submitting Groupid: 100

 Number of Steps: 1

------------------ Step c271f2rp01.ppd.pok.ibm.com.16.0 ------------------

 Job Step Id: c271f2rp01.ppd.pok.ibm.com.16.0

 Step Name: parallel_job_step_1

 Queue Date: Fri Jan 21 15:31:02 EST 2005

 Job Accounting Key: 4751661639713966858

 Dependency:

 Status: Completed

 Dispatch Time: Fri Jan 21 15:31:07 EST 2005

 Start Time: Fri Jan 21 15:31:02 EST 2005

 Completion Date: Fri Jan 21 15:35:19 EST 2005

 Completion Code: 0

 Start Count: 1

 User Priority: 50

 user_sysprio: 0

 class_sysprio: 35

 group_sysprio: 0

 Notifications: Complete

 Virtual Image Size: 421 kb

 Checkpointable: no

Good Ckpt Time/Date:

 Ckpt Accum Time: 0 seconds

 Checkpoint File:

Figure 39. Output generated by llsummary -x -l command (Part 1 of 8)

llsummary

Chapter 15. Commands 429

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Restart From Ckpt: no

 Restart Same Nodes: no

 Restart: no

 Hold Job Until:

 Cmd: /bin/poe

 Args: /u/wilson/LL_PARA/ivp_cpu_110_120_sleep_130 -ilevel 6 -labelio yes

 Env: LANG=en_US; LOGIN=wilson; PATH= ...

 In: /dev/null

 Out: poe5_1.c271f2rp01.16.0.out

 Err: poe5_1.c271f2rp01.16.0.err

Initial Working Dir: /u/wilson/LL_PARA

 Requirements: (Arch == "R6000") && ((OpSys == "AIX52") || (OpSys == "AIX53"))

 Preferences: (Machine == { "c271f2rp01.ppd.pok.ibm.com" "c271f2rp02.ppd.pok.ibm.com" })

 && (Feature == "ESSL")

 Step Type: General Parallel

 Min Processors: 2

 Max Processors: 2

 Alloc. Host Count: 2

 Allocated Host: c271f2rp01.ppd.pok.ibm.com

 c271f2rp02.ppd.pok.ibm.com

 Node Usage: shared

 Reservation ID: c94n13.ppd.pok.ibm.com.4.r

 Notify User: wilson@c271f2rp01.ppd.pok.ibm.com

 Shell: /bin/ksh

 LoadLeveler Group: No_Group

 Class: large

 Ckpt Hard Limit: undefined

 Ckpt Soft Limit: undefined

 Cpu Hard Limit: 03:30:30 (12630 seconds)

 Cpu Soft Limit: 02:00:00 (7200 seconds)

 Data Hard Limit: 5.200 gb (5583457484 bytes)

 Data Soft Limit: 4.100 gb (4402341478 bytes)

 Core Hard Limit: 8.000 gb (8589934592 bytes)

 Core Soft Limit: 5.500 gb (5905580032 bytes)

 File Hard Limit: 1.500 tb (1649267441664 bytes)

 File Soft Limit: 1.200 tb (1319413953331 bytes)

Figure 39. Output generated by llsummary -x -l command (Part 2 of 8)

llsummary

430 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Stack Hard Limit: 400.000 mb (419430400 bytes)

 Stack Soft Limit: 200.000 mb (209715200 bytes)

 Rss Hard Limit: 3.500 pb (3940649673949184 bytes)

 Rss Soft Limit: 2.500 pb (2814749767106560 bytes)

Step Cpu Hard Limit: 2+12:45:00 (218700 seconds)

Step Cpu Soft Limit: 2+02:30:00 (181800 seconds)

Wall Clk Hard Limit: 01:40:00 (6000 seconds)

Wall Clk Soft Limit: 01:40:00 (6000 seconds)

 Comment: Test job 1 of Parallel test suite 8.

 Account: 99999

 NQS Submit Queue:

 NQS Query Queues:

 Job Tracking Exit:

 Job Tracking Args:

 Task_geometry:

 Resources: ConsumableMemory(100.000 mb) ConsumableVirtualMemory(400.000 mb) spice2g6(2)

 Blocking: UNSPECIFIED

Adapter Requirement: (css0,LAPI,not_shared,US),(css0,MPI,shared,US)

 Step Cpus: 0

Step Virtual Memory: 2.344 gb

 Step Real Memory: 600.000 mb

Step Adapter Memory: 12.000 mb (12582912 bytes)

 Large Page: N

 Bulk Transfer: No

--------------- Detail for c271f2rp01.ppd.pok.ibm.com.16.0 ---------------

 Running Host: c271f2rp01.ppd.pok.ibm.com

 Machine Speed: 1.000000

 Event: System

 Event Name: started

 Time of Event: Fri Jan 21 15:31:02 EST 2005

 Starter User Time: 00:00:00.000000

Starter System Time: 00:00:00.000000

 Starter Total Time: 00:00:00.000000

 Starter maxrss: 0

 ...

 ...

Figure 39. Output generated by llsummary -x -l command (Part 3 of 8)

llsummary

Chapter 15. Commands 431

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Starter nivcsw: 0

 Step User Time: 00:00:00.000000

 Step System Time: 00:00:00.000000

 Step Total Time: 00:00:00.000000

 Step maxrss: 0

 ...

 ...

 Step nivcsw: 0

 Event: Installation Defined

 Event Name: user_event_1

 Time of Event: Fri Jan 21 15:32:20 EST 2005

 Starter User Time: 00:00:00.100000

Starter System Time: 00:00:00.080000

 Starter Total Time: 00:00:00.180000

 Starter maxrss: 2640

 ...

 ...

 Starter nvcsw: 97

 Starter nivcsw: 1636

 Step User Time: 00:03:48.820000

 Step System Time: 00:00:00.650000

 Step Total Time: 00:03:49.470000

 Step maxrss: 22808

 ...

 ...

 Step nivcsw: 521

 Event: Installation Defined

 Event Name: user_event_2

 Time of Event: Fri Jan 21 15:32:48 EST 2005

 Starter User Time: 00:00:00.100000

Starter System Time: 00:00:00.080000

 Starter Total Time: 00:00:00.180000

 Starter maxrss: 2640

 ...

 ...

Figure 39. Output generated by llsummary -x -l command (Part 4 of 8)

llsummary

432 LoadLeveler: Using and Administering

Starter nivcsw: 2219

 Step User Time: 00:05:13.830000

 Step System Time: 00:00:00.760000

 Step Total Time: 00:05:14.590000

 Step maxrss: 22808

 ...

 ...

 Step nivcsw: 635

 Event: System

 Event Name: completed

 Time of Event: Fri Jan 21 15:35:19 EST 2005

 Starter User Time: 00:00:00.100000

Starter System Time: 00:00:00.080000

 Starter Total Time: 00:00:00.180000

 Starter maxrss: 2640

 Starter ixrss: 5356

 Starter idrss: 18268

 Starter isrss: 0

 Starter minflt: 0

 Starter majflt: 0

 Starter nswap: 0

 Starter inblock: 0

 Starter oublock: 0

 Starter msgsnd: 0

 Starter msgrcv: 0

 Starter nsignals: 2

 Starter nvcsw: 105

 Starter nivcsw: 5254

 Step User Time: 00:06:01.200000

 Step System Time: 00:00:01.160000

 Step Total Time: 00:06:02.360000

Figure 39. Output generated by llsummary -x -l command (Part 5 of 8)

llsummary

Chapter 15. Commands 433

Step maxrss: 22812

 Step ixrss: 867768

 Step idrss: 823073752

 Step isrss: 0

 Step minflt: 20793

 Step majflt: 6

 Step nswap: 0

 Step inblock: 0

 Step oublock: 0

 Step msgsnd: 0

 Step msgrcv: 0

 Step nsignals: 3

 Step nvcsw: 47533

 Step nivcsw: 911

 Running Host: c271f2rp02.ppd.pok.ibm.com

 Machine Speed: 1.000000

 Event: System

 Event Name: started

 Time of Event: Fri Jan 21 15:31:08 EST 2005

 Starter User Time: 00:00:00.000000

Starter System Time: 00:00:00.000000

 Starter Total Time: 00:00:00.000000

 Starter maxrss: 0

 ...

 ...

 Starter nivcsw: 0

 Step User Time: 00:00:00.000000

 Step System Time: 00:00:00.000000

 Step Total Time: 00:00:00.000000

 Step maxrss: 0

 ...

 ...

Figure 39. Output generated by llsummary -x -l command (Part 6 of 8)

llsummary

434 LoadLeveler: Using and Administering

Step nivcsw: 0

 Event: Installation Defined

 Event Name: user_event_1

 Time of Event: Fri Jan 21 15:32:25 EST 2005

 Starter User Time: 00:00:00.060000

Starter System Time: 00:00:00.090000

 Starter Total Time: 00:00:00.150000

 Starter maxrss: 2540

 ...

 ...

 Starter nivcsw: 1600

 Step User Time: 00:03:48.800000

 Step System Time: 00:00:00.600000

 Step Total Time: 00:03:49.400000

 Step maxrss: 22820

 ...

 ...

 Step nivcsw: 324

 Event: Installation Defined

 Event Name: user_event_2

 Time of Event: Fri Jan 21 15:32:54 EST 2005

 Starter User Time: 00:00:00.060000

Starter System Time: 00:00:00.090000

 Starter Total Time: 00:00:00.150000

 Starter maxrss: 2540

 ...

 ...

 Starter nivcsw: 2173

 Step User Time: 00:05:13.810000

 Step System Time: 00:00:00.710000

 Step Total Time: 00:05:14.520000

 Step maxrss: 22820

 ...

 ...

Figure 39. Output generated by llsummary -x -l command (Part 7 of 8)

llsummary

Chapter 15. Commands 435

For an explanation of these fields, see the description of the output fields for the

long listing of the llq command.

Security

LoadLeveler administrators and users can issue this command.

 Step nivcsw: 419

 Event: System

 Event Name: completed

 Time of Event: Fri Jan 21 15:35:24 EST 2005

 Starter User Time: 00:00:00.060000

Starter System Time: 00:00:00.090000

 Starter Total Time: 00:00:00.150000

 Starter maxrss: 2596

 Starter ixrss: 3328

 Starter idrss: 12716

 Starter isrss: 0

 Starter minflt: 1372

 Starter majflt: 0

 Starter nswap: 0

 Starter inblock: 0

 Starter oublock: 0

 Starter msgsnd: 0

 Starter msgrcv: 0

 Starter nsignals: 1

 Starter nvcsw: 80

 Starter nivcsw: 5291

 Step User Time: 00:06:00.260000

 Step System Time: 00:00:00.800000

 Step Total Time: 00:06:01.060000

 Step maxrss: 22820

 Step ixrss: 1733732

 Step idrss: 821121128

 Step isrss: 0

 Step minflt: 19236

 Step majflt: 0

 Step nswap: 0

 Step inblock: 0

 Step oublock: 0

 Step msgsnd: 0

 Step msgrcv: 0

 Step nsignals: 2

 Step nvcsw: 4221

 Step nivcsw: 503

Figure 39. Output generated by llsummary -x -l command (Part 8 of 8)

llsummary

436 LoadLeveler: Using and Administering

Chapter 16. Application programming interfaces (APIs)

LoadLeveler provides several application programming interfaces (APIs). These

APIs allow application programs written by customers to interact with the

LoadLeveler environment using specific data and functions that are a part of

LoadLeveler. These interfaces can be subroutines within a library or installation

exits.

The header file llapi.h defines all of the API data structures and subroutines. This

file is located in the include subdirectory of the LoadLeveler release directory. You

must include this file when you call any API subroutine.

The library libllapi.a (AIX) or libllapi.so (Linux) is a shared library containing all

of the LoadLeveler API subroutines. This library is located in the lib subdirectory

of the LoadLeveler release directory.

Attention: These APIs are not thread safe; they should not be linked to by a

threaded application.

Table 51 lists all of the LoadLeveler APIs, along with the intended users and

supported operating systems for each, and a reference to the full descriptions of

each interface.

 Table 51. LoadLeveler API summary

Task / API category Interface name Intended users

Supported

operating

systems

Generate accounting

reports

“Accounting API” on

page 440

llacctval user exit Administrators only AIX and

Linux

GetHistory subroutine Both administrators and

general users

AIX and

Linux

Checkpoint

LoadLeveler jobs

“Checkpointing API”

on page 442

ckpt subroutine Provided for backward

compatibility only. Use

ll_init_ckpt and ll_ckpt

instead.

AIX only

ll_init_ckpt subroutine Both administrators and

general users

AIX only

ll_ckpt subroutine Both administrators and

general users

AIX only

ll_set_ckpt_callbacks

subroutine

Both administrators and

general users

AIX only

ll_unset_ckpt_callbacks

subroutine

Both administrators and

general users

AIX only

 437

|

||

|||

|
|
|

|
|

|
|

|||
|

||
|
|
|

|
|

|
|

||
|
|
|

|

||
|
|

||
|
|

|
|
|
|
|

|
|
|
|
|

Table 51. LoadLeveler API summary (continued)

Task / API category Interface name Intended users

Supported

operating

systems

Access LoadLeveler

objects and retrieve

data from objects

“Data Access API”

on page 448

ll_query subroutine Both administrators and

general users

AIX and

Linux

ll_set_request subroutine Both administrators and

general users

AIX and

Linux

ll_reset_request

subroutine

Both administrators and

general users

AIX and

Linux

ll_get_objs subroutine Both administrators and

general users

AIX and

Linux

ll_get_data subroutine Both administrators and

general users

AIX and

Linux

ll_next_obj subroutine Both administrators and

general users

AIX and

Linux

ll_free_objs subroutine Both administrators and

general users

AIX and

Linux

ll_deallocate subroutine Both administrators and

general users

AIX and

Linux

Convert an error

object into an error

message

“Error Handling

API” on page 487

ll_error subroutine Both administrators and

general users

AIX and

Linux

Submit parallel jobs

“Parallel Job API” on

page 488

ll_get_hostlist subroutine Both administrators and

general users

AIX only

ll_start_host subroutine Both administrators and

general users

AIX only

Query APIs

“Query API” on page

493

ll_get_jobs subroutine Both administrators and

general users

AIX only

ll_free_jobs subroutine Both administrators and

general users

AIX only

ll_get_nodes subroutine Both administrators and

general users

AIX only

ll_free_nodes subroutine Both administrators and

general users

AIX only

Reservation APIs

“Reservation API” on

page 496

ll_make_reservation

subroutine

Both administrators and

general users

AIX and

Linux

ll_init_reservation_param

subroutine

Both administrators and

general users

AIX and

Linux

ll_change_reservation

subroutine

Both administrators and

general users

AIX and

Linux

ll_bind subroutine Both administrators and

general users

AIX and

Linux

ll_remove_reservation

subroutine

Both administrators and

general users

AIX and

Linux

Summary of LoadLeveler APIs

438 LoadLeveler: Using and Administering

|

|||

|
|
|

|
|
|

|
|

||
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

|
|
|

|
|

||
|
|
|

|

|
|

||
|
|

||
|
|

|

|
|

||
|
|

||
|
|

||
|
|

||
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

Table 51. LoadLeveler API summary (continued)

Task / API category Interface name Intended users

Supported

operating

systems

Submit jobs to

LoadLeveler

“Submit API” on

page 507

llsubmit subroutine Both administrators and

general users

AIX and

Linux

llfree_job_info

subroutine

Both administrators and

general users

AIX and

Linux

monitor_program user

exit

Both administrators and

general users

AIX and

Linux

Perform LoadLeveler

control operations

and work with an

external scheduler

“Workload

Management API”

on page 509

ll_control subroutine Both administrators and

general users may specify

the following control

operations:

v LL_CONTROL_HOLD_USER

v LL_CONTROL_PRIO_ABS

v LL_CONTROL_PRIO_ADJ

v LL_CONTROL_START

v

 LL_CONTROL_START_DRAINED

All other control

operations defined in the

llapi.h header file are

intended for use by

administrators only.

AIX and

Linux

ll_modify subroutine Both administrators and

general users

AIX and

Linux

ll_preempt subroutine Administrators only AIX only

ll_preempt_jobs

subroutine

Administrators only AIX and

Linux

ll_run_scheduler

subroutine

Administrators only AIX and

Linux

ll_start_job subroutine Administrators only AIX and

Linux

ll_start_job_ext

subroutine

Administrators only AIX and

Linux

ll_terminate_job

subroutine

Administrators only AIX and

Linux

64-bit support for the LoadLeveler APIs

LoadLeveler for AIX APIs support both 32-bit and 64-bit applications. LoadLeveler

for Linux APIs support 32-bit applications on 32-bit platforms and 64-bit

applications on 64-bit platforms.

AIX

In LoadLeveler 3.2 or later releases, the LoadLeveler API library (libllapi.a)

consists of two sets of objects: 32-bit and 64-bit. Both sets of objects and interfaces

are provided since the AIX linker cannot create an executable from a mixture of

32-bit and 64-bit objects. They must be all of the same type. Developers attempting

to exploit the 64-bit capabilities of the LoadLeveler API library should take into

consideration the following issues:

Summary of LoadLeveler APIs

Chapter 16. Application programming interfaces (APIs) 439

|

|||

|
|
|

|
|

|
|

||
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

||
|
|
|

|||

|
|
||
|

|
|
||
|

|||
|

|
|
||
|

|
|
||
|
|

|
|
|

|

|
|
|
|
|
|

v If DCE is not enabled, all interfaces of the LoadLeveler API library are available

in both 32-bit and 64-bit formats. Interfaces with the same names are

functionally equivalent.

v If DCE is enabled (DCE_ENABLEMENT = TRUE or SEC_ENABLEMENT=DCE),

only the 32-bit interfaces of the LoadLeveler API library are available.

Subroutine calls using the 64-bit interfaces of the libllapi.a library that require

DCE authentication will fail with appropriate error codes and messages.

Linux

On Linux, the LoadLeveler 3.3 API library (libllapi.so) is a 32-bit library on 32-bit

platforms and a 64-bit library on 64-bit platforms. The library libllapi.so is a 32-bit

library on the following platforms:

v RHEL 3 and RHEL 4 on IBM IA-32 xSeries servers

v SLES 9 on IBM IA-32 xSeries servers

libllapi.so is a 64-bit library on the following platforms:

v RHEL 3 and RHEL 4 on IBM Eserver 325 and 326 AMD Opteron servers

v RHEL 4 on IBM POWER servers

v SLES 9 on IBM Eserver 325 and 326 AMD Opteron servers

v SLES 9 on IBM POWER servers

Accounting API

The LoadLeveler Accounting API provides a user exit for account validation and a

subroutine for extracting accounting data. Job accounting information saved in a

history file can also be queried by using the Data Access API.

Account validation user exit

LoadLeveler provides the llacctval executable to perform account validation.

Purpose

llacctval compares the account number a user specifies in a job command file with

the account numbers defined for that user in the LoadLeveler administration file. If

the account numbers match, llacctval returns a value of zero. Otherwise, it returns

a non-zero value.

Syntax

program user_name user_group user_acct# acct1 acct2 ...

Parameters

program

Is the name of the program that performs the account validation. The default is

llacctval. The name you specify here must match the value specified on the

ACCT_VALIDATION keyword in the configuration file.

user_name

Is the name of the user whose account number you want to validate.

user_group

Is the login group name of the user.

user_acct#

Is the account number specified by the user in the job command file.

acct1 acct2 ...

Are the account numbers obtained from the user stanza in the LoadLeveler

administration file.

Summary of LoadLeveler APIs

440 LoadLeveler: Using and Administering

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

Description

llacctval is invoked from within the llsubmit command. If the return code is

non-zero, llsubmit does not submit the job.

You can replace llacctval with your own accounting user exit (see below).

To enable account validation, you must specify the following keyword in the

configuration file:

 ACCT = A_VALIDATE

To use your own accounting exit, specify the following keyword in the

configuration file:

 ACCT_VALIDATION = pathname

where pathname is the name of your accounting exit.

Return values

If the validation succeeds, the exit status must be zero. If it does not succeed, the

exit status must be a non-zero number.

Report generation subroutine

LoadLeveler provides the GetHistory subroutine to generate accounting reports.

Purpose

GetHistory processes local or global LoadLeveler history files.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int GetHistory(char *filename, int (*func) (LL_job *), int version);

Parameters

filename

Specifies the name of the history file.

(*func) (LL_job *)

Specifies the user-supplied function you want to call to process each history

record. The function must return an integer and must accept as input a pointer

to the LL_job structure. The LL_job structure is defined in the llapi.h file.

version

Specifies the version of the history record you want to create.

LL_JOB_VERSION in the llapi.h file creates an LL_job history record.

Description

GetHistory opens the history file you specify, reads one LL_job accounting record,

and calls a user-supplied routine, passing to the routine the address of an LL_job

structure. GetHistory processes all history records one at a time and then closes

the file. Any user can call this subroutine.

The user-supplied function must include the following files:

#include <sys/resource.h>

#include <sys/types.h>

#include <sys/time.h>

Accounting API

Chapter 16. Application programming interfaces (APIs) 441

|

The ll_event_usage structure is part of the LL_job structure and contains the

following LoadLeveler defined data:

int event

Specifies the event identifier. This is an integer whose value is one of the

following:

1 Represents a LoadLeveler-generated event.

2 Represents an installation-generated event.

char *name

Specifies a character string identifying the event. This can be one of the

following:

v An installation generated string that uses the command llctl capture

eventname.

v LoadLeveler-generated strings, which can be the following:

– started

– checkpoint

– vacated

– completed

– rejected

– removed

Return values

GetHistory returns a zero when successful.

Error values

GetHistory returns -1 to indicate that the version is not supported or that an error

occurred opening the history file.

Examples

Makefiles and examples which use this API are located in the samples/llphist

subdirectory of the release directory. The examples include the executable llpjob,

which invokes GetHistory to print every record in the history file. In order to

compile llpjob, the sample Makefile must update the RELEASE_DIR field to

represent the current LoadLeveler release directory. The syntax for llpjob is:

 llpjob history_file

Where history_file is a local or global history file.

Checkpointing API

LoadLeveler for Linux does not support the checkpointing API.

This section describes routines used for checkpointing jobs running under

LoadLeveler. For more information, see “Checkpointing jobs” on page 125. For

information on checkpointing parallel jobs, see IBM Parallel Environment for AIX:

Operation and Use, Volume 1.

ckpt subroutine

Purpose

Specify the ckpt subroutine in a FORTRAN, C, or C++ program to activate

checkpointing from within the application. Whenever this subroutine is invoked, a

checkpoint of the program is taken.

Accounting API

442 LoadLeveler: Using and Administering

|

Note: This API is obsolete and is supported for backward compatibility only. It

calls ll_init_ckpt.

C++ syntax

 extern "C"{void ckpt();}

C syntax

 void ckpt();

FORTRAN syntax

 call ckpt()

ll_init_ckpt

Purpose

Initiates a checkpoint from within a serial application.

Library

LoadLeveler API library libllapi.a.

Syntax

#include "llapi.h"

int ll_init_ckpt (LL_ckpt_info *ckpt_info);

Parameters

ckpt_info

A pointer to a LL_ckpt_info structure, which has the following fields:

int version

The version of the API that the program was compiled with (from llapi.h).

char* step_id

NULL, not used.

enum ckpt_type ckptType

NULL, not used.

enum wait_option waitType

NULL, not used.

int abort_sig

NULL, not used.

cr_error_t *cp_error_data

AIX structure containing error info from ll_init_ckpt. When the return

code indicates the checkpoint was attempted but failed (-7), detailed

information is returned in this structure.

int ckpt_rc

Return code from checkpoint.

int soft_limit

This field is ignored.

int hard_limit

This field is ignored.

Description

This subroutine is only available if you have enabled checkpointing. ll_init_ckpt

initiates a checkpoint from within a serial application. The checkpoint file name

Checkpointing API

Chapter 16. Application programming interfaces (APIs) 443

will consist of a base name with a suffix of a numeric checkpoint tag to

differentiate from an earlier checkpoint file. LoadLeveler sets the environment

variable LOADL_CKPT_FILE which identifies the directory and file name for

checkpoint files.

Return values

0 The checkpoint completed successfully.

1 Indicates ll_init_ckpt() returned as a result of a restart operation.

Error values

-1 Cannot retrieve the job step ID from the environment variable

LOADL_STEP_ID.

-2 Cannot retrieve the checkpoint file name from the environment variable

LOADL_CKPT_FILE, checkpoint has not been enabled for the job step

(checkpoint not set to yes or interval).

-3 Cannot allocate memory.

-4 Checkpoint/restart ID is not valid, checkpointing is not enabled for the job

step.

-5 Request to take checkpoint denied by starter.

-6 Request to take checkpoint failed, no response from starter, possible

communication problem.

-7 Checkpoint attempted but failed. Details of error can be found in the

LL_ckpt_info structure.

-8 Cannot install SIGINT signal handler.

ll_ckpt

Purpose

Initiates a checkpoint on a specific job step.

Library

LoadLeveler API library libllapi.a

Syntax

#include ″llapi.h″

int ll_ckpt (LL_ckpt_info *ckpt_info);

Parameters

ckpt_info

A pointer to a LL_ckpt_info structure, which has the following fields:

int version

The version of the API that the program was compiled with (from llapi.h).

char* step_id

The id of the job step to be checkpointed. Uses the following formats:

″host.jobid.stepid,″ ″jobid.stepid,″. Where:

v host: is the name of the machine to which the job was submitted (the

default is the local machine).

v jobid: is the job ID assigned to the job by LoadLeveler.

v stepid: is the job step ID assigned to a job step by LoadLeveler.

ll_init_ckpt

444 LoadLeveler: Using and Administering

enum ckpt_type ckptType

The action to be taken after the checkpoint successfully completes. The

values for enum ckpt_type are:

CKPT_AND_CONTINUE

Allow the job to continue after the checkpoint.

CKPT_AND_TERMINATE

Terminate the job after the checkpoint.

CKPT_AND_HOLD

Puts the job on user hold after the checkpoint.

Note: If checkpoint is not successful, the job continues on return

regardless of these settings.

enum wait_option waitType

Flag used to identify blocking action during checkpoint. By default

ll_ckpt() will block until the checkpoint completes. The values for the

enum wait_option are:

CKPT_NO_WAIT

Disables blocking while the job is being checkpointed.

CKPT_WAIT

Job is blocked while being checkpointed. This is the default.

int abort_sig

Identifies the signal to be used to interrupt a checkpoint initiated by the

API. Upon receipt of this signal the checkpoint will be aborted. Default is

SIGINT.

cr_error_t *cp_error_data

AIX structure containing error info from ckpt.

int ckpt_rc

Return code from checkpoint

int soft_limit

Time, in seconds, indicating the maximum time allocated for a checkpoint

operation to complete before the checkpoint operation is aborted. The job

is allowed to continue. The value for soft_limit specified here will override

any soft limit value specified in the job command file. If the value for soft

limit specified by the administration file is less than the value specified

here, the administration file value takes precedence.

 Values are:

-1 Indicates there is no limit.

0 Indicates the existing soft limit for the job step should be enforced.

Positive integer

Indicates the number of seconds allocated for the limit.

int hard_limit

Time, in seconds, indicating the maximum time allocated for a checkpoint

operation to complete before the job is terminated. The value for hard-limit

specified here will override any hard limit value specified in the job

command file. If the value for hard limit specified by the administration

file is less than the value specified here, the administration file value will

take precedence.

 Values are:

ll_ckpt

Chapter 16. Application programming interfaces (APIs) 445

-1 Indicates there is no limit.

0 Indicates the existing hard limit for the job step should be

enforced.

Positive integer

Indicates the number of seconds allocated for the limit.

Description

This function initiates a checkpoint for the specified job step. ll_ckpt() will, by

default, block until the checkpoint operation completes. To disable blocking, the

flag waitType must be set to NO_WAIT. This function is allowed to be executed by

the owner of the job step or a LoadLeveler administrator.

Return Values

0 Checkpoint completed successfully.

1 Checkpoint event did not receive status and the success or failure of the

checkpoint is unclear.

Error Values

-1 Error occurred attempting to checkpoint.

-2 Format not valid for job step, not in the form host.jobid.stepid.

-3 Cannot allocate memory.

-4 API cannot create listen socket.

-5 64-bit API not supported when DCE is enabled.

-6 Configuration file errors.

-7 DCE identity cannot be established.

-8 No DCE credentials.

-9 DCE credentials life time less than 300 seconds.

ll_set_ckpt_callbacks

Purpose

Used by an application to register callbacks which will be invoked when a job step

is checkpointed, resumed, and restarted.

Library

LoadLeveler API library libllapi.a

Syntax

#include ″llapi.h″

int ll_set_ckpt_callbacks (callbacks_t *cbs);

Parameters

cbs

A pointer to a callbacks_t structure, which is defined as:

typedef struct {

 void (*checkpoint_callback) (void) ;

 void (*restart_callback) (void) ;

 void (*resume_callback) (void) ;

} callbacks_t;

ll_ckpt

446 LoadLeveler: Using and Administering

Where:

checkpoint_callback

Pointer to the function to be invoked at checkpoint time.

restart_callback

Pointer to the function to be invoked at restart time.

resume_callback

Pointer to the function to be called when an application is resumed after

taking a checkpoint.

Description

This function is called to register functions to be invoked when a job step is

checkpointed, resumed and restarted.

Return values

If successful, a non-negative integer is returned which is a handle used to identify

the particular set of callback functions. The handle can be used as input to the

ll_unset_ckpt_callbacks function. If an error occurs, a negative number is

returned.

Error values

-1 Process is not enabled for checkpointing.

-2 Unable to allocate storage to store callback structure.

-3 Cannot allocate memory.

ll_unset_ckpt_callbacks

Purpose

Unregisters previously registered checkpoint, resume, and restart callbacks.

Library

LoadLeveler API library libllapi.a

Syntax

#include ″llapi.h″

int ll_unset_ckpt_callbacks(int handle);

Parameters

handle

An integer indicating the set of callback functions to be unregistered. This

integer is the value returned by the ll_set_ckpt_callbacks function which was

used to register the callbacks.

Description

This API is called to unregister checkpoint, resume and restart application callback

functions which were previously registered with the ll_set_ckpt_callbacks

function.

Return values

0 Success.

ll_set_ckpt_callbacks

Chapter 16. Application programming interfaces (APIs) 447

Error values

-1 Unable to unregister callback. Argument not valid, specified handle does not

reference a valid callback structure.

Data Access API

This API gives you access to LoadLeveler objects and allows you to retrieve

specific data from those objects. You can use this API to query the negotiator

daemon for information about its current set of jobs, classes, and machines. This

API can also be used to:

v Query a LoadLeveler history file for job accounting information

v Query the startd and schedd daemons for selected Workload Manager and job

information

The Data Access API consists of the following subroutines:

v ll_query

v ll_set_request

v ll_reset_request

v ll_get_objs

v ll_get_data

v ll_next_obj

v ll_free_objs

v ll_deallocate

Using the data access API

To use this API, you need to call the data access subroutines in the following

order:

v Call ll_query to initialize the query object. See “ll_query subroutine” on page

451 for more information.

v Call ll_set_request to filter the objects you want to query. See “ll_set_request

subroutine” on page 451 for more information.

v Call ll_get_objs to retrieve a list of objects from a LoadLeveler daemon or

history file. See “ll_get_objs subroutine” on page 455 for more information.

v Call ll_get_data to retrieve specific data from an object. See “ll_get_data

subroutine” on page 458 for more information.

v Call ll_next_obj to retrieve the next object in the list. See “ll_next_obj

subroutine” on page 478 for more information.

v Call ll_free_objs to free the list of objects you received. See “ll_free_objs

subroutine” on page 479 for more information.

v Call ll_deallocate to end the query. See “ll_deallocate subroutine” on page 479

for more information.

To see code that uses these subroutines, refer to “Examples of using the Data

Access API” on page 480. For more information on LoadLeveler objects, see

“Understanding the LoadLeveler job object model.”

Understanding the LoadLeveler job object model

The ll_get_data subroutine of the data access API allows you to access the

LoadLeveler job model. The LoadLeveler job model consists of objects that have

attributes and connections to other objects. An attribute is a characteristic of the

object and generally has a primitive data type (such as integer, float, or character).

The job name, submission time and job priority are examples of attributes.

ll_unset_ckpt_callbacks

448 LoadLeveler: Using and Administering

Objects are connected to one or more other objects through relationships. An object

can be connected to other objects through more than one relationship, or through

the same relationship. For example, A Job object is connected to a Credential object

and to Step objects through two different relationships. A Job object can be

connected to more than one Step object through the same relationship of “having a

Step.” When an object is connected through different relationships, different

specifications are used to retrieve the appropriate object.

When an object is connected to more than one object through the same

relationship, there are Count, GetFirst and GetNext specifications associated with

the relationship. The Count operation returns the number of connections. You must

use the GetFirst operation to initialize access to the first such connected object. You

must use the GetNext operation to get the remaining objects in succession. You can

not use GetNext after the last object has been retrieved.

You can use the ll_get_data subroutine to access both attributes and connected

objects. See the “ll_get_data subroutine” on page 458 for more information.

The root of the job model is the Job object, as shown in Figure 40 on page 450. The

job is queried for information about the number of steps it contains and the time it

was submitted. The job is connected to a single Credential object and one or more

Step objects. Elements for these objects can be obtained from the job.

You can query the Credential object to obtain the ID and group of the submitter of

the job.

The Step object represents one executable unit of the job (all the tasks that are

executed together). It contains information about the execution state of the step,

messages generated during execution of the step, the number of nodes in the step,

the number of unique machines the step is running on, the time the step was

dispatched, the execution priority of the step, the unique identifier given to the

step by LoadLeveler, the class of the step and the number of processes running for

the step (task instances). The Step is connected to one or more Switch Table objects,

one or more Machine objects and one or more Node objects. The list of Machines

represents all of the hosts where one or more nodes of the step are running. If two

or more nodes are running on the same host, the Machine object for the host

occurs only once in the step’s Machine list. The Step object is connected to one

Switch Table object for each of the protocols (MPI and LAPI) used by the Step.

Each Node object manages a set of executables that share common requirements

and preferences. The Node can be queried for the number of tasks it manages, and

is connected to one or more Task objects.

Data Access API

Chapter 16. Application programming interfaces (APIs) 449

The Task object represents one or more copies of the same executable. The Task

object can be queried for the executable, the executable arguments, and the number

of instances of the executable.

Table 52 on page 459 describes the specifications and elements available when you

use the ll_get_data subroutine. Each specification name describes the object you

need to specify and the attribute returned. For example, the specification

LL_JobGetFirstStep includes the object you need to specify (LL_Job) and the value

returned (GetFirstStep).

This table is sorted alphabetically by object; within each object the specifications

are also sorted alphabetically.

Figure 40. LoadLeveler job object model

Data Access API

450 LoadLeveler: Using and Administering

ll_query subroutine

Purpose

The ll_query subroutine initializes the query object and defines the type of query

you want to perform. The LL_element created and the corresponding data

returned by this function is determined by the query_type you select.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

LL_element * ll_query (enum QueryType query_type);

Parameters

query_type

Can be:

v JOBS (to query job information)

v MACHINES (to query machine information)

v CLASSES (to query information about job classes)

v CLUSTER (to query cluster information)

v WLMSTAT (to query AIX Workload Manager)

v RESERVATIONS (to query reservation information)

Description

query_type is the input field for this subroutine.

This subroutine is used in conjunction with other data access subroutines to query

information about job and machine objects. You must call ll_query prior to using

the other data access subroutines.

Return values

This subroutine returns a pointer to an LL_element object. The pointer is used by

subsequent data access subroutine calls.

Error values

NULL The subroutine was unable to create the appropriate pointer.

Related information

Subroutines: ll_get_data, ll_set_request, ll_reset_request, ll_get_objs, ll_free_objs,

ll_next_obj, ll_deallocate

ll_set_request subroutine

Purpose

The ll_set_request subroutine determines the data requested during a subsequent

ll_get_objs call to query specific objects. You can filter your queries based on the

query_type, object_filter, and data_filter you select.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Data Access API

Chapter 16. Application programming interfaces (APIs) 451

|

|

|

Syntax

#include "llapi.h"

int ll_set_request (LL_element *query_element, QueryFlags query_flags,

 char **object_filter, DataFilter data_filter);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query subroutine.

query_flags

When query_type (in ll_query) is JOBS, query_flags can be the following:

QUERY_ALL

Query all jobs.

QUERY_JOBID

Query by job ID.

QUERY_STEPID

Query by step ID.

QUERY_PROCID

Query by process ID of a task of a job step.

QUERY_USER

Query by user ID.

QUERY_GROUP

Query by LoadLeveler group.

QUERY_CLASS

Query by LoadLeveler class.

QUERY_HOST

Query by machine name.

QUERY_STARTDATE

Query by job start dates. History file query only.

QUERY_ENDDATE

Query by job end dates. History file query only.

QUERY_RESERVATION_ID

Query job steps bound to a particular reservation.

 When query_type (in ll_query) is MACHINES, query_flags can be the following:

QUERY_ALL

Query all machines.

QUERY_HOST

Query by machine names.

 When query_type (in ll_query) is CLASSES, query_flags can be the following:

QUERY_ALL

Query all classes.

QUERY_CLASS

Query by LoadLeveler class.

 When query_type (in ll_query) is CLUSTER, query_flags can be the following:

QUERY_ALL

Query cluster information from central manager.

Data Access API

452 LoadLeveler: Using and Administering

|
|

When query_type (in ll_query) is WLMSTAT, query_flags can be the following:

QUERY_STEPID

Query by step ID.

 When query_type (in ll_query) is RESERVATIONS, query_flags can be the

following:

QUERY_ALL

Query all reservations.

QUERY_USER

Query by user ID that owns the reservations.

QUERY_GROUP

Query by LoadLeveler group that owns the reservations.

QUERY_HOST

Query by machine name.

QUERY_RESERVATION_ID

Query by reservation ID.

object_filter

Specifies search criteria. The value you specify for object_filter is related to the

value you specify for query_flags:

v If you specify QUERY_ALL, you do not need an object_filter.

v If you specify QUERY_JOBID, the object_filter must contain a list of job IDs

(in the form host.jobid).

v If you specify QUERY_STEPID, the object_filter must contain a list of step

IDs (in the form host.jobid.stepid).

v If you specify QUERY_PROCID, the object_filter must contain a list with a

single process ID of a task of a job step.

v If you specify QUERY_USER, the object_filter must contain a list of user IDs.

v If you specify QUERY_CLASS, the object_filter must contain a list of

LoadLeveler class names.

v If you specify QUERY_GROUP, the object_filter must contain a list of

LoadLeveler group names.

v If you specify QUERY_HOST, the object_filter must contain a list of

LoadLeveler machine names. When the query type is JOBS, the machine

names must be the names of machines to which the jobs are submitted.

v If you specify QUERY_STARTDATE or QUERY_ENDDATE, the object filter

must contain a list of two start dates or two end dates having the format

MM/DD/YYYY.

v If you specify QUERY_RESERVATION_ID, the object_filter must contain a

list of reservation IDs.

The last entry in the object_filter array must be NULL.

data_filter

Filters the data returned from the object you query. The value you specify for

data_filter is related to the value you specify for query_type:

v If you specify JOBS, data_filter can be ALL_DATA (the default), which

returns the entire object, or Q_LINE, which returns the same information

returned by the llq -f flag. For more information, see “llq - Query job status”

on page 386.

Note: If you query a history file for job information, always specify

ALL_DATA.

Data Access API

Chapter 16. Application programming interfaces (APIs) 453

|
|
|
|
|
|
|
|
|
|
|
|

|
|

v If you specify JOBS and query_flags QUERY_PROCID you must always

specify ALL_DATA.

v If you specify MACHINES, data_filter can be ALL_DATA (the default)

which returns the entire object, or STATUS_LINE which returns the same

information returned by the llstatus -f flag. For more information, see

“llstatus - Query machine status” on page 412.

v If you specify CLASSES, WLM_STAT, CLUSTER, or RESERVATIONS, then

data_filter must be ALL_DATA (the default).

Description

query_element, query_flags, object_filter, and data_filter are the input fields for this

subroutine.

The QUERY_PROCID flag should not be used in combination with any other

query_flags.

You can request certain combinations of object filters by calling ll_set_request

more than once. When you do this, the query flags you specify are or-ed together.

The following are valid combinations of object filters:

v QUERY_JOBID and QUERY_STEPID: the result is the union of both queries

and any other query flags (such as, QUERY_HOST) will be ignored

v QUERY_STARTDATE and QUERY_ENDDATE: the result is the intersection of

both queries

v QUERY_HOST, QUERY_USER, QUERY_GROUP, QUERY_CLASS, and

QUERY_RESERVATION_ID: the result is the intersections of all of the queries

v When the query_type is QUERY_RESERVATIONS, QUERY_RESERVATION_ID

takes precedence and any other query flags are ignored (with the exception of

QUERY_ALL, which always replaces any other query flags)

That is, to query jobs owned by certain users and on a specific machines, issue

ll_set_request first with QUERY_USER and the appropriate user IDs, and then

issue it again with QUERY_HOST and the appropriate host names.

For example, suppose you issue ll_set_request with a user ID list of anton and

meg, and then issue it again with a host list of k10n10 and k10n11. The objects

returned are all of the jobs on k10n10 and k10n11 which belong to anton or meg.

Note that if you use two consecutive calls with the same flag, the second call will

replace the previous call.

Also, you should not use the QUERY_ALL flag in combination with any other

flag, since QUERY_ALL will replace any existing requests.

For history file queries, query_flags is restricted to the following: QUERY_ALL,

QUERY_STARTDATE, QUERY_ENDDATE.

Return values

This subroutine returns a zero to indicate success.

Error values

-1 You specified a query_element that is not valid.

-2 You specified a query_flag that is not valid.

-3 You specified an object_filter that is not valid.

-4 You specified a data_filter that is not valid.

-5 A system error occurred.

Data Access API

454 LoadLeveler: Using and Administering

|
|

|
|

|
|

|
|
|

Related information

Subroutines: ll_get_data, ll_query, ll_reset_request, ll_get_objs, ll_free_objs,

ll_next_obj, ll_deallocate

ll_reset_request subroutine

Purpose

The ll_reset_request subroutine resets the request data to NULL for the

query_element you specify.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_reset_request (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

This subroutine is used in conjunction with ll_set_request to change the data

requested with the ll_get_objs subroutine.

Return values

This subroutine returns a zero to indicate success.

Error values

-1 The subroutine was unable to reset the appropriate data.

Related information

Subroutines: ll_get_data, ll_set_request, ll_query, ll_get_objs, ll_free_objs,

ll_next_obj, ll_deallocate

ll_get_objs subroutine

Purpose

The ll_get_objs subroutine sends a query request to the daemon you specify along

with the request data you specified in the ll_set_request subroutine. ll_get_objs

receives a list of objects matching the request.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

LL_element * ll_get_objs (LL_element *query_element ,LL_Daemon query_daemon,

 char *hostname,int * number_of_objs,

 int * error_code);

Data Access API

Chapter 16. Application programming interfaces (APIs) 455

|

|

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

query_daemon

Specifies the LoadLeveler daemon you want to query or whether you want to

query job information stored in a history file. The enum LL_Daemon is

defined in llapi.h as:

enum LL_Daemon {LL_STARTD, LL_SCHEDD, LL_CM, LL_MASTER, LL_STARTER,

 LL_HISTORY_FILE};

The following indicates which daemons respond to which query flags. When

query_type (in ll_query) is JOBS, the query_flags (in ll_set_request) listed in the

left-hand column are responded to by the daemons listed in the right-hand

column:

QUERY_ALL

negotiator (LL_CM), schedd

(LL_SCHEDD), or history file

(LL_HISTORY_FILE)

QUERY_JOBID

negotiator (LL_CM) or schedd

(LL_SCHEDD)

QUERY_STEPID

negotiator (LL_CM) or schedd

(LL_SCHEDD)

QUERY_PROCID startd (LL_STARTD)

QUERY_USER

negotiator (LL_CM) or schedd

(LL_SCHEDD)

QUERY_CLASS

negotiator (LL_CM) or schedd

(LL_SCHEDD)

QUERY_HOST negotiator (LL_CM)

QUERY_STARTDATE history file (LL_HISTORY_FILE)

QUERY_ENDDATE history file (LL_HISTORY_FILE)

QUERY_RESERVATION_ID

negotiator (LL_CM) or schedd

(LL_SCHEDD)

When query_type (in ll_query) is MACHINES, the query_flags (in

ll_set_request) listed in the left-hand column are responded to by the daemons

listed in the right-hand column:

 QUERY_ALL negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

 When query_type (in ll_query) is CLASSES, the query_flags (in ll_set_request)

listed in the left-hand column are responded to by the daemons listed in the

right-hand column:

 QUERY_ALL negotiator (LL_CM)

QUERY_CLASS negotiator (LL_CM)

 When query_type (in ll_query) is CLUSTER, the query_flags (in ll_set_request)

listed in the left-hand column are responded to by the daemons listed in the

right-hand column:

Data Access API

456 LoadLeveler: Using and Administering

|||

|||

|||

|||

QUERY_ALL negotiator (LL_CM)

 When query_type (in ll_query) is WLMSTAT, the query_flags (in ll_set_request)

listed in the left-hand column are responded to by the daemons listed in the

right-hand column:

 QUERY_STEPID startd (LL_STARTD)

 When query_type (in ll_query) is RESERVATIONS, the query_flags (in

ll_set_request) listed in the left-hand column are responded to by the daemons

listed in the right-hand column:

 QUERY_ALL negotiator (LL_CM)

QUERY_USER negotiator (LL_CM)

QUERY_GROUP negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

QUERY_RESERVATION_ID negotiator (LL_CM)

hostname

Specifies the hostname where the schedd or startd daemon is queried. If you

specify NULL, the schedd daemon on the local machine is queried. To contact

the negotiator daemon, you do not need to specify a hostname. If query_daemon

is LL_HISTORY_FILE, hostname is the name of the history file.

number_of_objs

Is a pointer to an integer representing the number of objects received from the

daemon.

error_code

Is a pointer to an integer representing the error code issued when the function

returns a NULL value. For more information, see “Error values.”

Description

query_element, query_daemon, and hostname are the input fields for this subroutine.

number_of_objs and error_code are output fields.

Each LoadLeveler daemon returns only the objects that it knows about.

Return values

This subroutine returns a pointer to the first object in the list. You must use the

ll_next_obj subroutine to access the next object in the list.

Error values

This subroutine returns a NULL to indicate failure. The error_code parameter is set

to one of the following:

-1 query_element not valid.

-2 query_daemon not valid.

-3 Cannot resolve hostname.

-4 Request type for specified daemon not valid.

-5 System error.

-6 No valid objects meet the request.

-7 Configuration error.

-9 Connection to daemon failed.

-10 Error processing history file (LL_HISTORY_FILE query only).

Data Access API

Chapter 16. Application programming interfaces (APIs) 457

|
|
|

|||

||

||

||

||
|

|

-11 History file must be specified in the hostname argument

(LL_HISTORY_FILE query only).

-12 Unable to access the history file (LL_HISTORY_FILE query only).

-13 DCE identity of calling program cannot be established.

-14 No DCE credentials.

-15 DCE credentials within 300 secs of expiration.

-16 64-bit API is not supported when DCE is enabled.

Related information

Subroutines: ll_get_data, ll_set_request, ll_query, ll_get_objs, ll_free_objs,

ll_next_obj, ll_deallocate

ll_get_data subroutine

Before you use this subroutine, make sure you are familiar with the concepts

discussed in “Understanding the LoadLeveler job object model” on page 448.

Purpose

The ll_get_data subroutine returns data from a valid LL_element.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_get_data (LL_element *element, enum LLAPI_Specification specification,

 void* resulting_data_type);

Parameters

element

Is a pointer to the LL_element returned by the ll_get_objs subroutine.

specification

Specifies the data field within the data object you want to read.

resulting_data_type

Is a pointer to the location where you want the data stored. If the call returns a

nonzero value, an error has occurred and the contents of the location are

undefined.

Description

object and specification are input fields, while resulting_data_type is an output field.

The ll_get_data subroutine of the data access API allows you to access LoadLeveler

objects. The parameters of ll_get_data are a LoadLeveler object (LL_element), a

specification that indicates what information about the object is being requested,

and a pointer to the area where the information being requested should be stored.

If the specification indicates an attribute of the element that is passed in, the result

pointer must be the address of a variable of the appropriate type, and must be

initialized to NULL. The type returned by each specification is found in Table 52

on page 459. If the specification queries the connection to another object, the

returned value is of type LL_element. You can use a subsequent ll_get_data call to

query information about the new object.

The data type char* and any arrays of type int or char must be freed by the caller.

Data Access API

458 LoadLeveler: Using and Administering

|

|
|

|
|
|
|

LL_element pointers cannot be freed by the caller.

For the specifications, LL_MachineOperatingSystem and

LL_MachineArchitecture, resulting_data_type returns the string ″???″ if a query is

made before the associated records are updated with their actual values by the

appropriate startd daemons.

Return values

This subroutine returns a zero to indicate success.

Error values

-1 You specified an object that is not valid.

-2 You specified an LLAPI_Specification that is not valid.

Related information

Subroutines: ll_query, ll_set_request, ll_reset_request, ll_get_objs, ll_next_obj,

ll_free_objs, ll_deallocate

 Table 52. Specifications for ll_get_data subroutine

Object Specification

Resulting Data

Type

Description

Adapter LL_AdapterAvailWindowCount int* A pointer to an integer indicating the

number of adapter windows not in use.

Adapter LL_AdapterCommInterface int* Contains the adapter’s communication

interface.

Adapter LL_AdapterInterfaceAddress char** A pointer to a string containing the

adapter’s interface IP address.

Adapter LL_AdapterMaxWindowSize int* A pointer to the integer indicating the

maximum allocatable adapter window

memory.

Adapter LL_AdapterMemory int* A pointer to the integer indicating the

amount of total adapter memory.

Adapter LL_AdapterMinWindowSize int* A pointer to the integer indicating the

minimum allocatable adapter window

memory.

Adapter LL_AdapterName char** A pointer to a string containing the

adapter name.

Adapter LL_AdapterTotalWindowCount int* A pointer to the integer indicating the

number of windows on the adapter.

Adapter LL_AdapterWindowList int** A pointer to an array indicating window

numbers for the adapter.

LL_AdapterTotalWindowCount indicates

the size of this array. If the adapter has

no windows,

LL_AdapterTotalWindowCount is zero

and LL_AdapterWindowList is null.

AdapterReq LL_AdapterReqCommLevel int* A pointer to the integer indicating the

adapter’s communication level.

AdapterReq LL_AdapterReqUsage int* A pointer to the integer indicating the

requested adapter usage. This integer

will be one of the values defined in the

Usage enum.

AdapterUsage LL_AdapterUsageDevice char** A pointer to a string containing the

name of the adapter device being used.

Data Access API

Chapter 16. Application programming interfaces (APIs) 459

||||
|

||||
|

||||
|

||||
|
|
|
|
|
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

AdapterUsage LL_AdapterUsageMode char** A pointer to a string containing the

mode used for css IP or US.

AdapterUsage LL_AdapterUsageProtocol char** A pointer to a string containing the

task’s protocol.

AdapterUsage LL_AdapterUsageTag char** A pointer to a character string that

indicates which network table the

adapter usage is in. Adapter usages with

the same tag are in the same switch

table.

AdapterUsage LL_AdapterUsageWindow int* Contains the adapter window assigned

to the task.

AdapterUsage LL_AdapterUsageWindowMemory int* A pointer to the integer indicating the

number of bytes used by the adapter

window.

Class LL_ClassAdmin char*** A pointer to an array of strings

containing administrators for the class.

The array ends with a NULL string.

Class LL_ClassCkptDir char** A pointer to a string containing the

directory for checkpoint files.

Class LL_ClassCkptTimeHardLimit int64_t* Specifies the checkpoint time hard limit.

Class LL_ClassCkptTimeSoftLimit int64_t* Specifies the checkpoint time soft limit.

Class LL_ClassComment char** A pointer to a string containing the class

comment.

Class LL_ClassConstraints int* Specifies whether values of Maximum

and Free Slots are constrained by

MAX_STARTERS and MAXJOBS

Class LL_ClassCoreLimitHard int64_t* Specifies the core file hard limit.

Class LL_ClassCoreLimitSoft int64_t* Specifies the core file soft limit.

Class LL_ClassCpuLimitHard int64_t* Specifies the cpu hard limit.

Class LL_ClassCpuLimitSoft int64_t* Specifies the cpu soft limit.

Class LL_ClassCpuStepLimitHard int64_t* Specifies the Hard Job_cpu_limit.

Class LL_ClassCpuStepLimitSoft int64_t* Specifies the Soft Job_cpu_limit.

Class LL_ClassDataLimitHard int64_t* Specifies the data hard limit.

Class LL_ClassDataLimitSoft int64_t* Specifies the data soft limit.

Class LL_ClassExcludeGroups char*** A pointer to an array of strings

containing groups not permitted to use

the class. The array ends with a NULL

string.

Class LL_ClassExcludeUsers char*** A pointer to an array of strings

containing users not permitted to use the

class. The array ends with a NULL

string.

Class LL_ClassExecutionFactor int* Specifies the execution factor.

Class LL_ClassFileLimitHard int64_t* Specifies the file size hard limit.

Class LL_ClassFileLimitSoft int64_t* Specifies the file size soft limit.

Data Access API

460 LoadLeveler: Using and Administering

||||
|

||||
|

||||
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Class LL_ClassFreeSlots int* Specifies the number of available

initiators.

Class LL_ClassGetFirstResourceRequirement LL_element* A pointer to the element associated with

the first resource requirement.

Class LL_ClassGetNextResourceRequirement LL_element* A pointer to the element associated with

the next resource requirement.

Class LL_ClassIncludeGroups char*** A pointer to an array of strings

containing groups permitted to use the

class. The array ends with a NULL

string.

Class LL_ClassIncludeUsers char*** A pointer to an array of strings

containing users permitted to use the

class. The array ends with a NULL

string.

Class LL_ClassMaximumSlots int* Specifies the total number of configured

initiators

Class LL_ClassMaxJobs int* Lists the maximum number of job steps

that can run at any time.

Class LL_ClassMaxProcessors int* Lists the maximum number of

processors for a parallel job step.

Class LL_ClassMaxProtocolInstances int* Specifies the maximum number of

adapter windows per protocol per task.

Class LL_ClassMaxTotalTasks int* Specifies the value for Max_total_tasks.

Class LL_ClassName char** A pointer to a string containing the

name of the class.

Class LL_ClassNice int* Specifies the nice value.

Class LL_ClassNqsClass int* Tells whether the class is an NQS

gateway

Class LL_ClassNqsQuery char*** A pointer to an array of strings

containing NQS queues to query about

job dispatch. The array ends with a

NULL string.

Class LL_ClassNqsSubmit char** A pointer to a string containing the NQS

queue to submit jobs.

Class LL_ClassPreemptClass char** A pointer to a string containing the

PREEMPT_CLASS rule.

Class LL_ClassPriority int* The class system priority

Class LL_ClassRssLimitHard int64_t* Specifies the resident set size hard limit.

Class LL_ClassRssLimitSoft int64_t* Specifies the resident set size soft limit.

Class LL_ClassStackLimitHard int64_t* Specifies the stack size hard limit.

Class LL_ClassStackLimitSoft int64_t* Specifies the stack size soft limit.

Class LL_ClassStartClass char** A pointer to a string containing the

START_CLASS rule.

Class LL_ClassWallClockLimitHard int64_t* Specifies the wall clock hard limit.

Class LL_ClassWallClockLimitSoft int64_t* Specifies the wall clock soft limit.

Data Access API

Chapter 16. Application programming interfaces (APIs) 461

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Cluster LL_ClusterDefinedResourceCount int* A pointer to an integer indicating the

number of consumable resources defined

in the cluster.

Cluster LL_ClusterDefinedResources char*** A pointer to an array containing the

names of consumable resources defined

in the cluster. The array ends with a

NULL string.

Cluster LL_ClusterEnforcedResourceCount int* A pointer to an integer indicating the

number of enforced resources

Cluster LL_ClusterEnforcedResources char*** A pointer to an array of characters

indicating the number of enforced

resources

Cluster LL_ClusterEnforceMemory int* A pointer to a boolean integer indicating

absolute memory limit

Cluster LL_ClusterEnforceSubmission int* A pointer to a boolean integer indicating

resources required at time of submission

Cluster LL_ClusterGetFirstResource LL_element* A pointer to the element associated with

the first resource.

Cluster LL_ClusterGetNextResource LL_element* A pointer to the element associated with

the next resource.

Cluster LL_ClusterSchedulerType char** A pointer to a string containing the

scheduler type.

Cluster LL_ClusterSchedulingResourceCount int* A pointer to an integer indicating the

number of consumable resources

considered by the scheduler for the

cluster.

Cluster LL_ClusterSchedulingResources char*** A pointer to an array containing the

names of consumable resources

considered by the scheduler for the

cluster. The array ends with a NULL

string.

Credential LL_CredentialGid int* A pointer to an integer containing the

UNIX gid of the user submitting the job.

Credential LL_CredentialGroupName char** A pointer to a string containing the

UNIX group name of the user

submitting the job.

Credential LL_CredentialUid int* A pointer to an integer containing the

UNIX uid of the person submitting the

job.

Credential LL_CredentialUserName char** A pointer to a string containing the user

ID of the user submitting the job.

DispUsage LL_DispUsageEventUsageCount int* Count of Event Usages

DispUsage LL_DispUsageGetFirstEventUsage LL_element* First Event Usage

DispUsage LL_DispUsageGetNextEventUsage LL_element* Next Event Usage

DispUsage LL_DispUsageStarterIdrss64 int64_t* Starter idrss value of dispatch

DispUsage LL_DispUsageStarterInblock64 int64_t* Starter inblock value of dispatch

DispUsage LL_DispUsageStarterIsrss64 int64_t* Starter isrss value of dispatch

Data Access API

462 LoadLeveler: Using and Administering

||||
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

DispUsage LL_DispUsageStarterIxrss64 int64_t* Starter ixrss value of dispatch

DispUsage LL_DispUsageStarterMajflt64 int64_t* Starter majflt value of dispatch

DispUsage LL_DispUsageStarterMaxrss64 int64_t* Starter maxrss value of dispatch

DispUsage LL_DispUsageStarterMinflt64 int64_t* Starter minflt value of dispatch

DispUsage LL_DispUsageStarterMsgrcv64 int64_t* Starter msgrcv value of dispatch

DispUsage LL_DispUsageStarterMsgsnd64 int64_t* Starter msgsnd value of dispatch

DispUsage LL_DispUsageStarterNivcsw64 int64_t* Starter nivcsw value of dispatch

DispUsage LL_DispUsageStarterNsignals64 int64_t* Starter nsignals value of dispatch

DispUsage LL_DispUsageStarterNswap64 int64_t* Starter nswap value of dispatch

DispUsage LL_DispUsageStarterNvcsw64 int64_t* Starter nvcsw value of dispatch

DispUsage LL_DispUsageStarterOublock64 int64_t* Starter oublock value of dispatch

DispUsage LL_DispUsageStarterSystemTime64 int64_t* Starter system time of dispatch

DispUsage LL_DispUsageStarterUserTime64 int64_t* Starter user time of dispatch

DispUsage LL_DispUsageStepIdrss64 int64_t* Step idrss value of dispatch

DispUsage LL_DispUsageStepInblock64 int64_t* Step inblock value of dispatch

DispUsage LL_DispUsageStepIsrss64 int64_t* Step isrss value of dispatch

DispUsage LL_DispUsageStepIxrss64 int64_t* Step ixrss value of dispatch

DispUsage LL_DispUsageStepMajflt64 int64_t* Step majflt value of dispatch

DispUsage LL_DispUsageStepMaxrss64 int64_t* Step maxrss value of dispatch

DispUsage LL_DispUsageStepMinflt64 int64_t* Step minflt value of dispatch

DispUsage LL_DispUsageStepMsgrcv64 int64_t* Step msgrcv value of dispatch

DispUsage LL_DispUsageStepMsgsnd64 int64_t* Step msgsnd value of dispatch

DispUsage LL_DispUsageStepNivcsw64 int64_t* Step nivcsw value of dispatch

DispUsage LL_DispUsageStepNsignals64 int64_t* Step nsignals value of dispatch

DispUsage LL_DispUsageStepNswap64 int64_t* Step nswap value of dispatch

DispUsage LL_DispUsageStepNvcsw64 int64_t* Step nvcsw value of dispatch

DispUsage LL_DispUsageStepOublock64 int64_t* Step oublock value of dispatch

DispUsage LL_DispUsageStepSystemTime64 int64_t* Step system time of dispatch.

DispUsage LL_DispUsageStepUserTime64 int64_t* Step user time of dispatch

EventUsage LL_EventUsageEventId int* Event id

EventUsage LL_EventUsageEventName char** Event name

EventUsage LL_EventUsageEventTimestamp int* Event timestamp

EventUsage LL_EventUsageStarterIdrss64 int64_t* Starter idrss value of event

EventUsage LL_EventUsageStarterInblock64 int64_t* Starter inblock value of event

EventUsage LL_EventUsageStarterIsrss64 int64_t* Starter isrss value of event

EventUsage LL_EventUsageStarterIxrss64 int64_t* Starter ixrss value of event

EventUsage LL_EventUsageStarterMajflt64 int64_t* Starter majflt value of event

EventUsage LL_EventUsageStarterMaxrss64 int64_t* Starter maxrss value of event

EventUsage LL_EventUsageStarterMinflt64 int64_t* Starter minflt value of event

Data Access API

Chapter 16. Application programming interfaces (APIs) 463

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

EventUsage LL_EventUsageStarterMsgrcv64 int64_t* Starter msgrcv value of event

EventUsage LL_EventUsageStarterMsgsnd64 int64_t* Starter msgsnd value of event

EventUsage LL_EventUsageStarterNivcsw64 int64_t* Starter nivcsw value of event

EventUsage LL_EventUsageStarterNsignals64 int64_t* Starter nsignals value of event

EventUsage LL_EventUsageStarterNswap64 int64_t* Starter nswap value of event

EventUsage LL_EventUsageStarterNvcsw64 int64_t* Starter nvcsw value of event

EventUsage LL_EventUsageStarterOublock64 int64_t* Starter oublock value of event

EventUsage LL_EventUsageStarterSystemTime64 int64_t* Starter system time of event

EventUsage LL_EventUsageStarterUserTime64 int64_t* Starter user time of event

EventUsage LL_EventUsageStepIdrss64 int64_t* Step idrss value of event

EventUsage LL_EventUsageStepInblock64 int64_t* Step inblock value of event

EventUsage LL_EventUsageStepIsrss64 int64_t* Step isrss value of event

EventUsage LL_EventUsageStepIxrss64 int64_t* Step ixrss value of event

EventUsage LL_EventUsageStepMajflt64 int64_t* Step majflt value of event

EventUsage LL_EventUsageStepMaxrss64 int64_t* Step maxrss value of event

EventUsage LL_EventUsageStepMinflt64 int64_t* Step minflt value of event

EventUsage LL_EventUsageStepMsgrcv64 int64_t* Step msgrcv value of event

EventUsage LL_EventUsageStepMsgsnd64 int64_t* Step msgsnd value of event

EventUsage LL_EventUsageStepNivcsw64 int64_t* Step nivcsw value of event

EventUsage LL_EventUsageStepNsignals64 int64_t* Step nsignals value of event

EventUsage LL_EventUsageStepNswap64 int64_t* Step nswap value of event

EventUsage LL_EventUsageStepNvcsw64 int64_t* Step nvcsw value of event

EventUsage LL_EventUsageStepOublock64 int64_t* Step oublock value of event

EventUsage LL_EventUsageStepSystemTime64 int64_t* Step system time of event

EventUsage LL_EventUsageStepUserTime64 int64_t* Step user time of event

Job LL_JobCredential LL_element* A pointer to the element associated with

the job credential.

Job LL_JobGetFirstStep LL_element* A pointer to the element associated with

the first step of the job, to be used in

subsequent ll_get_data calls.

Job LL_JobGetNextStep LL_element* A pointer to the element associated with

the next step.

Job LL_JobName char** A pointer to a character string containing

the job name.

Job LL_JobStepCount int* A pointer to an integer indicating the

number of steps connected to the job.

Job LL_JobStepType int* A pointer to an integer indicating the

type of job, which can be

INTERACTIVE_JOB or BATCH_JOB.

Job LL_JobSubmitHost char** A pointer to a character string containing

the name of the host machine from

which the job was submitted.

Data Access API

464 LoadLeveler: Using and Administering

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Job LL_JobSubmitTime time_t* A pointer to the time_t structure

indicating when the job was submitted.

Job LL_JobVersionNum int* A pointer to an integer indicating the

job’s version number

Machine LL_MachineAdapterList char*** A pointer to an array containing the list

of adapters associated with the machine.

The array ends with a NULL string.

Machine LL_MachineArchitecture char** A pointer to a string containing the

machine architecture.

Machine LL_MachineAvailableClassList char*** A pointer to an array containing the

currently available job classes defined on

the machine. The array ends with a

NULL string.

Machine LL_MachineConfiguredClassList char*** A pointer to an array containing the

initiators on the machine. The array ends

with a NULL string.

Machine LL_MachineContinueExpr char** A pointer to a string containing the

machine’s continue control expression.

Machine LL_MachineCPUs int* A pointer to an integer containing the

number of CPUs on the machine.

Machine LL_MachineDisk int* A pointer to an integer indicating the

disk space in KBs in the machine’s

execute directory.

Machine LL_MachineDisk64 int64_t*

A pointer to a 64-bit integer indicating

the disk space in KBs in the machine’s

execute directory.

Machine LL_MachineDrainClassList char*** A pointer to an array containing the

drain class list on the machine. The

array ends with a NULL string.

Machine LL_MachineDrainingClassList char*** A pointer to an array containing the

draining class list on the machine. The

array ends with a NULL string.

Machine LL_MachineFeatureList char*** A pointer to an array containing the

features defined on the machine. The

array ends with a NULL string.

Machine LL_MachineFreeRealMemory int* A pointer to an integer indicating the

amount of free real memory in MBs on

the machine.

Machine LL_MachineFreeRealMemory64 int64_t*

A pointer to a 64-bit integer indicating

the amount of free real memory in MBs

on the machine.

Machine LL_MachineGetFirstAdapter LL_element* A pointer to the element associated with

the machine’s first adapter.

Machine LL_MachineGetFirstResource LL_element* A pointer to the element associated with

the machine’s first resource.

Machine LL_MachineGetNextAdapter LL_element* A pointer to the element associated with

the machine’s next adapter.

Data Access API

Chapter 16. Application programming interfaces (APIs) 465

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Machine LL_MachineGetNextResource LL_element* A pointer to the element associated with

the machine’s next resource.

Machine LL_MachineKbddIdle int* A pointer to an integer indicating the

number of seconds since the kbdd

daemon detected keyboard mouse

activity.

Machine LL_MachineKillExpr char** A pointer to a string containing the

machine’s kill control expression.

Machine LL_MachineLargePageCount64 int64_t* A pointer to a 64–bit integer indicating

the number of Large Pages defined on

the machine.

Machine LL_MachineLargePageFree64 int64_t* A pointer to a 64–bit integer indicating

the number of Large Pages free.

Machine LL_MachineLargePageSize64 int64_t* A pointer to a 64–bit integer indicating

the size of the machine’s Large Page.

Machine LL_MachineLoadAverage double* A pointer to a double containing the

load average on the machine.

Machine LL_MachineMachineMode char** A pointer to a string containing the

configured machine mode.

Machine LL_MachineMaxTasks int* A pointer to an integer indicating the

maximum number of tasks this machine

can run at one time.

Machine LL_MachineName char** A pointer to a string containing the

machine name.

Machine LL_MachineOperatingSystem char** A pointer to a string containing the

operating system on the machine.

Machine LL_MachinePagesFreed int* A pointer to an integer indicating the

number of pages freed per second by the

page replacement algorithm.

Machine LL_MachinePagesFreed64 int64_t*

A pointer to a 64-bit integer indicating

the number of pages freed per second by

the page replacement algorithm.

Machine LL_MachinePagesPagedIn int* A pointer to an integer indicating the

number of pages paged in per second

from paging space.

Machine LL_MachinePagesPagedIn64 int64_t*

A pointer to a 64-bit integer indicating

the number of pages paged in per

second from paging space.

Machine LL_MachinePagesPagedOut int* A pointer to an integer indicating the

number of pages paged out per second

to paging space.

Machine LL_MachinePagesPagedOut64 int64_t*

A pointer to a 64-bit integer indicating

the number of pages paged out per

second to paging space.

Machine LL_MachinePagesScanned int* A pointer to an integer indicating the

number of pages scanned per second by

the page replacement algorithm.

Data Access API

466 LoadLeveler: Using and Administering

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Machine LL_MachinePagesScanned64 int64_t*

A pointer to a 64-bit integer indicating

the number of pages scanned per second

by the page replacement algorithm.

Machine LL_MachinePoolList int** A pointer to an array indicating the pool

numbers to which this machine belongs.

The size of the array can be determined

by using LL_MachinePoolListSize.

Machine LL_MachinePoolListSize int* A pointer to an integer indicating the

number of pools configured for the

machine.

Machine LL_MachinePrestartedStarters int* A pointer to an integer indicating the

number of prestarted Starters on a

machine.

Machine LL_MachineRealMemory int* A pointer to an integer indicating the

physical memory in MBs on the

machine.

Machine LL_MachineRealMemory64 int64_t*

A pointer to a 64-bit integer indicating

the physical memory in MBs on the

machine.

Machine LL_MachineReservationList char***

A pointer to an array containing the list

of reservation IDs using this machine.

The array ends with a NULL string.

Machine LL_MachineReservationPermitted int*

A pointer to an integer to determine if

this machine can be reserved.

Machine LL_MachineScheddRunningJobs int* A pointer to an integer indicating a list

of the running jobs assigned to schedd.

Machine LL_MachineScheddState int* A pointer to an integer indicating the

machine’s schedd state.

Machine LL_MachineScheddTotalJobs int* A pointer to an integer indicating the

total number of jobs assigned to the

schedd.

Machine LL_MachineSpeed double* A pointer to a double containing the

configured speed of the machine.

Machine LL_MachineStartdRunningJobs int* A pointer to an integer containing the

number of running jobs known by the

startd daemon.

Machine LL_MachineStartdState char** A pointer to a string containing the state

of the startd daemon.

Machine LL_MachineStartExpr char** A pointer to a string containing the

machine’s start control expression.

Machine LL_MachineStepList char*** A pointer to an array containing the

steps running on the machine. The array

ends with a NULL string.

Machine LL_MachineSuspendExpr char** A pointer to a string containing the

machine’s suspend control expression.

Machine LL_MachineTimeStamp time_t* A pointer to a time_t structure indicating

the time the machine last reported to the

negotiator.

Data Access API

Chapter 16. Application programming interfaces (APIs) 467

||||
|
|

|||
|
|
|

|||||

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Machine LL_MachineVacateExpr char** A pointer to a string containing the

machine’s vacate control expression.

Machine LL_MachineVirtualMemory int* A pointer to an integer indicating the

free swap space in KBs on the machine.

Machine LL_MachineVirtualMemory64 int64_t*

A pointer to a 64-bit integer indicating

the free swap space in KBs on the

machine.

MachUsage LL_MachUsageDispUsageCount int* Count of Dispatch Usages

MachUsage LL_MachUsageGetFirstDispUsage LL_element* First Dispatch Usage

MachUsage LL_MachUsageGetNextDispUsage LL_element* Next Dispatch Usage

MachUsage LL_MachUsageMachineName char** Machine name

MachUsage LL_MachUsageMachineSpeed double* Machine speed

Node LL_NodeGetFirstTask LL_element* A pointer to the element associated with

the first task for this node.

Node LL_NodeGetNextTask LL_element* A pointer to the element associated with

the next task for this node.

Node LL_NodeInitiatorCount int* A pointer to an integer indicating the

number of tasks running on the node.

Node LL_NodeMaxInstances int* A pointer to an integer indicating the

maximum number of machines

requested.

Node LL_NodeMinInstances int* A pointer to an integer indicating the

minimum number of machines

requested.

Node LL_NodeRequirements char** A pointer to a string containing the node

requirements.

Node LL_NodeTaskCount int* A pointer to an integer indicating the

different types of tasks running on the

node.

Reservation LL_ReservationCreateTime time_t* A pointer to the time_t structure

indicating the creation time of the

reservation.

Reservation LL_ReservationDuration int* A pointer to an integer containing the

reservation duration in the unit of

minutes.

Reservation LL_ReservationGroup char** A pointer to a string containing the

LoadLeveler group that owns the

reservation.

Reservation LL_ReservationGroups char*** A pointer to an array containing the

LoadLeveler groups whose users may

run jobs in the reservation. The array

ends with a NULL string.

Reservation LL_ReservationID char** A pointer to a string containing the ID of

the reservation.

Reservation LL_ReservationJobs char*** A pointer to an array containing the job

steps bound to the reservation. The array

ends with a NULL string.

Data Access API

468 LoadLeveler: Using and Administering

||||
|
|

||||
|
|

||||
|
|

||||
|
|
|

||||
|

||||
|
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Reservation LL_ReservationMachines char*** A pointer to an array containing the

machines reserved by the reservation.

The array ends with a NULL string.

Reservation LL_ReservationModeRemoveOnIdle int* A pointer to an integer indicating that

RESERVATION_REMOVE_ON_IDLE

mode is on if 1; off if 0.

Reservation LL_ReservationModeShared int* A pointer to an integer indicating that

RESERVATION_SHARED mode is on if

1; off if 0.

Reservation LL_ReservationModifiedBy char** A pointer to a string containing the user

ID who last modified the reservation.

Reservation LL_ReservationModifyTime time_t* A pointer to the time_t structure

indicating the last modification time.

Reservation LL_ReservationOwner char** A pointer to a string containing the

owner of the reservation.

Reservation LL_ReservationStartTime time_t* A pointer to the time_t structure

indicating the beginning time of the

reservation.

Reservation LL_ReservationStatus int* A pointer to an integer containing the

state of the reservation that takes one of

the Reservation_State_t values in llapi.h.

Reservation LL_ReservationUsers char*** A pointer to an array containing the

users who may run jobs in the

reservation. The array ends with a

NULL string.

Resource LL_ResourceAvailableValue int* A pointer to an integer indicating the

value of available resources.

Resource LL_ResourceAvailableValue64 int64_t*

A pointer to a 64-bit integer indicating

the value of available resources.

Resource LL_ResourceInitialValue int* A pointer to an integer indicating the

initial resource value.

Resource LL_ResourceInitialValue64 int64_t*

A pointer to a 64-bit integer indicating

the initial resource value.

Resource LL_ResourceName char** A pointer to a string containing the

resource name.

ResourceReq LL_ResourceRequirementName char** A pointer to a string containing the

resource requirement name.

ResourceReq LL_ResourceRequirementValue int* A pointer to an integer indicating the

value of the resource requirement.

ResourceReq LL_ResourceRequirementValue64 int64_t*

A pointer to a 64-bit integer indicating

the value of the resource requirement.

Step LL_StepAccountNumber char** A pointer to a string containing the

account number specified by the user

submitting the job.

Data Access API

Chapter 16. Application programming interfaces (APIs) 469

||||
|
|

||||
|
|

||||
|
|

||||
|

||||
|

||||
|

||||
|
|

||||
|
|

||||
|
|
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepAcctKey int64_t* A pointer to a 64-bit integer that can be

used to identify all of the AIX

accounting records for the job step. This

value is only available from the history

file.

Step LL_StepBlocking int* A pointer to an integer representing

blocking as specified by the user in the

job command file.

v Returns -1 if unlimited is specified

v Returns 0 if blocking is unspecified

Step LL_StepBulkXfer int* A pointer to an integer that is set to 1 if

the step requested bulk transfer and 0 if

it did not.

Step LL_StepCheckpointable int* A pointer to an integer indicating if

checkpointing was enabled via the

checkpoint keyword (0=disabled,

1=enabled).

Step LL_StepCheckpointing Boolean If True, indicates that a checkpoint is

currently being taken for the step.

Step LL_StepCkptAccumTime int* A pointer to an integer indicating the

amount of accumulated time, in seconds,

that the job step has spent

checkpointing.

Step LL_StepCkptExecuteDirectory char** A pointer to a string containing the

directory where the job step’s executable

will be saved.

Step LL_StepCkptFailStartTime time_t* A pointer to a time_t structure indicating

the start time of the last unsuccessful

checkpoint.

Step LL_StepCkptFile char** A pointer to a string containing the

directory and file name which contain

checkpoint information for the last

successful checkpoint.

Step LL_StepCkptGoodElapseTime int* A pointer to an integer indicating the

amount of time, in seconds, it took for

the last successful checkpoint to

complete.

Step LL_StepCkptGoodStartTime time_t* A pointer to a time_t structure indicating

the start time of the last successful

checkpoint.

Step LL_StepCkptRestart int* A pointer to an integer indicating the

value specified by the user for the

restart_from_ckpt keyword (0= no, 1=

yes).

Step LL_StepCkptRestartSameNodes int* A pointer to a string indicating the value

specified by the user for the

restart_on_same_nodes keyword (0= no,

1= yes).

Data Access API

470 LoadLeveler: Using and Administering

||||
|
|
|
|

||||
|
|

||||
|
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepCkptTimeHardLimit int* A pointer to an integer indicating the

hard limit set by the user in the

ckpt_time_limit keyword.

Step LL_StepCkptTimeHardLimit64 int64_t*

A pointer to a 64-bit integer indicating

the hard limit set by the user in the

ckpt_time_limit keyword.

Step LL_StepCkptTimeSoftLimit int* A pointer to an integer indicating the

soft limit set by the user in

ckpt_time_limit keyword.

Step LL_StepCkptTimeSoftLimit64 int64_t*

A pointer to a 64-bit integer indicating

the soft limit set by the user in

ckpt_time_limit keyword.

Step LL_StepClassSystemPriority int* A pointer to an integer indicating the

class priority of the job step.

Step LL_StepComment char** A pointer to a string indicating the

comment specified by the user

submitting the job.

Step LL_StepCompletionCode int* A pointer to an integer indicating the

completion code of the step.

Step LL_StepCompletionDate time_t* A pointer to a time_t structure indicating

the completion date of the step.

Step LL_StepCoreLimitHard int* A pointer to an integer indicating the

core hard limit set by the user in the

core_limit keyword.

Step LL_StepCoreLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the core hard limit set by the user in the

core_limit keyword.

Step LL_StepCoreLimitSoft int* A pointer to an integer indicating the

core soft limit set by the user in the

core_limit keyword.

Step LL_StepCoreLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the core soft limit set by the user in the

core_limit keyword.

Step LL_StepCpuLimitHard int* A pointer to an integer indicating the

CPU hard limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the CPU hard limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuLimitSoft int* A pointer to an integer indicating the

CPU soft limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the CPU soft limit set by the user in the

cpu_limit keyword.

Step LL_StepCpuStepLimitHard int* A pointer to an integer indicating the

CPU step hard limit set by the user in

the job_cpu_limit keyword.

Data Access API

Chapter 16. Application programming interfaces (APIs) 471

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepCpuStepLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the CPU step hard limit set by the user

in the job_cpu_limit keyword.

Step LL_StepCpuStepLimitSoft int* A pointer to an integer indicating the

CPU step soft limit set by the user in the

job_cpu_limit keyword.

Step LL_StepCpuStepLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the CPU step soft limit set by the user in

the job_cpu_limit keyword.

Step LL_StepDataLimitHard int* A pointer to an integer indicating the

data hard limit set by the user in the

data_limit keyword.

Step LL_StepDataLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the data hard limit set by the user in the

data_limit keyword.

Step LL_StepDataLimitSoft int* A pointer to an integer indicating the

data soft limit set by the user in the

data_limit keyword.

Step LL_StepDataLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the data soft limit set by the user in the

data_limit keyword.

Step LL_StepDispatchTime time_t* A pointer to a time_t structure indicating

the time the negotiator dispatched the

job.

Step LL_StepEnvironment char** A pointer to a string containing the

environment variables set by the user in

the executable.

Step LL_StepErrorFile char** A pointer to a string containing the

standard error file name used by the

executable.

Step LL_StepExecSize int* A pointer to an integer indicating the

executable size.

Step LL_StepExecutionFactor int* A pointer to an integer indicating the

execution_factor of the job step.

Step LL_StepFileLimitHard int* A pointer to an integer indicating the file

hard limit set by the user in the

file_limit keyword.

Step LL_StepFileLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the file hard limit set by the user in the

file_limit keyword.

Step LL_StepFileLimitSoft int* A pointer to an integer indicating the file

soft limit set by the user in the file_limit

keyword.

Step LL_StepFileLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the file soft limit set by the user in the

file_limit keyword.

Step LL_StepGetFirstAdapterReq LL_element* A pointer to the element associated with

the first adapter requirement.

Data Access API

472 LoadLeveler: Using and Administering

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepGetFirstMachine LL_element* A pointer to the element associated with

the first machine in the step.

Step LL_StepGetFirstMachUsage LL_element* First Mach Usage

Step LL_StepGetFirstNode LL_element* A pointer to the element associated with

the first node of the step.

Step LL_StepGetFirstSwitchTable LL_element* A pointer to the element associated with

the first switch table for this step.

Step LL_StepGetMasterTask LL_element* A pointer to the element associated with

the master task of the step.

Step LL_StepGetNextAdapterReq LL_element* A pointer to the element associated with

the next adapter requirement.

Step LL_StepGetNextMachine LL_element* A pointer to the element associated with

the next machine of the step.

Step LL_StepGetNextMachUsage LL_element* Next Mach Usage of step

Step LL_StepGetNextNode LL_element* A pointer to the element associated with

the next node of the step.

Step LL_StepGetNextSwitchTable LL_element* A pointer to the element associated with

the next switch table for this step.

Step LL_StepGroupSystemPriority int* A pointer to an integer indicating the

group priority of a job step.

Step LL_StepHoldType int* A pointer to an integer indicating the

hold state of the step (user, system, etc).

The value returned is in the HoldType

enum.

Step LL_StepHostList char*** A pointer to an array containing the list

of hosts in the host.list file associated

with the step. The array ends with a null

string.

Step LL_StepID char** A pointer to a string containing the ID of

the step.

Step LL_StepImageSize int* A pointer to an integer indicating the

image size of the executable.

Step LL_StepImageSize64 int64_t*

A pointer to a 64-bit integer indicating

the image size of the executable.

Step LL_StepInputFile char** A pointer to a string containing the

standard input file name used by the

executable.

Step LL_StepIwd char** A pointer to a string containing the

initial working directory name used by

the executable.

Step LL_StepJobClass char** A pointer to a string containing the class

of the step.

Step LL_StepLargePage char** A pointer to a string containing the

Large Page level of support associated

with the job step.

Data Access API

Chapter 16. Application programming interfaces (APIs) 473

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepLoadLevelerGroup char** A pointer to a string containing the

name of the LoadLeveler group specified

by the step.

Step LL_StepMachineCount int* A pointer to an integer indicating the

number of machines assigned to the

step.

Step LL_StepMachUsageCount int* Count of Machine Usages

Step LL_StepMessages char** A pointer to a string containing a list of

messages from LoadLeveler

Step LL_StepName char** A pointer to a string containing the

name of the step.

Step LL_StepNodeCount int* A pointer to an integer indicating the

number of node objects associated with

the step.

Step LL_StepNodeUsage int* A pointer to an integer indicating the

node usage specified by the user

(SHARED or NOT_SHARED). The value

returned is in the enum Usage.

Step LL_StepOutputFile char** A pointer to a character string containing

the standard output file name used by

the executable.

Step LL_StepParallelMode int* A pointer to an integer indicating the

mode of the step.

Step LL_StepPreemptable int* A pointer to an integer indicating

whether the job step is preemptable. The

integer is set to 0 if the job step is not

preemptable and is set to 1 if the job

step is preemptable.

Step LL_StepPreemptWaitList char*** A pointer to an array containing the job

steps that an idle job must preempt. The

array ends with a NULL string.

Step LL_StepPriority int* A pointer to an integer indicating the

priority of the step.

Step LL_StepQueueSystemPriority int* A pointer to an integer indicating the

adjusted system priority of the job step.

Only the CM has the current value for

LL_StepQueueSystemPriority.

Step LL_StepRequestedReservationID char** A pointer to a string containing the

step’s requested reservation ID.

Step LL_StepReservationID char** A pointer to a string containing the

step’s reservation ID.

Step LL_StepRestart int* A pointer to an integer representing

whether restart is specified as yes

(default value) or no by the user in the

job command file.

v 1 indicates yes

v 0 indicates no

Data Access API

474 LoadLeveler: Using and Administering

||||
|
|
|
|

||||
|
|

||||
|

||||
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepRssLimitHard int* A pointer to an integer indicating the

RSS hard limit set by the user in the

rss_limit keyword.

Step LL_StepRssLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the RSS hard limit set by the user in the

rss_limit keyword.

Step LL_StepRssLimitSoft int* A pointer to an integer indicating the

RSS soft limit set by the user in the

rss_limit keyword.

Step LL_StepRssLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the RSS soft limit set by the user in the

rss_limit keyword.

Step LL_StepShell char** A pointer to a character string containing

the shell name used by the executable.

Step LL_StepStackLimitHard int* A pointer to an integer indicating the

stack hard limit set by the user in the

stack_limit keyword.

Step LL_StepStackLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the stack hard limit set by the user in

the stack_limit keyword.

Step LL_StepStackLimitSoft int* A pointer to an integer indicating the

stack soft limit set by the user in the

stack_limit keyword.

Step LL_StepStackLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the stack soft limit set by the user in the

stack_limit keyword.

Step LL_StepStartCount int* A pointer to an integer indicating the

number of times the step has been

started.

Step LL_StepStartDate time_t* A pointer to a time_t structure indicating

the value the user specified in the

startdate keyword.

Step LL_StepStarterIdrss64 int64_t* Starter idrss value

Step LL_StepStarterInblock64 int64_t* Starter inblock value

Step LL_StepStarterIsrss64 int64_t* Starter isrss value

Step LL_StepStarterIxrss64 int64_t* Starter ixrss value

Step LL_StepStarterMajflt64 int64_t* Starter majflt value

Step LL_StepStarterMaxrss64 int64_t* Starter maxrss value

Step LL_StepStarterMinflt64 int64_t* Starter minflt value

Step LL_StepStarterMsgrcv64 int64_t* Starter msgrcv value

Step LL_StepStarterMsgsnd64 int64_t* Starter msgsnd value

Step LL_StepStarterNivcsw64 int64_t* Starter nivcsw value

Step LL_StepStarterNsignals64 int64_t* Starter nsignals value

Step LL_StepStarterNswap64 int64_t* Starter nswap value

Step LL_StepStarterNvcsw64 int64_t* Starter nvcsw value

Step LL_StepStarterOublock64 int64_t* Starter oublock value

Data Access API

Chapter 16. Application programming interfaces (APIs) 475

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepStarterSystemTime64 int64_t* Starter system time

Step LL_StepStarterUserTime64 int64_t* Starter user time

Step LL_StepStartTime time_t* A pointer to a time_t structure indicating

the time at which the starter process for

the job started. This value is retrieved

from the schedd daemon and the history

file.

Step LL_StepState int* A pointer to an integer indicating the

state of the Step (Idle, Pending, Starting,

etc.). The value returned is in the

StepState enum.

Step LL_StepStepIdrss64 int64_t* Step idrss value

Step LL_StepStepInblock64 int64_t* Step inblock value

Step LL_StepStepIsrss64 int64_t* Step isrss value

Step LL_StepStepIxrss64 int64_t* Step ixrss value

Step LL_StepStepMajflt64 int64_t* Step majflt value

Step LL_StepStepMaxrss64 int64_t* Step maxrss value

Step LL_StepStepMinflt64 int64_t* Step minflt value

Step LL_StepStepMsgrcv64 int64_t* Step msgrcv value

Step LL_StepStepMsgsnd64 int64_t* Step msgsnd value

Step LL_StepStepNivcsw64 int64_t* Step nivcsw value

Step LL_StepStepNsignals64 int64_t* Step nsignals value

Step LL_StepStepNswap64 int64_t* Step nswap value

Step LL_StepStepNvcsw64 int64_t* Step nvcsw value

Step LL_StepStepOublock64 int64_t* Step oublock value

Step LL_StepStepSystemTime64 int64_t* Step system time

Step LL_StepStepUserTime64 int64_t* Step user time

Step LL_StepSystemPriority int*

A pointer to an integer indicating the

overall system priority of the job step.

Only the CM has the current value for

LL_StepSystemPriority.

Step LL_StepTaskGeometry char** A pointer to a string containing the

values specified in the task_geometry

statement by the user in the job

command file. The syntax is the same as

specified in the statement , {(task id, task

id, ...) (task id, task id, ...) ...}. If

unspecified, a null string is returned.

Step LL_StepTaskInstanceCount int* A pointer to an integer indicating the

number of task instances in the step.

This is only available from the schedd

daemon.

Step LL_StepTasksPerNode Requested int* A pointer to an integer representing the

tasks per node specified by the user in

the job command file. If unspecified, the

integer will contain a 0.

Data Access API

476 LoadLeveler: Using and Administering

||||
|
|
|
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Step LL_StepTotalNodesRequested char** A pointer to a string containing the

values specified by the user in the job

command file node statement. The

syntax is the same as specified in the

statement, [min],[max], where min

contains the minimum number of nodes

requested and max contains the

maximum nodes requested. If

unspecified, a null string is returned.

Step LL_StepTotalTasksRequested int* A pointer to an integer representing the

total tasks specified by the user in the

job command file. If unspecified, the

integer will contain a 0.

Step LL_StepUserSystemPriority int* A pointer to an integer indicating the

user system priority of the job step.

Step LL_StepWallClockLimitHard int* A pointer to an integer indicating the

wall clock hard limit set by the user in

the wall_clock_limit keyword.

Step LL_StepWallClockLimitHard64 int64_t*

A pointer to a 64-bit integer indicating

the wall clock hard limit set by the user

in the wall_clock_limit keyword.

Step LL_StepWallClockLimitSoft int* A pointer to an integer indicating the

wall clock soft limit set by the user in

the wall_clock_limit keyword.

Step LL_StepWallClockLimitSoft64 int64_t*

A pointer to a 64-bit integer indicating

the wall clock soft limit set by the user

in the wall_clock_limit keyword.

Step LL_StepWallClockUsed int*

A pointer to an integer that is the

number of seconds of elapsed time for

this step. This specification is valid only

for step objects obtained from the startd

daemon, and only when using the API

or Gang scheduler, otherwise a value of

zero is returned. The value does not

include any time that a job step has

spent in a preempted by suspend state

or doing a checkpoint.

Task LL_TaskExecutable char** A pointer to a string containing the

name of the executable.

Task LL_TaskExecutableArguments char** A pointer to a string containing the

arguments passed by the user in the

executable.

Task LL_TaskGetFirstResourceRequirement LL_element A pointer to the element associated with

the first resource requirement.

Task LL_TaskGetFirstTaskInstance LL_element* A pointer to the element associated with

the first task instance.

Task LL_TaskGetNextResourceRequirement LL_element* A pointer to the element associated with

the next resource requirement.

Task LL_TaskGetNextTaskInstance LL_element* A pointer to the element associated with

the next task instance.

Data Access API

Chapter 16. Application programming interfaces (APIs) 477

|||

|
|
|
|
|
|
|
|
|
|

Table 52. Specifications for ll_get_data subroutine (continued)

Object Specification

Resulting Data

Type

Description

Task LL_TaskIsMaster int* A pointer to an integer, where I indicates

master task.

Task LL_TaskTaskInstanceCount int* A pointer to an integer indicating the

number of task instances.

Task Instance LL_TaskInstanceAdapterCount int* A pointer to the integer indicating the

number of adapters.

Task Instance LL_TaskInstanceGetFirstAdapter LL_element* A pointer to the element associated with

the first adapter.

Task Instance LL_TaskInstanceGetFirstAdapterUsage LL_element* A pointer to the element associated with

the first adapter usage.

Task Instance LL_TaskInstanceGetNextAdapter LL_element* A pointer to the element associated with

the next adapter.

Task Instance LL_TaskInstanceGetNextAdapterUsage LL_element* A pointer to the element associated with

the next adapter usage.

Task Instance LL_TaskInstanceMachineName char** A pointer to the string indicating the

machine assigned to a task.

Task Instance LL_TaskInstanceTaskID int* A pointer to the integer indicating the

task ID.

WlmStat LL_WlmStatCpuSnapshotUsage int* A pointer to CPU usage obtained from

the AIX Workload Manager.

WlmStat LL_WlmStatCpuTotalUsage int64_t* A pointer to total CPU usage obtained

from the AIX Workload Manager.

WlmStat LL_WlmStatMemoryHighWater int64_t* A pointer to real memory high water

mark obtained from the AIX Workload

Manager.

WlmStat LL_WlmStatMemorySnapshotUsage int* A pointer to real memory usage obtained

from the AIX Workload Manager.

ll_next_obj subroutine

Purpose

The ll_next_obj subroutine returns the next object in the query_element list you

specify.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

LL_element * ll_next_obj (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

Data Access API

478 LoadLeveler: Using and Administering

|

Use this subroutine in conjunction with the ll_get_objs subroutine to “loop”

through the list of objects queried.

Return values

This subroutine returns a pointer to the next object in the list.

Error values

NULL Indicates an error or the end of the list of objects.

Related information

Subroutines: ll_get_data, ll_set_request, ll_query, ll_get_objs, ll_free_objs,

ll_deallocate

ll_free_objs subroutine

Purpose

The ll_free_objs subroutine frees all of the LL_element objects in the query_element

list that were obtained by the ll_get_objs subroutine. You must free the

query_element by using the ll_deallocate subroutine.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_free_objs (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

Return values

This subroutine returns a zero to indicate success.

Error values

-1 You specified a query_element that is not valid.

Related information

Subroutines: ll_get_data, ll_set_request, ll_query, ll_get_objs, ll_reset_request,

ll_free_objs

ll_deallocate subroutine

Purpose

The ll_deallocate subroutine deallocates the query_element allocated by the ll_query

subroutine.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Data Access API

Chapter 16. Application programming interfaces (APIs) 479

|

|

Syntax

#include "llapi.h"

int ll_deallocate (LL_element *query_element);

Parameters

query_element

Is a pointer to the LL_element returned by the ll_query function.

Description

query_element is the input field for this subroutine.

Return values

This subroutine returns a zero to indicate success.

Error values

-1 You specified a query_element that is not valid.

Related information

Subroutines: ll_get_data, ll_set_request, ll_query, ll_get_objs, ll_reset_request,

ll_next_obj, ll_free_objs

Examples of using the Data Access API

These examples are provided in the samples/lldata_access subdirectory of the

release directory (usually /usr/lpp/LoadL/full).

Example 1: The following example shows how LoadLeveler’s Data Access API can

be used to obtain machine, job, and cluster information. The program consists of

three steps:

1. Getting information about selected hosts in the LoadLeveler cluster

2. Getting information about jobs of selected classes

3. Getting floating consumable resource information in the LoadLeveler cluster

Data Access API

480 LoadLeveler: Using and Administering

#include <stdio.h>

#include "llapi.h"

main(int argc, char *argv[])

{

 LL_element *queryObject, *machine, *resource, *cluster;

 LL_element *job, *step, *node, *task, *credential, *resource_req;

 int rc, obj_count, err_code, value;

 double load_avg;

 enum StepState step_state;

 char **host_list, **class_list;

 char *name, *res_name, *step_id, *job_class, *node_req;

 char *task_exec, *ex_args, *startd_state;

 /* Step 1: Display information of selected machines in the LL cluster */

 /* Initialize the query: Machine query */

 queryObject = ll_query(MACHINES);

 if (!queryObject) {

 printf("Query MACHINES: ll_query() returns NULL.\n"); exit(1);

 }

 /* Set query parameters: query specific machines by name */

 host_list = (char **)malloc(3*sizeof(char *));

 host_list[0] = "c163n12.ppd.pok.ibm.com";

 host_list[1] = "c163n11.ppd.pok.ibm.com";

 host_list[2] = NULL;

 rc = ll_set_request(queryObject, QUERY_HOST, host_list, ALL_DATA);

 if (rc) {

 printf("Query MACHINES: ll_set_request() return code is non-zero.\n"); exit(1);

 }

 /* Get the machine objects from the LoadL_negotiator (central manager) daemon */

 machine = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);

 if (machine == NULL) {

 printf("Query MACHINES: ll_get_objs() returns NULL. Error code = %d\n", err_code);

 }

 printf("Number of machines objects returned = %d\n", obj_count);

 /* Process the machine objects */

 while(machine) {

 rc = ll_get_data(machine, LL_MachineName, &name);

 if (!rc) {

 printf("Machine name: %s ------------------\n", name); free(name);

 }

 rc = ll_get_data(machine, LL_MachineStartdState, &stard_state);

 if (rc) {

 printf("Query MACHINES: ll_get_data() return code is non-zero.\n"); exit(1);

 }

Figure 41. Obtaining machine, job, and cluster information with the Data Access API (Part 1 of 4)

Data Access API

Chapter 16. Application programming interfaces (APIs) 481

printf("Startd State: %s\n", startd_state);

 if (strcmp(startd_state, "Down") != 0) {

 rc = ll_get_data(machine, LL_MachineRealMemory, &value);

 if (!rc) printf("Total Real Memory: %d\n", value);

 rc = ll_get_data(machine, LL_MachineVirtualMemory, &value);

 if (!rc) printf("Free Swap Space: %d\n", value);

 rc = ll_get_data(machine, LL_MachineLoadAverage, &load_avg);

 if (!rc) printf("Load Average: %f\n", load_avg);

 }

 free(startd_state);

 /* Consumable Resources associated with this machine */

 resource = NULL;

 ll_get_data(machine, LL_MachineGetFirstResource, &resource);

 while(resource) {

 rc = ll_get_data(resource, LL_ResourceName, &res_name);

 if (!rc) {printf("Resource Name = %s\n", res_name); free (res_name);}

 rc = ll_get_data(resource, LL_ResourceInitialValue, &value);

 if (!rc) printf(" Total: %d\n", value);

 rc = ll_get_data(resource, LL_ResourceAvailableValue, &value);

 if (!rc) printf(" Available: %d\n", value);

 resource = NULL;

 ll_get_data(machine, LL_MachineGetNextResource, &resource);

 }

 machine = ll_next_obj(queryObject);

 }

 /* Free objects obtained from Negotiator */

 ll_free_objs(queryObject);

 /* Free query element */

 ll_deallocate(queryObject);

 /* Step 2: Display information of selected jobs */

 /* Initialize the query: Job query */

 queryObject = ll_query(JOBS);

 if (!queryObject) {

 printf("Query JOBS: ll_query() returns NULL.\n");

 exit(1);

 }

 /* Query all class "Parallel" and "No_Class" jobs submitted to c163n11, c163n12 */

 class_list = (char **)malloc(3*sizeof(char *));

 class_list[0] = "Parallel";

 class_list[1] = "No_Class";

 class_list[2] = NULL;

 rc = ll_set_request(queryObject, QUERY_HOST, host_list, ALL_DATA);

 if (rc) {printf("Query JOBS: ll_set_request() return code is non-zero.\n"); exit(1);}

 rc = ll_set_request(queryObject, QUERY_CLASS, class_list, ALL_DATA);

 if (rc) {printf("Query JOBS: ll_set_request() return code is non-zero.\n"); exit(1);}

 /* Get the requested job objects from the Central Manager */

 job = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);

 if (job == NULL) {

 printf("Query JOBS: ll_get_objs() returns NULL. Error code = %d\n", err_code);

 }

 printf("Number of job objects returned = %d\n", obj_count);

 /* Process the job objects and display selected information of each job step.

Figure 41. Obtaining machine, job, and cluster information with the Data Access API (Part 2 of 4)

Data Access API

482 LoadLeveler: Using and Administering

*

 * Notes:

 * 1. Since LL_element is defined as "void" in llapi.h, when using

 * ll_get_data it is important that a valid "specification"

 * parameter be used for a given "element" argument.

 * 2. Checking of return code is not always made in the following

 * loop to minimize the length of the listing.

 */

 while(job) {

 rc = ll_get_data(job, LL_JobName, &name);

 if (!rc) {printf("Job name: %s\n", name); free(name);}

 rc = ll_get_data(job, LL_JobCredential, &credential);

 if (!rc) {

 rc = ll_get_data(credential, LL_CredentialUserName, &name);

 if (!rc) {printf("Job owner: %s\n", name); free(name);}

 rc = ll_get_data(credential, LL_CredentialGroupName, &name);

 if (!rc) {printf("Unix Group: %s\n", name); free(name);}

 }

 step = NULL;

 ll_get_data(job, LL_JobGetFirstStep, &step);

 while(step) {

 rc = ll_get_data(step, LL_StepID, &step_id);

 if (!rc) {printf(" Step ID: %s\n", step_id); free(step_id);}

 rc = ll_get_data(step, LL_StepJobClass, &job_class);

 if (!rc) {printf(" Step Job Class: %s\n", job_class); free(job_class);}

 rc = ll_get_data(step, LL_StepState, &step_state);

 if (!rc) {

 if (step_state == STATE_RUNNING) {

 printf(" Step Status: Running\n");

 printf(" Allocated Hosts:\n");

 machine = NULL;

 ll_get_data(step, LL_StepGetFirstMachine, &machine);

 while(machine) {

 rc = ll_get_data(machine, LL_MachineName, &name);

 if (!rc) { printf(" %s\n", name); free(name); }

 machine = NULL;

 ll_get_data(step, LL_StepGetNextMachine, &machine);

 }

 }else {

 printf(" Step Status: Not Running\n");

 }

 }

 node = NULL;

 ll_get_data(step, LL_StepGetFirstNode, &node);

 while(node) {

 rc = ll_get_data(node, LL_NodeRequirements, &node_req);

 if (!rc) {printf(" Node Requirements: %s\n", node_req); free(node_req);}

 task = NULL;

 ll_get_data(node, LL_NodeGetFirstTask, &task);

 while(task) {

Figure 41. Obtaining machine, job, and cluster information with the Data Access API (Part 3 of 4)

Data Access API

Chapter 16. Application programming interfaces (APIs) 483

Example 2: The following example shows how LoadLeveler’s Data Access API can

be used to extract job accounting information saved in a history file.

 rc = ll_get_data(task, LL_TaskExecutable, &task_exec);

 if (!rc) {printf(" Task Executable: %s\n", task_exec); free(task_exec);}

 rc = ll_get_data(task, LL_TaskExecutableArguments, &ex_args);

 if (!rc) {printf(" Task Executable Arguments: %s\n",ex_args);

 free(ex_args);}

 resource_req = NULL;

 ll_get_data(task, LL_TaskGetFirstResourceRequirement, &resource_req);

 while(resource_req) {

 rc = ll_get_data(resource_req, LL_ResourceRequirementName, &name);

 if (!rc) {printf(" Resource Req Name: %s\n", name); free(name);}

 rc = ll_get_data(resource_req, LL_ResourceRequirementValue, &value);

 if (!rc) {printf(" Resource Req Value: %d\n", value);}

 resource_req = NULL;

 ll_get_data(task, LL_TaskGetNextResourceRequirement, &resource_req);

 }

 task = NULL;

 ll_get_data(node, LL_NodeGetNextTask, &task);

 }

 node = NULL;

 ll_get_data(step, LL_StepGetNextNode, &node);

 }

 step = NULL;

 ll_get_data(job, LL_JobGetNextStep, &step);

 }

 job = ll_next_obj(queryObject);

 }

 ll_free_objs(queryObject);

 ll_deallocate(queryObject);

 /* Step 3: Display Floating Consumable Resources information of LL cluster. */

 /* Initialize the query: Cluster query */

 queryObject = ll_query(CLUSTERS);

 if (!queryObject) {

 printf("Query CLUSTERS: ll_query() returns NULL.\n");

 exit(1);

 }

 ll_set_request(queryObject, QUERY_ALL, NULL, ALL_DATA);

 cluster = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);

 if (!cluster) {

 printf("Query CLUSTERS: ll_get_objs() returns NULL. Error code = %d\n", err_code);

 }

 printf("Number of Cluster objects = %d\n", obj_count);

 while(cluster) {

 resource = NULL;

 ll_get_data(cluster, LL_ClusterGetFirstResource, &resource);

 while(resource) {

 rc = ll_get_data(resource, LL_ResourceName, &res_name);

 if (!rc) {printf("Resource Name = %s\n", res_name); free(res_name);}

 rc = ll_get_data(resource, LL_ResourceInitialValue, &value);

 if (!rc) {printf("Resource Initial Value = %d\n", value);}

 rc = ll_get_data(resource, LL_ResourceAvailableValue, &value);

 if (!rc) {printf("Resource Available Value = %d\n", value);}

 resource = NULL;

 ll_get_data(cluster, LL_ClusterGetNextResource, &resource);

 }

 cluster = ll_next_obj(queryObject);

 }

 ll_free_objs(queryObject);

 ll_deallocate(queryObject);

}

Figure 41. Obtaining machine, job, and cluster information with the Data Access API (Part 4 of 4)

Data Access API

484 LoadLeveler: Using and Administering

#include <stdio.h>

#include "llapi.h"

#define STR_NULL(ptr) (ptr ? ptr : "")

main(int argc, char *argv[])

{

 LL_element *queryObject, *job = NULL, *step = NULL;

 LL_element *mach_usage = NULL, *disp_usage = NULL, *event_usage = NULL;

 int64_t int64_data;

 int rc, obj_count, err_code, job_count, step_count, int_data;

 char *str_data;

 char *start_dates[] = { "01/23/2005", "01/25/2005", NULL };

 char *end_dates[] = { "01/23/2005", "02/01/2005", NULL };

 int mach_usage_count, disp_usage_count, event_usage_count;

 /* Initialize the query: Job query */

 queryObject = ll_query(JOBS);

 if (!queryObject) { printf("Query JOBS: ll_query() returns NULL.\n"); exit(1); }

 /* Request information of job steps started/ended between certain dates. */

 rc = ll_set_request(queryObject, QUERY_STARTDATE, start_dates, ALL_DATA);

 if (rc) { printf("ll_set_request() - QUERY_STARTDATE - RC = %d\n", rc); exit(1); }

 rc = ll_set_request(queryObject, QUERY_ENDDATE, end_dates, ALL_DATA);

 if (rc) { printf("ll_set_request() - QUERY_ENDDATE - RC = %d\n", rc); exit(1); }

 /* Get the requested job objects from the specified history file. */

 job = ll_get_objs(queryObject, LL_HISTORY_FILE,

 "/tmp/spool/c209f1n05/history", &obj_count, &err_code);

 if (!job) { printf("ll_get_objs() returns NULL. Error code = %d\n", err_code); exit(1); }

 printf("***\n");

 printf("Number of job objects returned = %d\n", obj_count);

 printf("***\n");

 /* Loop through the job objects. */

 job_count = 0;

 while (job) {

 job_count++;

 printf("===\n");

 printf("Job number = %d\n", job_count);

 /* Loop through the job step objects. */

Figure 42. Extracting job accounting information from a history file (Part 1 of 3)

Data Access API

Chapter 16. Application programming interfaces (APIs) 485

ll_get_data(job, LL_JobGetFirstStep, &step);

 step_count = 0;

 while (step) {

 step_count++;

 printf(" ==\n");

 printf(" Step number = %d\n", step_count);

 ll_get_data(step, LL_StepID, &str_data);

 printf(" LL_StepID = %s\n", STR_NULL(str_data));

 ll_get_data(step, LL_StepImageSize, &int_data);

 printf(" LL_StepImageSize = %d\n", int_data);

 ll_get_data(step, LL_StepImageSize64, &int64_data);

 printf(" LL_StepImageSize64 = %lld\n", int64_data);

 /* Process CPU limit */

 ll_get_data(step, LL_StepCpuLimitHard, &int_data);

 printf(" LL_StepCpuLimitHard = %d\n", int_data);

 ll_get_data(step, LL_StepCpuLimitHard64, &int64_data);

 printf(" LL_StepCpuLimitHard64 = %lld\n", int64_data);

 ll_get_data(step, LL_StepCpuLimitSoft, &int_data);

 printf(" LL_StepCpuLimitSoft = %d\n", int_data);

 ll_get_data(step, LL_StepCpuLimitSoft64, &int64_data);

 printf(" LL_StepCpuLimitSoft64 = %lld\n", int64_data);

 /* Job Step CPU limit */

 ll_get_data(step, LL_StepCpuStepLimitHard64, &int64_data);

 printf(" LL_StepCpuStepLimitHard64 = %lld\n", int64_data);

 ll_get_data(step, LL_StepCpuStepLimitSoft64, &int64_data);

 printf(" LL_StepCpuStepLimitSoft64 = %lld\n", int64_data);

 /* Process Data Limit */

 ll_get_data(step, LL_StepDataLimitHard64, &int64_data);

 printf(" LL_StepDataLimitHard64 = %lld\n", int64_data);

 ll_get_data(step, LL_StepDataLimitSoft64, &int64_data);

 printf(" LL_StepDataLimitSoft64 = %lld\n", int64_data);

 /* CPU time used by the job step. */

 ll_get_data(step, LL_StepStepUserTime64, &int64_data);

 printf(" LL_StepStepUserTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(step, LL_StepStepSystemTime64, &int64_data);

 printf(" LL_StepStepSystemTime64 = %lld (microsecs)\n", int64_data);

 /* Loop through the machine usage objects. */

 /* A parallel job step run on 3 machines typically has 3 machine usage objects. */

 mach_usage_count = 0;

 rc = ll_get_data(step, LL_StepGetFirstMachUsage, &mach_usage);

 while (mach_usage) {

 mach_usage_count++;

Figure 42. Extracting job accounting information from a history file (Part 2 of 3)

Data Access API

486 LoadLeveler: Using and Administering

Error Handling API

This API allows you to gather the information contained in the LoadLeveler error

object and output that information as an error message.

ll_error subroutine

Purpose

This routine converts a LoadLeveler error object to an error message string. As an

option, you can print the error message string to stdout or stderr.

 printf(" --\n");

 printf(" Machine Usage number = %d\n", mach_usage_count);

 ll_get_data(mach_usage, LL_MachUsageMachineName, &str_data);

 printf(" Machine name = %s\n", STR_NULL(str_data));

 /* Loop through the dispatch usage objects. */

 disp_usage_count = 0;

 ll_get_data(mach_usage, LL_MachUsageGetFirstDispUsage, &disp_usage);

 while (disp_usage) {

 disp_usage_count++;

 printf(" ---\n");

 printf(" Dispatch Usage number = %d\n", disp_usage_count);

 ll_get_data(disp_usage, LL_DispUsageStepUserTime64, &int64_data);

 printf(" LL_DispUsageStepUserTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(disp_usage, LL_DispUsageStepSystemTime64, &int64_data);

 printf(" LL_DispUsageStepSystemTime64 = %lld (microsecs)\n", int64_data);

 /* Loop through the event usage objects. */

 /* Each dispatch typically has 2 events: "started" and "completed". */

 /* There may be other events if the LL administrator executes the command */

 /* "llctl -g capture <user event name>" while the job is running. */

 event_usage_count = 0;

 ll_get_data(disp_usage, LL_DispUsageGetFirstEventUsage, &event_usage);

 while (event_usage) {

 event_usage_count++;

 printf(" --\n");

 printf(" Event Usage number = %d\n", event_usage_count);

 ll_get_data(event_usage, LL_EventUsageEventName, &str_data);

 printf(" LL_EventUsageEventName = %s\n", STR_NULL(str_data));

 ll_get_data(event_usage, LL_EventUsageStepUserTime64, &int64_data);

 printf(" LL_EventUsageStepUserTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(event_usage, LL_EventUsageStepSystemTime64, &int64_data);

 printf(" LL_EventUsageStepSystemTime64 = %lld (microsecs)\n", int64_data);

 ll_get_data(disp_usage, LL_DispUsageGetNextEventUsage, &event_usage);

 }

 ll_get_data(mach_usage, LL_MachUsageGetNextDispUsage, &disp_usage);

 }

 rc = ll_get_data(step, LL_StepGetNextMachUsage, &mach_usage);

 }

 ll_get_data(job, LL_JobGetNextStep, &step);

 }

 job = ll_next_obj(queryObject);

 }

 exit(0);

}

Figure 42. Extracting job accounting information from a history file (Part 3 of 3)

Data Access API

Chapter 16. Application programming interfaces (APIs) 487

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

char *ll_error (LL_element **errObj, int print_to);

Parameters

errObj

This is the address of a pointer to a LoadLeveler error object.

print_to

 1 - print error message to stdout

 2 - print error message to stderr

 Any other value - no error message printed

Description

It is caller’s responsibility to free the storage associated with the error message

string.

The LoadLeveler error object pointed to by *errObj is deleted upon exit and NULL

is assigned to *errObj.

Return values

The ll_error API returns a pointer to an error message string.

Error values

The ll_error API returns a NULL if the error object is NULL.

Parallel Job API

If you are using any of the parallel operating environments already supported by

LoadLeveler, you do not have to use the parallel API. However, if you have

another application environment that you want to use, you need to use the

subroutines described here to interface with LoadLeveler.

LoadLeveler for Linux does not support the parallel job API.

The parallel job API consists of two subroutines:

v ll_get_hostlist acquires the list of LoadLeveler selected parallel nodes.

v ll_start_host starts the parallel task under the LoadLeveler starter.

The following section describes how parallel job submission works. Understanding

this will help you to better understand the parallel API.

Interaction between LoadLeveler and the parallel API

This API does not give you access to any new LoadLeveler functions from Version

2 Release 1.0, or later releases.

Program applications which use the parallel APIs to interface with LoadLeveler are

supported under a job type called parallel. When a user submits a job specifying

the keyword job_type equal to parallel, the LoadLeveler API job control flow is as

follows:

Data Access API

488 LoadLeveler: Using and Administering

|

The negotiator selects nodes based on the resources you request. Once the nodes

have been obtained, the negotiator contacts the schedd to start the job. The schedd

marks the job pending and contacts the affected startds to start their starter

processes.

One machine becomes the Master Starter. The Master Starter is one of the selected

parallel nodes. After all starters are started and have completed initialization, the

Master Starter starts the executable specified in the job command file. The

executable referred to as the Parallel Master uses this API to start tasks on remote

nodes. A LOADLBATCH environment variable is set to YES so that the Parallel

Master can distinguish between callers.

The Parallel Master must:

v Obtain the machine list through the ll_get_hostlist API.

v Start a task on all allocated machines through the ll_start_host API. It is

mandatory that one and only one task be started on each machine. Each task is

considered a Parallel Slave. Acquiring the task name, path and arguments is the

responsibility of the Parallel Master. The user may pass this information through

the arguments or environment keywords in the job command file.

When the Parallel Master starts, the job is marked Running. Once the Parallel

Master and all tasks exit, the job is marked Complete.

Termination paths

The Parallel Master is expected to cleanup and exit when:

v All of the Parallel Slaves have exited.

v A negative value is returned by either the ll_get_hostlist or ll_start_host

subroutine.

v A SIGCONT, followed by a SIGTERM, is received. A possible reason for this is

that LoadLeveler receives a job cancel request.

The SIGTERM is also sent to all parallel tasks.

v A SIGCONT, followed by a SIGUSR1, is received. Reasons for this include:

– The Parallel Master receives a VACATE or FLUSH request.

– LoadLeveler receives a stop LoadLeveler daemons command.
The SIGUSR1 is also sent to all parallel tasks.

A SIGKILL is issued to any process which does not exit within two minutes of

receiving a termination signal.

Note that a SIGUSER1 indicates the job must terminate but will be restarted, while

a SIGTERM indicates the job must terminate but will not be restarted.

ll_get_hostlist subroutine

Purpose

This subroutine obtains a list of machines from the Master Starter machine so that

the Parallel Master can start the Parallel Slaves. The Parallel Master is the

LoadLeveler executable specified in the job command file and the Parallel Slaves

are the processes started by the Parallel Master through the ll_start_host API.

Note: This API is obsolete and is supported for backward compatibility only.

Parallel Job API

Chapter 16. Application programming interfaces (APIs) 489

Library

LoadLeveler API library libllapi.a

Syntax

int ll_get_hostlist (struct JM_JOB_INFO* jobinfo);

Parameters

jobinfo is a pointer to the JM_JOB_INFO structure defined in llapi.h. No fields are

required to be filled in. ll_get_hostlist allocates storage for an array of

JM_NODE_INFO structures and returns the pointer in the jm_min_node_info pointer.

It is the caller’s responsibility to free this storage.

struct JM_JOB_INFO {

 int jm_request_type;

 char jm_job_description[50];

 enum JM_ADAPTER_TYPE jm_adapter_type;

 int jm_css_authentication;

 int jm_min_num_nodes;

 struct JM_NODE_INFO *jm_min_node_info;

};

struct JM_NODE_INFO {

 char jm_node_name [MAXHOSTNAMELEN];

 char jm_node_address [50];

 int jm_switch_node_number;

 int jm_pool_id;

 int jm_cpu_usage;

 int jm_adapter_usage;

 int jm_num_virtual_tasks;

 int *jm_virtual_task_ids;

 enum JM_RETURN_CODE jm_return_code;

};

The following data is filled in for the JM_JOB_INFO structure:

jm_min_num_nodes

Is the number of elements in the array of JM_NODE_INFO structures. It is the

number of hosts allocated to a job.

jm_min_node_info

Is the pointer to the array of JM_NODE_INFO structures. The first entry in this

array describes the node which is mapped to task 0. The second entry is

mapped to task 1, and so on.

The following data is filled in for each JM_NODE_INFO structure:

jm_node_name

Is the name of the node.

jm_node_address

Is the address corresponding to the adapter requested.

jm_switch_node_number

Is the relative node number set only for job running on the SP switch adapter.

For all other jobs it is set to -1.

Description

The Parallel Master must:

v Issue error messages as appropriate.

v Exit when ll_get_hostlist returns with a negative return value. The Parallel

Master exit status is included in the job mail returned to the user.

Parallel Job API

490 LoadLeveler: Using and Administering

Return values

This subroutine returns a zero to indicate success.

Error values

-2 Cannot get LoadLeveler step ID from environment.

-5 Cannot make socket. This means that the UNIX stream socket could not be

created. This socket is needed to establish communications with the starter

for both of the API’s functions.

-6 Cannot connect to host.

-8 Cannot get hostlist.

-10 DCE identity cannot be determined.

-11 No DCE credentials.

-12 DCE credentials within 300 secs of expiration.

-13 64-bit API not supported when DCE is enabled.

ll_start_host subroutine

Purpose

This subroutine starts a task on a selected machine.

Library

LoadLeveler API library libllapi.a

Syntax

int ll_start_host (char *host, char *start_cmd);

Parameters

host

Is the name of the node on which you want to start the task.

start_cmd

Is the actual command to execute on the node, including flags and arguments.

Description

This function must be invoked for all the machines returned from the

ll_get_hostlist subroutine once and only once by the Parallel Master. Acquiring the

start_cmd is the responsibility of the Parallel Master. The user may pass this

information through the arguments or environment keywords in the job command

file.

The Parallel Master must:

v Issue error messages as appropriate.

v Exit when ll_start_host returns a negative value. The Parallel Master exit status

is included in the job mail returned to the user.

Return values

This subroutine returns an integer greater than one to indicate the socket

connected to the Parallel Slave’s standard I/O (stdio).

Error values

-2 Cannot get LoadLeveler step ID from environment.

-4 Nameserver cannot resolve host.

-6 Cannot connect to host.

-7 Cannot send PASS_OPEN_SOCKET command to remote startd.

-9 The command you specified failed.

Parallel Job API

Chapter 16. Application programming interfaces (APIs) 491

Examples

A sample program called para_api.c is provided in the samples/llpara subdirectory

of the release directory, usually /usr/lpp/LoadL/full.

In order to run this example, you need to do the following:

1. Copy the sample Makefile and the sample program called para_api.c to your

home directory.

2. Update the startCmd variable in para_api.c to reflect your home directory

versus /usr/lpp/LoadL/full/samples/llpara. For example:

char *startCmd = "/home/user/para_api -s";

3. Issue make to create the executable para_api.

4. Update your job command file as follows:

#!/bin/ksh

@ initialdir = /home/user

@ executable = para_api

@ output = para_api.$(cluster).$(process).out

@ error = para_api.$(cluster).$(process).err

@ job_type = parallel

@ min_processors = 2

@ max_processors = 2

@ queue

5. Submit the job command file to LoadLeveler.

The syntax to invoke the Parallel Master is:

 para_api

The syntax to invoke the Parallel Slave is:

 para_api -s

The Parallel Master does the following:

v Acquires the hostlist through the ll_get_hostlist API and prints out the

returned fields.

v Starts a Parallel Slave task by executing the command specified in the

StartCmd variable on all hosts returned in the hostlist.

v Acquires the socket connected to the Parallel Slave’s standard I/O (stdio).

v Writes a command over the socket to verify stdin.

v Reads acknowledgments over the socket to verify stderr and stdout.

v Prints out host names and acknowledgments.

Example output follows:

num_nodes=2

name=host1.kgn.ibm.com address=9.115.8.162 switch_number=-1

name=host2.kgn.ibm.com address=9.115.8.164 switch_number=-1

Connected to host1.kgn.ibm.com at sock 3

Received acko "8000" and acke "10000" from host 0

Connected to host2.kgn.ibm.com at sock 4

Received acko "8001" and acke "10001" from host 1

<Master Exiting>

The Parallel Slave does the following:

v Reads command from stdin.

Parallel Job API

492 LoadLeveler: Using and Administering

v Writes acknowledgment to stdout and stderr.

Query API

This API provides information about the jobs and machines in the LoadLeveler

cluster. You can use this together with the workload management API, since the

workload management API requires you to know which machines are available

and which jobs need to be scheduled. See “Workload Management API” on page

509 for more information. These APIs exist for backward compatibility. It is

recommended that you use the Data Access API when possible.

LoadLeveler for Linux does not support the query API.

The query API consists of the following subroutines: ll_get_jobs, ll_free_jobs

ll_get_nodes, and ll_free_nodes.

ll_get_jobs subroutine

Purpose

This subroutine, available to any user, returns information about all jobs in the

LoadLeveler job queue.

Note: This is an obsolete API and is supported for backward compatibility only.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_get_jobs (LL_get_jobs_info *);

Parameters

ptr Specifies the pointer to the LL_get_jobs_info structure that was allocated by

the caller. The LL_get_jobs_info members are:

int version_num

Represents the version number of the LL_start_job_info structure. This

should be set to LL_PROC_VERSION.

int numJobs

Represents the number of entries in the array.

LL_job **JobList

Represents the pointer to an array of LL_job structures. The LL_job

structure is defined in llapi.h.

Description

The LL_get_jobs_info structure contains an array of LL_job structures indicating

each job in the LoadLeveler system.

Some job information, such as the start time of the job, is not available to this API.

(It is recommended that you use the dispatch time, which is available, in place of

the start time.) Also, some accounting information is not available to this API.

Parallel Job API

Chapter 16. Application programming interfaces (APIs) 493

Return values

This subroutines returns a value of zero when successful. Otherwise, it returns an

integer value defined in the llapi.h file.

Error values

-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

-16 DCE identity cannot be determined.

-17 No DCE credentials.

-18 DCE credentials within 300 secs of expiration.

-19 64-bit API not supported when DCE is enabled.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related information

Subroutines: ll_free_jobs, ll_free_nodes, ll_get_nodes.

ll_free_jobs subroutine

Purpose

This subroutine, available to any user, frees storage that was allocated by

ll_get_jobs.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_free_jobs (LL_get_jobs_info *ptr);

Parameters

ptr Specifies the address of the LL_get_jobs_info structure to be freed.

Description

This subroutine frees the storage pointed to by the LL_get_jobs_info pointer.

Return values

This subroutines returns a value of zero when successful. Otherwise, it returns an

integer value defined in the llapi.h file.

Error values

-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related information

Subroutines: ll_get_jobs, ll_free_nodes, ll_get_nodes

Query API

494 LoadLeveler: Using and Administering

ll_get_nodes subroutine

Purpose

This subroutine, available to any user, returns information about all of nodes

known by the negotiator daemon.

Note: This is an obsolete API and is supported for backward compatibility only.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_get_nodes(LL_get_nodes_info *ptr);

Parameters

ptr Specifies the pointer to the LL_get_nodes_info structure that was allocated by

the caller. The LL_get_nodes_info members are:

int version_num

Represents the version number of the LL_start_job_info structure.

int numNodes

Represents the number of entries in the NodeList array.

LL_node **NodeList

Represents the pointer to an array of LL_node structures. The LL_node

structure is defined in llapi.h.

Description

The LL_get_node_info structure contains an array of LL_job structures indicating

each node in the LoadLeveler system.

Return values

This subroutine returns a value of zero when successful.

Error values

-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

-16 DCE identity cannot be determined.

-17 No DCE credentials.

-18 DCE credentials within 300 secs of expiration.

-19 64-bit API not supported when DCE is enabled.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related information

Subroutines: ll_free_jobs, ll_free_nodes, ll_get_jobs

Query API

Chapter 16. Application programming interfaces (APIs) 495

ll_free_nodes subroutine

Purpose

This subroutine, available to any user, frees storage that was allocated by

ll_get_nodes.

Library

LoadLeveler API library libllapi.a

Syntax

#include "llapi.h"

int ll_nodes_jobs (LL_get_nodes_info *ptr);

Parameters

ptr Specifies the address of the LL_get_nodes_info structure to be freed.

Description

This subroutine frees the storage pointed to by the LL_get_nodes_info pointer.

Return values

This subroutines returns a value of zero when successful.

Error values

-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory.

Related information

Subroutines: ll_get_jobs, ll_free_nodes, ll_get_nodes

Reservation API

This API allows you to make, change, and remove reservations. In addition, it

provides the ability to bind job steps to a reservation and unbind job steps from a

reservation. General users should refer to “Working with reservations” on page 171

for additional information. Additional information for LoadLeveler administrators

is in “Configuring LoadLeveler to support reservations” on page 117.

This API consists of the following subroutines:

v ll_make_reservation

v ll_init_reservation_param

v ll_change_reservation

v ll_bind

v ll_remove_reservation

ll_make_reservation subroutine

Purpose

The ll_make_reservation subroutine enables you to create a LoadLeveler

reservation.

Query API

496 LoadLeveler: Using and Administering

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_make_reservation (int version, LL_element **errOBJ,

 LL_reservation_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be LL_API_VERSION).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

 If a job command file is used to create a reservation and the job is successfully

submitted, an informational message will be returned.

param

Provides the address of a pointer to a LL_reservation_param structure defined

in llapi.h. The caller must allocate and free storage for this structure. It is

suggested that the caller use the ll_init_reservation_param call to initialize the

structure.

 In the LL_reservation_param structure, the fields are defined as follows:

char **ID

Contains the address where the reservation ID is to be returned.

char *start_time

Contains a string specifying the start time of a reservation in the

format of ″[mm/dd[/[cc]yy]]HH:MM″.

int duration

Specifies how long the reservation lasts in the unit of minutes.

enum LL_reservation_data data_type

Indicates how the nodes should be reserved. The valid values are:

RESERVATION_BY_NODE by number of nodes

RESERVATION_BY_HOSTLIST by specifying a hostlist

RESERVATION_BY_JOBSTEP by specifying a jobstep

RESERVATION_BY_JCF by job command file

void *data

Contains the pointer to the actual data specifying what nodes to

reserve:

data_type data is a pointer of the type

RESERVATION_BY_NODE int *

RESERVATION_BY_HOSTLIST char **, a NULL terminated array of

 machine names

RESERVATION_BY_JOBSTEP char *, a jobstep name in the format

Reservation API

Chapter 16. Application programming interfaces (APIs) 497

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

of host.jobid.stepid

RESERVATION_BY_JCF char *, the full pathname

 to a LoadLeveler Job Command File

int options

Specifies options that control characteristics of the reservation. The

follow values can be OR’ed together to set this parameter:

RESERVATION_SHARED

Selects the SHARED option for the reservation. For a SHARED

reservation, after all bound job steps which can run on the

reserved nodes are scheduled to run, the remaining resources

can be used to run job steps not bound to the reservation. Only

bound job steps can be scheduled to run on a reservation that

is not shared.

RESERVATION_REMOVE_ON_IDLE

Selects the REMOVE_ON_IDLE option for the reservation. For

a REMOVE_ON_IDLE reservation, if all bound job steps are

finished or if all bound job steps are Idle and none can run on

the reserved nodes, the reservation will be removed (canceled)

automatically by LoadLeveler. If this option is not set, the

reservation will remain, regardless of being used or not.

char **users

Contains the list of users who can use the reservation. This pointer

should be set to NULL so only the reservation owner and the

LoadLeveler administrator can use the reservation.

char **groups

Contains the list of LoadLeveler groups whose users can use the

reservation. This pointer should be set to NULL so only the list of

LoadLeveler groups and the LoadLeveler administrator can use the

reservation.

char *group

Contains a string of a LoadLeveler group that will own the reservation.

Description

The ll_make_reservation() subroutine is the API for the llmkres command used to

create a new reservation.

The ll_init_reservation_param subroutine can be used to initialize the

LL_reservation_param structure.

This function is for the BACKFILL scheduler only.

Only users authorized by LoadLeveler administrators to make reservations can use

this function.

Return values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_LIMIT_EXCEEDED

Exceeds the maximum number of reservations allowed for the cluster.

RESERVATION_TOO_CLOSE

Reservation is being made within the minimum advance time.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

Reservation API

498 LoadLeveler: Using and Administering

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_USER_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the user.

RESERVATION_GROUP_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the group.

RESERVATION_NO_PERMISSION

Permission cannot be granted.

RESERVATION_SCHEDD_CANT_CONNECT

The schedd cannot connect to the central manager.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the schedd or central manager.

RESERVATION_JOB_SUBMIT_FAILED

Submit of the job command file failed.

RESERVATION_NO_MACHINE

One or more machines in the host list are not in the LoadLeveler cluster.

RESERVATION_WRONG_MACHINE

Reservations are not permitted on one or more machines in the host list.

RESERVATION_NO_RESOURCE

Insufficient resources in the LoadLeveler cluster.

RESERVATION_NO_JOBSTEP

The job step used for node selection does not exist.

RESERVATION_WRONG_JOBSTEP

The job step used for node selection is not in the right state.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_TOO_LONG

The duration exceeds the maximum reservation duration.

RESERVATION_NO_DCE_CRED

DCE is enabled, the user has no credentials.

RESERVATION_INSUFFICIENT_DCE_CRED

DCE is enabled, credential lifetime is less than 5 minutes.

Related information

Commands: llmkres

Subroutines: ll_error

A sample program called res.c is provided in the samples/llres subdirectory of the

release directory.

ll_init_reservation_param subroutine

Purpose

The ll_init_reservation_param subroutine is used to initialize the optional fields in

the LL_reservation_param structure to default values prior to passing that

structure to the ll_make_reservation subroutine.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Reservation API

Chapter 16. Application programming interfaces (APIs) 499

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|

|
|

Syntax

#include "llapi.h"

int ll_init_reservation_param (int version, LL_element **errOBJ,

 LL_reservation_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

param

Provides the address of a pointer to a LL_reservation_param structure. The

LL_reservation_param structure will be initialized.

Description

The ll_init_reservation_param() subroutine is used in conjunction with the

ll_make_reservation subroutine. A program using this function would only have

to set the required fields and any optional fields where the default value is not

applicable.

Return values

This subroutine returns a zero to indicate success.

Related information

Subroutines: ll_make_reservation

ll_change_reservation subroutine

Purpose

The ll_change_reservation subroutine enables you to change the attributes of a

reservation.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_change_reservation (int version, LL_element **errOBJ, char **ID,

 LL_reservation_change_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

Reservation API

500 LoadLeveler: Using and Administering

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|

|
|

|
|
|
|
|

|

|
|
|

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

 When using a job command file to change a reservation once the job is

successfully submitted, an informational message will be returned in errObj

that contains the name of the job.

ID Specifies a NULL-terminated array of reservation IDs to be modified. Only one

reservation is allowed in the current implementation, so the address of a

reservation ID string can be placed here. Reservation IDs take the form

[host.]rid[.r] where:

v host - Is the name of the schedd machine to which the reservation was

submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A reservation

ID is required.

v r - Indicates that this is a reservation ID (r is optional).

param

Provides the address of a pointer to a NULL-terminated array of

LL_reservation_change_param structures as defined in llapi.h. The caller must

allocate and free storage for the LL_reservation_change structures.

 In the LL_reservation_change_param structure, the fields are defined as

follows:

enum LL_reservation_data type

Contains the type of the data to modify.

To modify Specify Type of New Data

start_time RESERVATION_START_TIME char *

start_time RESERVATION_ADD_START_TIME int *

duration RESERVATION_DURATION int *

duration RESERVATION_ADD_DURATION int *

number_of_nodes RESERVATION_BY_NODE int *

number_of_nodes RESERVATION_ADD_NUM_NODE int *

hostlist RESERVATION_BY_HOSTLIST char **,

 NULL terminated

hostlist RESERVATION_ADD_HOSTS char **,

 NULL terminated

hostlist RESERVATION_DEL_HOSTS char **,

 NULL terminated

jobstep RESERVATION_BY_JOBSTEP char *

job_command_file RESERVATION_BY_JCF char *

userlist RESERVATION_USERLIST char **,

 NULL terminated

userlist RESERVATION_ADD_USERS char **,

 NULL terminated

userlist RESERVATION_DEL_USERS char **,

 NULL terminated

grouplist RESERVATION_GROUPLIST char **,

 NULL terminated

grouplist RESERVATION_ADD_GROUPS char **,

 NULL terminated

grouplist RESERVATION_DEL_GROUPS char **,

 NULL terminated

shared mode RESERVATION_MODE_SHARED int *;

Reservation API

Chapter 16. Application programming interfaces (APIs) 501

|
|
|

|
|
|
|
|

|
|
|

||
|
|
|

|
|

|
|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*data = 0:

 Not

 Shared

 *data = 1:

 Share

remove on idle mode RESERVATION_MODE_REMOVE_ON_IDLE int *;

 *data = 0:

 Do not

 remove

 on Idle

 *data = 1:

 Remove

 on Idle

owner RESERVATION_OWNER char *

group RESERVATION_GROUP char *

If several options are available to modify the same type of data, only

one is allowed. For example, RESERVATION_DURATION and

RESERVATION_ADD_DURATION are mutually exclusive.

number_of_nodes, hostlist, jobstep, and job_command_file are all used to

modify the reserved nodes and, therefore, the associated enums are all

mutually exclusive.

 The duration of a reservation can be decreased (corresponding to the

-d -nn option on llchres) by specifying the data type

RESERVATION_ADD_DURATION and providing a negative value.

The same is true for RESERVATION_ADD_NUM_NODE and

RESERVATION_ADD_START_TIME.

void *data

Specifies the new data for the modification corresponding to type.

Description

The ll_change_reservation() subroutine is the API for the llchres command. The

″Notes on changing a reservation″ listed in the llchres command also apply to the

ll_change_reservation subroutine.

More than one attribute of a reservation can be changed with a single call. Either

all of the changes can and will be made, or none of the changes will be made. If

the changes cannot be made, errObj will contain a message indicating a reason for

the failure. The message may not contain all of the reasons the request cannot be

satisfied.

This function is for the BACKFILL scheduler only.

Only LoadLeveler administrators and the owner of the reservation can use this

function.

Return values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_TOO_CLOSE

Reservation is being made within the minimum advance time.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_USER_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the user.

Reservation API

502 LoadLeveler: Using and Administering

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

RESERVATION_GROUP_LIMIT_EXCEEDED

Exceeds the maximum number of reservations for the group.

RESERVATION_NO_PERMISSION

Permission cannot be granted.

RESERVATION_WRONG_STATE

The reservation is not in the correct state.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the schedd or central manager.

RESERVATION_JOB_SUBMIT_FAILED

Submit of the job command file failed.

RESERVATION_NO_MACHINE

One or more machines in the host list are not in the LoadLeveler cluster.

RESERVATION_WRONG_MACHINE

Reservations are not permitted on one or more machines in the host list.

RESERVATION_NO_RESOURCE

Insufficient resources in the LoadLeveler cluster.

RESERVATION_NO_JOBSTEP

The job step used for node selection does not exist.

RESERVATION_WRONG_JOBSTEP

The job step used for node selection is not in the right state.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

RESERVATION_NOT_EXIST

The reservation does not exist.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_TOO_LONG

The duration exceeds the maximum reservation duration.

RESERVATION_NO_DCE_CRED

DCE is enabled, the user has no credentials.

RESERVATION_INSUFFICIENT_DCE_CRED

DCE is enabled, credential lifetime is less than 5 minutes.

Related information

Commands: llchres

Subroutines: ll_error, ll_make_reservation

ll_bind subroutine

Purpose

The ll_bind subroutine enables you to bind job steps to a reservation. The ll_bind

subroutine can also be used to unbind a list of job steps from the reservations to

which they are currently bound to, or whichever reservation they have requested

to bind to in the event that the bind has not yet occurred.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_bind (int version, LL_element **errOBJ, LL_bind_param **param);

Reservation API

Chapter 16. Application programming interfaces (APIs) 503

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|

|
|
|
|

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

param

Provides the address of a pointer to a LL_bind_param structure as defined in

llapi.h.

 In the LL_bind_param structure, the fields are defined as follows:

char **jobsteplist

Specifies a NULL-terminated array of job steps of the form

host.jobid.stepid to be bound or unbound. Job steps are in the form of

[host.]jobid[.stepid] where:

v host - Is the name of the schedd machine to which the job was

submitted. The default is the local machine.

v jobid - Is the job ID assigned to the job when it was submitted. The

job ID is required.

v stepid - Is the step ID assigned to the job when it was submitted.

The default is all steps of the job will be bound or unbound.

char *ID

Is the reservation ID. This pointer should be set to NULL if unbind =

1. Reservation IDs take the form [host.]rid[.r] where:

v host - Is the name of the schedd machine to which the reservation

was submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A

reservation ID is required.

v r - Indicates that this is a reservation ID (r is optional).

int unbind

Indicates that a value of 1 means that the job steps in jobsteplist are to

be unbound from the reservations to which they are currently bound.

A value of 0 indicates that the job steps in the job step list are to be

bound to the reservation specified by the ID.

Description

The ll_bind() subroutine is the API for the llbind command.

This function is for the BACKFILL scheduler only and only jobs in an idle-like

state can be bound to a reservation.

LoadLeveler administrators can bind any job step to a reservation. If a job step is

already bound to a reservation, it will first be unbound from the current

reservation before being bound to the requested reservation. Nonadministrators

Reservation API

504 LoadLeveler: Using and Administering

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|
|

must be the owner of the job steps to be bound or unbound, and either be the

owner of the reservation or one of the users specified by the owner as having

permission to use the reservation.

Return values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_NO_DCE_CRED

DCE is enabled, the user has no credentials.

RESERVATION_INSUFFICIENT_DCE_CRED

DCE is enabled, credential lifetime is less than 5 minutes.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the schedd or central manager.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

RESERVATION_NOT_EXIST

The reservation does not exist.

RESERVATION_NO_PERMISSION

Permission cannot be granted.

RESERVATION_WRONG_STATE

The reservation is not in the correct state.

Related information

Commands: llbind

Subroutines: ll_error, ll_make_reservation

ll_remove_reservation subroutine

Purpose

The ll_remove_reservation subroutine enables you to cancel one or more

reservations.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_remove_reservation (int version, LL_element **errOBJ, char **IDs,

 char **user_list, char **host_list, char **group_list);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

Reservation API

Chapter 16. Application programming interfaces (APIs) 505

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|

|
|

|
|
|
|
|

|

|
|
|

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to use the ll_error subroutine, the pointer must be

initialized to NULL to ensure that a valid pointer is passed to the ll_error

subroutine.

IDs

Specifies a NULL terminated array of reservation IDs. If IDs is not NULL, the

values for user_list, group_list, and host_list must be NULL or an error will be

returned. Reservation IDs take the form [host.]rid[.r] where:

v host - Is the name of the schedd machine to which the reservation was

submitted. The default is the local machine.

v rid - Is the ID assigned to the reservation when it was created. A reservation

ID is required.

v r - Indicates that this is a reservation ID (r is optional).

user_list

Specifies a NULL terminated array of user IDs that own reservations.

host_list

Specifies a NULL terminated array of machine names.

group_list

Specifies a NULL terminated array of LoadLeveler groups.

Description

The ll_remove_reservation() subroutine is the API for the llrmres command.

A list of reservation IDs cannot be specified when user_list, host_list, or group_list is

specified. If reservation IDs is non-NULL when user_list, host_list, or group_list is

also non-NULL, the return value will be

RESERVATION_REQUEST_DATA_NOT_VALID. Input for user_list, host_list, or

group_list can be provided in any combination.

This function is for the BACKFILL scheduler only.

Only LoadLeveler administrators and the owner of the reservation can use this

function.

Return values

RESERVATION_OK

Request successfully sent to LoadLeveler.

RESERVATION_REQUEST_DATA_NOT_VALID

Input is not valid.

RESERVATION_CONFIG_ERR

Errors were encountered while processing configuration files.

RESERVATION_NO_DCE_CRED

DCE is enabled, the user has no credentials.

RESERVATION_INSUFFICIENT_DCE_CRED

DCE is enabled, credential lifetime is less than 5 minutes.

RESERVATION_NO_STORAGE

The system cannot allocate memory.

RESERVATION_CANT_TRANSMIT

A data transmission failure occurred.

Reservation API

506 LoadLeveler: Using and Administering

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RESERVATION_API_CANT_CONNECT

The subroutine cannot connect to the schedd or central manager.

RESERVATION_NOT_SUPPORTED

The scheduler in use does not support reservations.

Related information

Commands: llrmres

Subroutines: ll_error, ll_make_reservation

Submit API

This API allows you to submit jobs to LoadLeveler. The submit API consists of the

llsubmit subroutine, the llfree_job_info subroutine, and a user exit for monitoring

programs.

In LoadLeveler for Linux only:

v llsubmit returns an error value of –1 and writes the error messages to stderr

when:

– DCE_ENABLEMENT is TRUE

– SEC_ENABLEMENT is DCE or CTSEC

– SCHEDULER_TYPE is GANG

– pvm_root or NQS_DIR is specified
v If the job_cmd_file argument is associated with a PVM job or an NQS job,

llsubmit returns a value of –1 and writes the error messages to stderr.

llsubmit subroutine

llsubmit is both the name of a LoadLeveler command used to submit jobs as well

as the subroutine described here.

Purpose

The llsubmit subroutine submits jobs to LoadLeveler for scheduling.

Syntax

int llsubmit (char *job_cmd_file, char *monitor_program, char *monitor_arg,

 LL_job *job_info, int job_version);

Parameters

job_cmd_file

Is a pointer to a string containing the name of the job command file.

monitor_program

Is a pointer to a string containing the name of the monitor program to be

invoked when the state of the job is changed. Set to NULL if a monitoring

program is not provided.

monitor_arg

Is a pointer to a string which is stored in the job object and is passed to the

monitor program. The maximum length of the string is 1023 bytes. If the

length exceeds this value, it is truncated to 1023 bytes. Set to NULL if an

argument is not provided.

job_info

Is a pointer to a structure defined in the llapi.h header file. No fields are

required to be filled in. Upon return, the structure will contain the number of

Reservation API

Chapter 16. Application programming interfaces (APIs) 507

|
|
|
|

|
|

|

|

job steps in the job command file and a pointer to an array of pointers to

information about each job step. Space for the array and the job step

information is allocated by llsubmit. The caller should free this space using the

llfree_job_info subroutine.

job_version

Is an integer indicating the version of llsubmit being used. This argument

should be set to LL_JOB_VERSION which is defined in the llapi.h include

file.

Description

LoadLeveler must be installed and configured correctly on the machine on which

the submit application is run.

The uid and gid in effect when llsubmit is invoked are the uid and gid used when

the job is run.

Return values

0 The job was submitted successfully.

Error values

-1 Error, error messages written to stderr.

llfree_job_info subroutine

Purpose

llfree_job_info frees space for the array and the job step information used by

llsubmit.

Syntax

 void llfree_job_info (LL_job *job_info, int job_version);

Parameters

job_info

Is a pointer to a LL_job structure. Upon return, the space pointed to by the

step_list variable and the space associated with the LL_job step structures

pointed to by the step_list array are freed. All fields in the LL_job structure

are set to zero.

job_version

Is an integer indicating the version of llfree_job_info being used. This

argument should be set to LL_JOB_VERSION which is defined in the llapi.h

header file.

Monitoring programs

Purpose

Using the monitor_program user exit, you can create a program that monitors jobs

submitted using the llsubmit subroutine. The schedd daemon invokes this monitor

program if the monitor_program argument to llsubmit is not null. The monitor

program is invoked each time a job step changes state. This means that the

monitor program will be informed when the job step is started, completed,

vacated, removed, or rejected. If you suspect the monitor program encountered

problems or didn’t run, you should check the listing in the schedd log. In the

event of a monitor program failure, the job is still run.

Submit API

508 LoadLeveler: Using and Administering

Syntax

monitor_program job_id user_arg state exit_status

Parameters

monitor_program

Is the name of the program supplied in the monitor_program argument passed

to the llsubmit function.

job_id

Is the full ID for the job step.

user_arg

The string supplied to the monitor_arg argument that is passed to the llsubmit

function.

state

Is the current state of the job step. Possible values for the state are:

JOB_STARTED

The job step has started.

JOB_COMPLETED

The job step has completed.

JOB_VACATED

The job step has been vacated. The job step will be rescheduled if the job

step is restartable or if it is checkpointable.

JOB_REJECTED

A startd daemon has rejected the job. The job will be rescheduled to

another machine if possible.

JOB_REMOVED

The job step was canceled or could not be started.

JOB_NOTRUN

The job step cannot be run because a dependency cannot be met.

exit_status

Is the exit status from the job step. The argument is meaningful only if the

state is JOB_COMPLETED.

Workload Management API

The Workload Management API consists of the following subroutines:

v ll_control subroutine

v ll_modify subroutine

v ll_preempt subroutine

v ll_preempt_jobs subroutine

v ll_run_scheduler subroutine

v ll_start_job subroutine

v ll_terminate_job subroutine

v ll_start_job_ext subroutine

The ll_control subroutine can be used to perform most of the LoadLeveler control

operations and is designed for general use.

The ll_preempt subroutine is not available in LoadLeveler for Linux. For

LoadLeveler 3.3, the ll_preempt subroutine was replaced with the ll_preempt_jobs

subroutine.

Submit API

Chapter 16. Application programming interfaces (APIs) 509

|
|

|
|
|

The ll_start_job and ll_terminate_job subroutines are intended to be used together

with an external scheduler.

Note that the ll_start_job and ll_terminate_job subroutines automatically connect

to an alternate central manager if they cannot contact the primary central manager.

You should use ll_start_job and ll_terminate_job in conjunction with the query

API. The query API collects information regarding which machines are available

and which jobs need to be scheduled. See “Query API” on page 493 for more

information.

Note: The AIX Workload Manager (WLM) and the LoadLeveler Workload

Management API are two distinct and unrelated components.

ll_control subroutine

Purpose

This subroutine allows an application program to perform most of the functions

that are currently available through the standalone commands: llctl, llfavorjob,

llfavoruser, llhold, and llprio.

In LoadLeveler for Linux only, ll_control returns an error condition when:

v DCE_ENABLEMENT is TRUE

v SEC_ENABLEMENT is DCE or CTSEC

v SCHEDULER_TYPE is GANG

v NQS_DIR is specified

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_control (int control_version, enum LL_control_op control_op,

 char **host_list, char ** user_list, char **job_list,

 char **class_list, int priority);

Parameters

int control_version

An integer indicating the version of ll_control being used. This argument

should be set to LL_CONTROL_VERSION.

enum LL_control_op

The control operation to be performed. The enum LL_control_op is defined in

llapi.h as:

enum LL_control_op {

LL_CONTROL_RECYCLE, LL_CONTROL_RECONFIG, LL_CONTROL_START,LL_CONTROL_STOP,

LL_CONTROL_DRAIN, LL_CONTROL_DRAIN_STARTD, LL_CONTROL_DRAIN_SCHEDD,

LL_CONTROL_PURGE_SCHEDD, LL_CONTROL_FLUSH, LL_CONTROL_SUSPEND,

LL_CONTROL_RESUME, LL_CONTROL_RESUME_STARTD, LL_CONTROL_RESUME_SCHEDD,

LL_CONTROL_FAVOR_JOB, LL_CONTROL_UNFAVOR_JOB, LL_CONTROL_FAVOR_USER,

LL_CONTROL_UNFAVOR_USER, LL_CONTROL_HOLD_USER, LL_CONTROL_HOLD_SYSTEM,

LL_CONTROL_HOLD_RELEASE, LL_CONTROL_PRIO_ABS, LL_CONTROL_PRIO_ADJ,

LL_CONTROL_START_DRAINED,};

char **host_list

A NULL terminated array of host names.

Workload Management API

510 LoadLeveler: Using and Administering

|

|

char **user_list

A NULL terminated array of user names.

char **job_list

A NULL terminated array of job names. The job name that an element of

job_list points to is a character string with one of the following formats:

″host.jobid.stepid,″ ″jobid.stepid,″ ″jobid″. host is the name of the machine to which

the job was submitted (the default is the local machine), jobid is the job ID

assigned to the job by LoadLeveler, and stepid is the job step ID assigned to a

job step by LoadLeveler (the default is to include all the steps of a job).

char **class_list

A NULL terminated array of class names.

int priority

An integer representing the new absolute value of user priority or adjustment

to the current user priority of job steps.

Description

The ll_control subroutine performs operations that are essentially equivalent to

those performed by the standalone commands: llctl, llfavorjob, llfavoruser, llhold,

and llprio. Because of this similarity, descriptions of the ll_control operations are

grouped according to the standalone command they resemble.

llctl type of operations: These are the ll_control operations which mirror

operations performed by the llctl command. This summary includes a brief

description of each of the allowed llctl types of operations. For more information

about the llctl command, see “llctl - Control LoadLeveler daemons” on page 353.

LL_CONTROL_START:

Starts the LoadLeveler daemons on the specified machines. The calling

program must have rsh privileges to start LoadLeveler daemons on remote

machines.

Note: LoadLeveler will fail to start if any value has been set for the

MALLOCTYPE environment variable.

LL_CONTROL_START_DRAINED:

Starts the LoadLeveler in the drained state.

LL_CONTROL_STOP:

Stops the LoadLeveler daemons on the specified machines.

LL_CONTROL_RECYCLE:

Stops, and then restarts, all of the LoadLeveler daemons on the specified

machines.

LL_CONTROL_RECONFIG:

Forces all of the LoadLeveler daemons on the specified machines to reread the

configuration files.

LL_CONTROL_DRAIN:

When this operation is selected, the following happens: (1) No LoadLeveler

jobs can start running on the specified machines, and (2) No LoadLeveler jobs

can be submitted to the specified machines.

LL_CONTROL_DRAIN_SCHEDD:

No LoadLeveler jobs can be submitted to the specified machines.

LL_CONTROL_DRAIN_STARTD:

Keeps LoadLeveler jobs from starting on the specified machines. If a class_list

Workload Management API

Chapter 16. Application programming interfaces (APIs) 511

is specified, then the classes specified will be drained (made unavailable). The

literal string ″allclasses″ can be used as an abbreviation for all of the classes.

LL_CONTROL_FLUSH:

Terminates running jobs on the specified machines and send them back to the

negotiator to await redispatch (if restart=yes).

LL_CONTROL_PURGE_SCHEDD:

Purges the specified schedd host’s job queue; a host_list consisting of one host

name must be specified.

LL_CONTROL_SUSPEND:

Suspends all jobs on the specified machines. This operation is not supported

for parallel jobs.

LL_CONTROL_RESUME:

Resumes job submission to, and job execution on, the specified machines.

LL_CONTROL_RESUME_STARTD:

Resumes job execution on the specified machines; if a class_list is specified,

then execution of jobs associated with these classes is resumed.

LL_CONTROL_RESUME_SCHEDD:

Resumes job submission to the specified machines.

 For these llctl type of operations, the user_list, job_list, and priority arguments are

not used and should be set to NULL or zero. The class_list argument is meaningful

only if the operation is LL_CONTROL_DRAIN_STARTD, or

LL_CONTROL_RESUME_STARTD. If class_list is not being used, then it should be

set to NULL. If host_list is NULL, then the scope of the operation is all machines in

the LoadLeveler cluster. Unlike the standalone llctl command, where the scope of

the operation is either global or one host, ll_control operations allow the user to

specify a list of hosts (through the host_list argument). To perform these operations,

the calling program must have LoadLeveler administrator authority. The only

exception to this rule is the LL_CONTROL_START operation.

llfavorjob type of operations: The llfavorjob type of control operations are:

LL_CONTROL_FAVOR_JOB, and LL_CONTROL_UNFAVOR_JOB. For these

operations, the user_list, host_list, class_list, and priority arguments are not used and

should be set to NULL or zero. LL_CONTROL_FAVOR_JOB is used to set specified

job steps to a higher system priority than all job steps that are not favored.

LL_CONTROL_UNFAVOR_JOB is used to unfavor previously favored job steps,

restoring the original priorities. The calling program must have LoadLeveler

administrator authority to perform these operations.

llfavoruser type of operations: The llfavoruser type of control operations are:

LL_CONTROL_FAVOR_USER, and LL_CONTROL_UNFAVOR_USER. For these

operations, the host_list, job_list, class_list, and priority arguments are not used and

should be set to NULL or zero. LL_CONTROL_FAVOR_USER sets jobs of one or

more users to the highest priority in the system, regardless of the current setting.

Jobs already running are not affected. LL_CONTROL_UNFAVOR_USER is used to

unfavor previously favored user’s jobs, restoring the original priorities. The calling

program must have LoadLeveler administrator authority to perform these

operations.

llhold type of operations: The llhold type of control operations are:

LL_CONTROL_HOLD_USER, LL_CONTROL_HOLD_SYSTEM, and

LL_CONTROL_HOLD_RELEASE. For these operations, the class_list and priority

arguments are not used, and should be set to NULL or zero.

Workload Management API

512 LoadLeveler: Using and Administering

LL_CONTROL_HOLD_USER and LL_CONTROL_HOLD_SYSTEM place jobs in

user hold and system hold, respectively. LL_CONTROL_HOLD_RELEASE is used

to release jobs from both types of hold. The calling program must have

LoadLeveler administrator authority to put jobs into system hold, and to release

jobs from system hold. If a job is in both user and system holds then the

LL_CONTROL_HOLD_RELEASE operation must be performed twice to release the

job from both types of hold. If the user is not a LoadLeveler administrator then the

llhold types of operations have no effect on jobs that do not belong to that user.

llprio type of operations: The llprio type of control operations are:

LL_CONTROL_PRIO_ABS, and LL_CONTROL_PRIO_ADJ. For these operations,

the user_list, host_list, and class_list arguments are not used, and should be set to

NULL. llprio type of operations change the user priority of one or more job steps

in the LoadLeveler queue. LL_CONTROL_PRIO_ABS specifies a new absolute

value of the user priority, and LL_CONTROL_PRIO_ADJ specifies an adjustment

to the current user priority. The valid range of LoadLeveler user priorities is 0–100

(inclusive); 0 is the lowest possible priority, and 100 is the highest. The llprio type

of operations have no effect on a running job step unless this job step returns to

Idle state. If the user is not a LoadLeveler administrator, then an llprio type of

operation has no effect on jobs that do not belong to that user.

Return values

0 The specified command has been sent to the appropriate LoadLeveler

daemon.

-2 The specified command cannot be sent to the central manager.

-3 The specified command cannot be sent to one of the LoadL_master

daemons.

-4 ll_control encountered an error while processing the administration or

configuration file.

-6 A data transmission failure has occurred.

-7 The calling program does not have LoadLeveler administrator authority.

-19 An incorrect ll_control version has been specified.

-20 A system error has occurred.

-21 The system cannot allocate memory.

-22 A control_op operation that is not valid has been specified.

-23 The job_list argument contains one or more errors.

-24 The host_list argument contains one or more errors.

-25 The user_list argument contains one or more errors.

-26 Incompatible arguments have been specified for HOLD operation.

-27 Incompatible arguments have been specified for PRIORITY operation.

-28 Incompatible arguments have been specified for FAVORJOB operation.

-29 Incompatible arguments have been specified for FAVORUSER operation.

-30 An error occurred while ll_control tried to start a child process.

-31 An error occurred while ll_control tried to start the LoadL_master daemon.

-32 An error occurred while ll_control tried to execute the llpurgeschedd

command.

-33 The class_list argument contains incompatible information.

-34 ll_control cannot create a file in the /tmp directory.

-35 LoadLeveler has encountered miscellaneous incompatible input

specifications.

-36 DCE identity cannot be determined.

-37 No DCE credentials.

-38 DCE credentials within 300 secs of expiration.

-39 64-bit API not supported when DCE is enabled.

-40 This release of LoadLeveler for Linux does not support DCE.

-41 This release of LoadLeveler for Linux does not support CTSEC.

Workload Management API

Chapter 16. Application programming interfaces (APIs) 513

|

|

-42 This release of LoadLeveler for Linux does not support GANG.

-43 This release of LoadLeveler for Linux does not support PVM.

-44 This release of LoadLeveler for Linux does not support NQS.

Related information

Commands: llprio, llhold, llfavoruser, llfavorjob, llctl

ll_modify subroutine

Purpose

The ll_modify subroutine modifies the attributes of a submitted job step.

 In LoadLeveler for Linux only, ll_modify returns an error condition when:

v DCE_ENABLEMENT is TRUE

v SEC_ENABLEMENT is DCE or CTSEC

v SCHEDULER_TYPE is GANG

v NQS_DIR is specified

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_modify (int version, void *errObj, LL_modify_param **param,

 char **steplist);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to LL_element that points to an error object if

this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to do so, the pointer should be initialized to NULL to

avoid a segmentation fault when the pointer is passed to the ll_error

subroutine.

param

Provides the address of an array of 2 pointers to the LL_modify_param

structure defined in llapi.h. The first pointer should point to an

LL_modify_param structure already filled out by the caller. The second pointer

should be assigned NULL.

 In the LL_modify_param structure:

type Describes the attribute to be modified.

 On LoadLeveler for Linux type cannot be set to

EXECUTION_FACTOR.

data Is a pointer to the new attribute value.

All job step attributes types that can be modified through ll_modify() are

listed in enum LL_modify_op in llapi.h.

 The LL_modify_op structure stores user inputs to the function, where:

Workload Management API

514 LoadLeveler: Using and Administering

|

|

|
|
|
|

||

|
|

||

|
|

|

type Is the type of the command option.

data Is a pointer to the data value associated with the command option.

name Is a NULL terminated array of job step names. Only a single job step is

allowed in the current implementation.

steplist

A NULL terminated array of step IDs. Only a single job step is allowed in the

current implementation. Uses the following formats: ″host.jobid.stepid,″

″jobid.stepid,″. Where:

v host - Is the name of the machine to which the job was submitted (the

default is the local machine)

v jobid - Is the job ID assigned to the job by LoadLeveler

v stepid - Is the job step ID assigned to a job step by LoadLeveler

Description

ll_modify() is the API for the llmodify command. Refer to the llmodify command

for information about other available command options.

In enum LL_modify_op, the EXECUTION_FACTOR can be used with Gang

scheduling only. Only LoadLeveler administrators have authority to modify this

attribute of a job step.

In enum LL_modify_op, the system priority option will be ignored for any job

step not in an idle state. The data field for the SYSPRIO option is an integer. The

system priority for a job step set with the SYSPRIO option will not be changed

when LoadLeveler recalculates system priorities.

Return values

The following return values are defined in llapi.h:

MODIFY_SUCCESS

Request successfully sent to LoadLeveler

MODIFY_INVALID_PARAM

An input parameter that is not valid was specified.

MODIFY_CONFIG_ERROR

Errors encountered while processing config files.

MODIFY_NOT_IDLE

Request failed, job step not in IDLE state.

MODIFY_WRONG_STATE

Request failed, job step in wrong state.

MODIFY_NOT_AUTH

Caller not authorized.

MODIFY_SYSTEM_ERROR

LoadLeveler internal system error.

MODIFY_CANT_TRANSMIT

Communication error while sending request.

MODIFY_CANT_CONNECT

Failed to connect to LoadLeveler.

MODIFY_NO_DCE_SUPPORT_ERR

DCE_ENABLEMENT was set to TRUE or SEC_ENABLEMENT was set to

DCE. LoadLeveler for Linux does not support DCE.

Workload Management API

Chapter 16. Application programming interfaces (APIs) 515

||

||

||
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

MODIFY_NO_CTSEC_SUPPORT_ERR

SEC_ENABLEMENT was set to CTSEC. LoadLeveler for Linux does not

support CTSEC.

MODIFY_NO_GANG_SUPPORT_ERR

SCHEDULER_TYPE was set to GANG. LoadLeveler for Linux does not

support GANG scheduling.

MODIFY_NO_PVM_SUPPORT_ERR

pvm_root was specified. LoadLeveler for Linux does not support PVM.

MODIFY_NO_NQS_SUPPORT_ERR

NQS_DIR was specified. LoadLeveler for Linux does not support NQS.

MODIFY_OVERLAP_RESERVATION

Request failed. The requested change would cause the job step to overlap

with a reservation.

Related information

Commands: llmodify command

Subroutines: ll_error

Example

/* mymodify.c - make a job step non-preemptable */

#include <stdio.h>

#include <string.h>

#include "llapi.h"

int main(int argc, char *argv[])

{

 int rc, exec_factor = 99;

 LL_modify_param mycmd, *cmdp[2];

 char *step_list[2];

 LL_element *errObj = NULL;

 char *errmsg;

if (argc < 2) {

 printf("Usage: %s job_step_name \n", argv[0]); exit(1);

}

step_list[0] = argv[1];

step_list[1] = NULL;

printf("\n*** Make Job Step %s non-preemptable ***\n\n",

 step_list[0]);

/* Initialize the LL_modify_param structure */

mycmd.type = EXECUTION_FACTOR;

mycmd.data = &exec_factor

cmdp[0] = &mycmd

cmdp[1] = NULL;

/* change execution factor to 99 for the job step */

printf("Change execution factor to %d\n", exec_factor);

rc = ll_modify(LL_API_VERSION, &errObj, cmdp, step_list);

if (rc) {

errmsg = ll_error(&errObj, 0);

printf("ll_modify() return code: %d\n%s\n", rc, errmsg);

free(errmsg);

 exit(1);

 }

 return 0;

}

Workload Management API

516 LoadLeveler: Using and Administering

|
|
|

|
|
|

|
|

|
|

|
|
|

ll_preempt subroutine

Purpose

The ll_preempt subroutine enables you to preempt a running job step or to resume

a job step that has already been preempted through the llpreempt command or the

ll_preempt subroutine (user-initiated). The ll_preempt subroutine cannot resume a

job step preempted through PREEMPT_CLASS rules (system-initiated).

The ll_preempt subroutine is not available in LoadLeveler for Linux.

 For LoadLeveler 3.3, the ll_preempt subroutine was replaced with the

ll_preempt_jobs subroutine.

Library

LoadLeveler API library, libllapi.a

Syntax

#include "llapi.h"

int ll_preempt (int version, LL_element **errObj, char *job_step,

 enum LL_preempt_op type);

Parameters

version

Input parameter that indicates the LoadLeveler API version (should have the

same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to LL_element that points to an error object if

this function fails.

 The caller must free the error object storage before reusing the pointer. You can

also use the ll_error subroutine to display error messages stored in the error

object. If you are going to do so, the pointer should be initialized to NULL to

avoid a segmentation fault when the pointer is passed to the ll_error

subroutine.

jobstep

A string used to specify the name of a job step.

type

v Preempts job step if type equals PREEMPT_STEP

v Resumes job step if type equals RESUME_STEP

Description

ll_preempt() is the API for the llpreempt command.

v This function is for Gang scheduling and external schedulers

v Only LoadLeveler administrators have authority to use this function

Return values

API_OK

Request successfully sent to LoadLeveler.

API_INVALID_INPUT

An input parameter that is not valid was specified.

API_CONFIG_ERR

Errors encountered while processing config files.

Workload Management API

Chapter 16. Application programming interfaces (APIs) 517

|
|

|

API_CANT_AUTH

Caller not authorized.

API_CANT_CONNECT

Failed to connect to LoadLeveler.

API_64BIT_DCE_ERR

64-bit API not supported when DCE is enabled.

ll_preempt_jobs subroutine

Purpose

The ll_preempt_jobs subroutine is used to preempt a set of running job steps

using the specified preempt method, or to resume job steps that have already been

preempted with the preempt method of suspend through the llpreempt command

or the ll_preempt_jobs subroutine. The ll_preempt_jobs subroutine cannot resume

a job step that was preempted through the PREEMPT_CLASS rules, or a job step

that was preempted with a preempt method other than suspend.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_preempt_jobs (int version, void *errObj, LL_preempt_param **param);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

errObj

Provides the address of a pointer to an LL_element that points to an error

object if this function fails.

param

Is a pointer to an array of structures. The structure specifies the parameters for

a preempt operation.

typedef struct LL_preempt_param {

 enum LL_preempt_op type;

 enum LL_preempt_method method;

 char ** user_list;

 char ** host_list;

 char ** jobstep_list;

} LL_preempt_param;

enum LL_preempt_op {PREEMPT_STEP, RESUME_STEP};

enum LL_preempt_method {LL_PREEMPT_SUSPEND, LL_PREEMPT_VACATE,

 LL_PREEMPT_REMOVE, LL_PREEMPT_SYS_HOLD, LL_PREEMPT_USER_HOLD}

In the LL_preempt_param structure, the fields are defined as follows:

type Is the type of operation on the job steps, preempt or resume.

method Is the method to be used to preempt the specified job steps.

This argument is ignored if the type argument is not set to

PREEMPT_STEP. Valid values for this argument are:

v LL_PREEMPT_SUSPEND

v LL_PREEMPT_VACATE

Workload Management API

518 LoadLeveler: Using and Administering

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

||

||
|
|
|
|

v LL_PREEMPT_REMOVE

v LL_PREEMPT_SYS_HOLD

v LL_PREEMPT_USER_HOLD

LoadLeveler for Linux does not support preemption by the

suspend method. Job steps running on Linux nodes will not be

suspended when method in the LL_preempt_param structure

has the value LL_PREEMPT_SUSPEND. The call to the

ll_preempt_jobs subroutine is equivalent to a no-op in this

case.

In the enum LL_preempt_op structure, valid values are:

v PREEMPT_STEP

v RESUME_STEP

In the enum LL_preempt_method structure, valid values are:

v LL_PREEMPT_SUSPEND

v LL_PREEMPT_VACATE

v LL_PREEMPT_REMOVE

v LL_PREEMPT_SYS_HOLD

v LL_PREEMPT_USER_HOLD

user_list

Is a pointer to a NULL-terminated array of pointers to strings

containing user names. All running job steps belonging to all users in

the list and monitored by the machine the subroutine is running on

will be preempted or resumed. If a host_list is also specified, only the

user’s job steps monitored on the specified hosts will be preempted or

resumed.

host_list

Is a pointer to a NULL-terminated array of pointers to strings

containing host names. All job steps monitored by the hosts will be

preempted or resumed. If a user_list is also provided, only the running

job steps monitored by the hosts and owned by the specified users will

be preempted or resumed.

jobstep_list

Is a NULL terminated array of pointers to strings containing the IDs of

the job steps to be preempted or resumed. The job step IDs are in the

format of host.jobid.stepid where:

v host - Is the name of machine to which the job was submitted. The

default is the local machine.

v jobid - Is the job ID assigned to the job when it was submitted using

the llsubmit command. The job ID is required.

v stepid - Is the step ID assigned to the job when it was submitted

using the llsubmit command. The default is to include all the steps

of the job. The jobstep_list is ignored if either a user_list or host_list is

specified.

Description

The ll_preempt_jobs() subroutine is the API for the llpreempt command. See the

llpreempt command for information about the available command options. In

order to provide source code compatibility for applications using the current

version of the preempt function, the ll_preempt() subroutine will not be modified

to support the new preemption options. The ll_preempt() subroutine will continue

to be supported as is.

Workload Management API

Chapter 16. Application programming interfaces (APIs) 519

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

Return values

0 Request successfully sent to the central manager.

-1 An LL_preempt_op that is not valid was specified.

-2 Cannot send request to central manager.

-3 An incorrect version was specified.

-4 Errors encountered while processing the LoadLeveler administration or

configuration files.

-5 A system error occurred.

-6 A data transmission failure occurred.

-7 The calling program does not have LoadLeveler administrator authority.

ll_run_scheduler subroutine

Purpose

The ll_run_scheduler subroutine is used when the internal scheduling interval has

been disabled so that an external program can control when the central manager

attempts to schedule job steps. The ll_run_scheduler subroutine sends a request to

the central manager to run the scheduling algorithm.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_run_scheduler (int version);

Parameters

version

Is an input parameter that indicates the LoadLeveler API version (this should

be the same value as LL_API_VERSION in llapi.h).

Description

The ll_run_scheduler() subroutine sends a request to the central manager to run

the LoadLeveler scheduling algorithm. The central manager’s scheduling algorithm

will run only once each time the llrunscheduler command is invoked. Each time

the scheduling algorithm runs, the central manager will schedule as many job

steps as the current available resources allow. The LoadLeveler scheduling interval

must be disabled, that is the configuration keyword NEGOTIATOR_INTERVAL

must be set to zero in order to use this algorithm. Only LoadLeveler administrators

have authority to use this algorithm.

Return values

RUN_SCHED_SUCCESS

Request successfully sent to the central manager.

RUN_SCHED_CONFIG_ERROR

Errors were encountered while processing configuration files.

RUN_SCHED_NOT_AUTH

Calling program does not have LoadLeveler administrator authority.

RUN_SCHED_NOT_AUTH

An internal system error occurred.

RUN_SCHED_CANT_TRANSMIT

A data transmission failure occurred.

Workload Management API

520 LoadLeveler: Using and Administering

|
||
||
||
||
||
|
||
||
||

|

|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

RUN_SCHED_CANT_CONNECT

The schedd cannot connect to the central manager.

ll_start_job subroutine

Purpose

This subroutine tells the LoadLeveler negotiator to start a job on the specified

nodes.

In LoadLeveler for Linux only, ll_start_job returns an error condition when:

v DCE_ENABLEMENT is TRUE

v SEC_ENABLEMENT is DCE or CTSEC

v SCHEDULER_TYPE is GANG

v NQS_DIR is specified

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_start_job (LL_start_job_info *ptr);

Parameters

ptr Specifies the pointer to the LL_start_job_info structure that was allocated by

the caller. The LL_start_job_info members are:

int version_num

Represents the version number of the LL_start_job_info structure. Should

be set to LL_PROC_VERSION.

LL_STEP_ID StepId

Represents the step ID of the job step to be started.

char **nodeList

Is a pointer to an array of node names where the job will be started. The

first member of the array is the parallel master node. The array must be

ended with a NULL.

Description

This subroutine does not allow you to specify adapter usage information. Use the

ll_start_job_ext subroutine instead.

You must set SCHEDULER_TYPE = API in the global configuration file to use this

subroutine.

Only jobs steps currently in the Idle state are started.

Only processes having the LoadLeveler administrator user ID can invoke this

subroutine.

An external scheduler uses this subroutine to start jobs that are in idle state. The

list of jobs that are currently in the system is retrieved with the ll_get_objs API

function, passing in a query element with type JOBS. The list of machines

available to run jobs on is obtained with the ll_get_objs and a query element with

type MACHINES. Additional data about both jobs and machines is obtained with

the ll_get_data function call.

Workload Management API

Chapter 16. Application programming interfaces (APIs) 521

|
|

|

|

When this function is used to start a step, adapter resources are assigned to the

step according to JCF network statements, if they are present. Adapter resources

are assigned in the same manner as the backfill scheduler assigns adapter

resources, except that the Communication Level on the network statement is

ignored and a value of AVERAGE is used. It is the responsibility of the external

scheduler to ensure the machines to which the step is dispatched have sufficient

adapter resources to run the step. Otherwise the step will not be started.

Return values

This subroutine returns a value of zero to indicate the start job request was

accepted by the negotiator. However, a return code of zero does not necessarily

imply the job started. You can use the llq command to verify the job started.

Otherwise, this subroutine returns an integer value defined in the llapi.h file.

Error values

-1 There is an error in the input parameter.

-2 The subroutine cannot connect to the central manager.

-4 An error occurred reading parameters from the administration or the

configuration file.

-5 The negotiator cannot find the specified StepId in the negotiator job queue.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a

LoadLeveler administrator.

-8 The job object version number is incorrect.

-9 The StepId is not in the Idle state.

-10 One of the nodes specified is not available to run the job.

-11 One of the nodes specified does not have an available initiator for the class

of the job.

-12 For one of the nodes specified, the requirements statement does not satisfy

the job requirements.

-13 The number of nodes specified was less than the minimum or more than

the maximum requested by the job.

-14 The LoadLeveler default scheduler is enabled.

-15 The same node was specified twice in ll_start_job nodeList.

-16 DCE identity cannot be determined.

-17 No DCE credentials.

-18 DCE credentials within 300 secs of expiration.

-19 64–bit not supported when DCE enabled.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory. The examples include the executable sch_api,

which invokes the query API and the job control API to start the second job in the

list received from ll_get_jobs on two nodes. You should submit at least two jobs

prior to running the sample. To compile sch_api, copy the sample to a writeable

directory and update the RELEASE_DIR field to represent the current LoadLeveler

release directory.

Related information

Subroutines: ll_get_jobs, ll_terminate_job, ll_get_nodes, ll_start_jobs_ext

ll_start_job_ext subroutine

Purpose

This subroutine tells the LoadLeveler negotiator to start a job on the specified

nodes, indicating which adapter and adapter resources to use.

Workload Management API

522 LoadLeveler: Using and Administering

In LoadLeveler for Linux only, ll_start_job_ext returns an error condition when:

v DCE_ENABLEMENT is TRUE

v SEC_ENABLEMENT is DCE or CTSEC

v SCHEDULER_TYPE is GANG

v NQS_DIR is specified

An external scheduler uses this subroutine to start jobs that are in idle state. The

list of jobs that are currently in the system is retrieved with the ll_get_objs API

function, passing in a query element with type JOBS. The list of machines

available to run jobs on is obtained with the ll_get_objs and a query element with

type MACHINES. Additional data about both jobs and machines is obtained with

the ll_get_data function call.

When this function is used to start a step, the external scheduler specifies the

adapter resources that are assigned to the step and network statements in the JCF,

if they are present, are ignored. It is the responsibility of the external scheduler to

manage the availability of adapter resources and LoadLeveler does not prevent or

detect the over commitment of adapter resources.

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_start_job_ext (LL_start_job_info_ext *ptr);

Parameters

ptr Specifies the pointer to the LL_start_job_info_ext structure that was allocated

and populated by the caller. The LL_start_job_info_ext members are:

int version_num

Represents the version number of the LL_start_job_info_ext structure.

Should be set to LL_PROC_VERSION.

LL_STEP_ID StepId

Represents the step ID of the job step to be started.

char ** nodelist

A pointer to an array of node names where the job will be started. The first

member of the array is the parallel master node. The array must be ended

with a NULL.

int adapterUsageCount

This is the size of the adapterUsage list. To determine what this number

should be, add all the adapter usages for all protocols needed by one task

and multiply the result by the number of tasks in the job.

LL_ADAPTER_USAGE * adapterUsage

This is a list of adapter information. The size of this list is given by

adapterUsageCount. The members of this structure are:

char * dev_name

The device name of the adapter to be used.

char * protocol

A character string representing the communication protocol this usage

supports. Valid values are MPI, LAPI, and MPI_LAPI.

Workload Management API

Chapter 16. Application programming interfaces (APIs) 523

|

|

char * subsystem

The communication subsystem this usage supports. Valid values are IP

or US.

int wid

For US subsystem usages, this indicates which adapter window ID to

use. For IP subsystem usages, this field is ignored.

uint64_t mem

For US subsystem usages, this is the amount of adapter memory to

dedicate to the adapter usage. For IP subsystem usages, this field is

ignored.

 Each element in the adapterUsage list represents one communication channel for a

task. If the subsystem is US (User Space), a communication channel will require a

switch adapter window. Adapter windows, and User Space usages, must be

specified on actual switch adapters that are only accessible if

AGGREGATE_ADAPTERS=False is specified in the configuration file.

Description

You must set SCHEDULER_TYPE = API in the global configuration file to use this

subroutine. In order to have access to the physical switch adapters in the

LoadLeveler cluster (as opposed to virtual adapters representing all of the adapters

on a network or adapters striping across multiple networks) you must specify

AGGREGATE_ADAPTERS = False in the global configuration file.

Only jobs steps currently in the Idle state are started.

Only processes having the LoadLeveler administrator user ID can invoke this

subroutine.

An external scheduler uses this subroutine in conjunction with the ll_query and

ll_get_data subroutines of the query API. The query API returns information about

which machines are available for scheduling and which jobs are currently in the

job queue waiting to be scheduled.

The node list that is passed to the external scheduler API specifies the node on

which each task of the job being started is to run. The distribution of tasks to

nodes in the node list must be consistent with the node allocation specified by the

job command file of the job being started. If it is not, the results are undefined and

the job may fail to start or may start with incorrect node assignments. Except when

BLOCKING is specified, the entries for tasks that are running on the same node

must all be specified sequentially in the node list. The table below describes how

nodes should be arranged in the node list for the possible combinations of node

and task specification in the job command file. In the table, ’/’ denotes integer

division and (N mod M) is the remainder of the integer division of N by M.

 Job command file specification Required nodelist structure

node=N

tasks_per_node=T

There must be N different machine names

specified, each specified T times.

node=N,M

tasks_per_node=T

There must be between N and M different machine

names specified, each specified T times.

node=N

total_tasks=TT

TT evenly divisible by N

There must be N different machine names

specified, each specified TT/N times.

Workload Management API

524 LoadLeveler: Using and Administering

node=N

total_tasks=TT

TT not evenly divisible by N

There must be N different machine names

specified. The first (TT mod N) unique machine

names must each be specified (TT/N +1) times and

the remaining machine names are each specified

TT/N times.

total_tasks=TT

BLOCKING=B

TT evenly divisible by B

There must be TT/B sets of machine names

specified, each set specifies a machine name B

times. It is permissible for a machine name to be

specified in more than one set.

total_tasks=TT

BLOCKING=B

TT not evenly divisible by B

There must be TT/B+1 sets of machine names

specified. The first TT/B sets specify a machine

name B times. The last set specifies a machine

name (TT mod B) times. It is permissible for a

machine name to be specified in more than one set.

total_tasks=TT

BLOCKING=UNLIMITED

There must be TT entries in the node list. It is

permissible for a machine name to be specified in

the list more than once and it is not required that

the specifications be contiguous.

task_geometry There is a 1:1 correspondence between entries in

the nodelist and task ids specified in the task

geometry statement. Entries in the node list that

correspond to task IDs in the same set must specify

the same machine. Entries in the node list that

correspond to task IDs in different sets must

specify different machines.

Return values

This routine returns a non-zero value to indicate the start request was not

delivered to the negotiator. These values are defined in the llapi.h file and

explained in “Error values.” A return code of zero indicates the request was

successfully delivered to the negotiator, but constraints on the negotiator may stop

the job from starting. You can use the llq command to verify the job started.

Error values

-1 There is an error in the input parameter.

-2 The subroutine cannot connect to the central manager.

-4 An error occurred reading parameters from the administration or the

configuration file.

-5 The negotiator cannot find the specified StepId in the negotiator job queue.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a

LoadLeveler administrator.

-8 The job object version number is incorrect.

-9 The StepId is not in the Idle state.

-10 One of the nodes specified is not available to run the job.

-11 One of the nodes specified does not have an available initiator for the class

of the job.

-12 For one of the nodes specified, the requirements statement does not satisfy

the job requirements.

-13 The number of nodes specified was less than the minimum or more than

the maximum requested by the job.

-14 The LoadLeveler default scheduler is enabled.

-15 The same node was specified twice in the ll_start_job nodeList.

-16 DCE identity cannot be determined.

-17 No DCE credentials

Workload Management API

Chapter 16. Application programming interfaces (APIs) 525

-18 DCE credentials within 300 secs of expiration

-19 64-bit API not supported when DCE is enabled

-20 Adapter usage information does not match job structure.

-21 Adapter usage requested an adapter not on the machine.

-22 Wrong number of entries on adapter usage list.

-23 The adapter usage information did not specify the same protocol usage on

each task.

-24 An invalid protocol string was specified on an adapter usage.

-25 The adapter usages specified incompatible protocols

-26 An adapter usage specified a communication subsystem that was not IP or

US

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory. The examples include the executable

sch_api_ext, which invokes the query API and the job control API to start the first

job in the list received from ll_query on one node and to cancel the second job in

the list. To compile sch_api_ext, copy the sample to a writeable directory and

update the RELEASE_DIR field to represent the current LoadLeveler release

directory.

Related information

Subroutines: ll_start_job, ll_query, ll_get_data, ll_terminate_job, ll_start_job

ll_terminate_job subroutine

Purpose

This subroutine tells the negotiator to cancel the specified job step.

 In LoadLeveler for Linux only, ll_terminate_job returns an error condition when:

v DCE_ENABLEMENT is TRUE

v SEC_ENABLEMENT is DCE or CTSEC

v SCHEDULER_TYPE is GANG

v NQS_DIR is specified

Library

LoadLeveler API library libllapi.a (AIX) or libllapi.so (Linux)

Syntax

#include "llapi.h"

int ll_terminate_job (LL_terminate_job_info *ptr);

Parameters

ptr Specifies the pointer to the LL_terminate_info structure that was allocated by

the caller. The LL_terminate_job_info members are:

int version_num

Represents the version number of the LL_terminate_job_info structure.

Should be set to LL_PROC_VERSION.

LL_STEP_ID StepId

Represents the step ID of the job step to be terminated.

char *msg

A pointer to a null terminated array of characters. If this pointer is null or

Workload Management API

526 LoadLeveler: Using and Administering

|

|

points to a null string, a default message is used. This message will be

available through ll_get_data to tell the process why a program was

terminated.

Description

You do not need to disable the default LoadLeveler scheduler in order to use this

subroutine.

Only processes having the LoadLeveler administrator user ID can invoke this

subroutine.

An external scheduler uses this subroutine in conjunction with the ll_get_job

subroutine (of the job control API) and ll_start_jobs subroutine (of the query API).

The external scheduler must use this subroutine to return errors from ll_start_job

to interactive parallel jobs.

Return values

This subroutine returns a value of zero when successful, to indicate the terminate

job request was accepted by the negotiator. However, a return code of zero does

not necessarily imply the negotiator canceled the job. Use the llq command to

verify the job was canceled. Otherwise, this subroutine returns an integer value

defined in the llapi.h file.

Error values

-1 There is an error in the input parameter.

-4 An error occurred reading parameters from the administration or the

configuration file.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a

LoadLeveler administrator or you are not the user who submitted the job.

-8 The job object version number is incorrect.

-17 No DCE credentials.

-18 DCE credentials within 300 secs of expiration.

-19 64-bit API not supported when DCE is enabled.

Examples

Makefiles and examples which use this subroutine are located in the samples/llsch

subdirectory of the release directory. The examples include the executable sch_api,

which invokes the query API and the job control API to terminate the first job

reported by the ll_get_jobs subroutine. You should submit at least two jobs prior

to running the sample. To compile sch_api, copy the sample to a writeable

directory and update the RELEASE_DIR field to represent the current LoadLeveler

release directory.

Related information

Subroutines: ll_get_jobs, ll_start_job, ll_get_nodes

Workload Management API

Chapter 16. Application programming interfaces (APIs) 527

528 LoadLeveler: Using and Administering

Appendix. Troubleshooting

Troubleshooting LoadLeveler

This chapter is divided into the following sections:

v “Frequently asked questions,” which contains answers to questions frequently

asked by LoadLeveler customers. This section focuses on answers that may help

you get out of problem situations. The questions and answers are organized into

the following categories:

– Jobs submitted to LoadLeveler do not run. See “Why won’t my job run?” for

more information.

– One or more of your machines goes down. See “What happens to running

jobs when a machine goes down?” on page 534 for more information.

– The central manager is not operating. See “What happens if the central

manager isn’t operating?” on page 535 for more information.

– Miscellaneous questions. See “Other questions” on page 538 for more

information.
v “Helpful hints” on page 539, which contains tips on running LoadLeveler,

including some productivity aids.

v “Getting help from IBM” on page 543, which tells you how to contact IBM for

assistance.

It is helpful to create error logs when you are diagnosing a problem. See to

“Configuring recording activity and log files” on page 40 for information on

setting up error logs.

Frequently asked questions

This section contains answers to questions frequently asked by LoadLeveler

customers.

Why won’t my job run?

If you submitted your job but it has not run, issue llq -s first to help diagnose the

problem. If you need more help diagnosing the problem, refer to the following

table:

 Why your job might not be

running: Possible solution

Job requires specific machine,

operating system, or other

resource.

Does the resource exist in the LoadLeveler cluster? If

yes, wait until it becomes available.

Check the GUI to compare the job requirements to the

machine details, especially Arch, OpSys, and Class.

Ensure that the spelling and capitalization matches.

Job requires specific job class v Is the class defined in the administration file? Use

llclass to determine this. If yes,

v Is there a machine in the cluster that supports that

class? If yes, you need to wait until the machine

becomes available to run your job.

 529

|

Why your job might not be

running: Possible solution

The maximum number of jobs are

already running on all the eligible

machines

Wait until one of the machines finishes a job before

scheduling your job.

The start expression evaluates to

false.

Examine the configuration files (both LoadL_config and

LoadL_config.local) to determine the START control

function expression used by LoadLeveler to start a job.

As a problem determination measure, set the START

and SUSPEND values, as shown in this example:

START: T

SUSPEND: F

A job step is running on the node

that your job requires, and that

job step’s preemption rules list

your job’s class as one that cannot

share the node

The running job step is in a job class for which an

administrator has defined preemption rules through the

PREEMPT_CLASS keyword. When your job step’s class

is listed in the ALL clause of that keyword, your job

step must wait until the running job step finishes.

The priority of your job is lower

than the priority of other jobs.

You cannot affect the system priority given to this job

by the negotiator daemon but you can try to change

your user priority to move this job ahead of other jobs

you previously submitted using the llprio command or

the GUI.

The information the central

manager has about machines and

jobs may not be current.

Wait a few minutes for the central manager to be

updated and then the job may be dispatched. This time

limit (a few minutes) depends upon the polling

frequency and polls per update set in the LoadL_config

file. The default polling frequency is five seconds.

You do not have the same user ID

on all the machines in the cluster.

To run jobs on any machine in the cluster, you have to

have the same user ID and the same uid number on

every machine in the pool. If you do not have a userid

on one machine, your jobs will not be scheduled to that

machine.

CtSec is enabled and the .rhosts

file was not updated.

The .rhosts file should contain entries which specify all

the host and user combinations allowed to submit jobs

which will run as the local user. See to 7 on page 55 for

more details.

Troubleshooting

530 LoadLeveler: Using and Administering

|
|
|
|
|

|
|
|
|
|

|

Why your job might not be

running: Possible solution

Your job is not bound to a

reservation under which nodes

that your job requires to run are

reserved

When an unbound job requires nodes that are reserved

under a reservation, LoadLeveler will not start the job

unless one of the following conditions is true:

v The reservation was created with SHARED mode

specified. If the reservation is using SHARED mode,

your job will remain idle until the reservation state

becomes Active_Shared.

v The job’s expected end time (current time plus the

hard wall clock limit) indicates that the job will

complete before the reservation starts.

If neither condition is true, but you have the authority

to use the reservation, you may use the llbind

command to bind your job to the reservation.

Otherwise, your unbound job will remain idle until the

reservation completes or is canceled.

To check the reservation’s status and attributes, use the

llqres command. To find out which reservations you

may use, check with your LoadLeveler administrator, or

enter the command llqres -l and check the names in the

Users or Groups fields (under the Modification time

field) in the output listing. If your user name or a group

name to which you belong appears in these output

fields, you are authorized to use the reservation.

Your job is bound to a reservation

but the reservation is not active

yet

LoadLeveler schedules bound job steps to run only

when a reservation becomes active. Use the command

llq -l to find the ID of the reservation to which the job

is bound. Use the command llqres -l to find the start

time of the reservation, and wait until that time to check

the job status again.

Your job is bound to a reservation

that does not reserve all of the

resources that your job requires to

run

If a bound job requires specific resources that are not

available during the reservation period, LoadLeveler

will not dispatch the job to run under the reservation.

This situation can occur if the job requires one or more

of the following:

v Specific nodes that were not selected for the

reservation.

v More than the total number of reserved nodes.

v Floating consumable resources, which cannot be

reserved under a reservation.

If the LoadLeveler cluster has the resources that the job

requires, use the command llbind -r, which unbinds the

job from the reservation.

Your job is bound to a reservation

but the maximum number of jobs

you may run has been reached

already

If LoadLeveler detects that you currently are running

the maximum number of jobs that you are allowed to

run, it will not start your bound job even if the

reservation is active.

Troubleshooting

Appendix. Troubleshooting 531

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

Why your job might not be

running: Possible solution

Your job is bound to a reservation

but the job’s expected end time

exceeds the reservation’s end time

LoadLeveler will dispatch your job only if its expected

end time (current time plus the hard wall clock limit)

does not exceed the end time of the reservation, or if

both of the following conditions are true:

v This reservation is configured to allow jobs to

continue running even when their expected end time

exceeds the end of the reservation, and

v The resources required to run your job are available.

Otherwise, this bound job will remain idle until either:

v The reservation completes or is canceled, or

v You use the command llbind -r, which unbinds the

job from the reservation.

Your job is bound to a reservation

that does not exist

LoadLeveler puts your job in NotQueued state until the

reservation is created. In that case, LoadLeveler will

bind your job to the reservation. Otherwise, use the

command llbind -r to unbind the job from the

reservation.

You can use the llq command to query the status of your job or the llstatus

command to query the status of machines in the cluster. Refer to Chapter 15,

“Commands,” on page 335 for information on these commands.

Why won’t my parallel job run?

If you submitted your parallel job but it has not run, issue llq -s first to help

diagnose the problem. If issuing this command does not help, refer to the previous

table and to the following table for more information:

 Why your job might not be running: Possible solution

The minimum number of processors

requested by your job is not available.

Sufficient resources must be available. Specifying a

smaller number of processors may help if your job

can run with fewer resources.

The pool in your requirements

statement specifies a pool which is

invalid or not available.

The specified pool must be valid and available.

The adapter specified in the

requirements statement or the network

statement identifies an adapter which is

invalid or not available.

The specified adapter must be valid and available.

Gang scheduler checklist: Before running the Gang Scheduler, verify that:

v MACHINE_AUTHENTICATE is set to TRUE

v PROCESS_TRACKING is set to TRUE

v Applications are compiled with the multi-threaded library

Common set-up problems with parallel jobs: This section presents a list of

common problems found in setting up parallel jobs:

v If jobs appear to remain in a Pending or Starting state: check that the

nameserver is consistent. Compare results of host machine_name and host

IP_address

v For POE:

Troubleshooting

532 LoadLeveler: Using and Administering

|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|

– Specify the POE partition manager as the executable. Do not specify the

parallel job as the executable.

– Pass the parallel job as an argument to POE.

– The parallel job must exist and must be specified as a full path name.

– If the job runs in user space, specify the flag -euilib us.

– Specify the correct adapter (when needed).

– Specify a POE job only once in the job command file.

– Compile only with the supported level of POE.

– Specify only parallel as the job_type.

Why won’t my checkpointed job restart?

If the job you submitted has the keyword restart_from_ckpt = yes and if the

checkpoint file specified does not exist, the job will move to the Starting state and

will then be removed from the queue. A mail message will be generated indicating

the checkpoint file does not exist and a message will also appear in the StarterLog.

Verify the values of the ckpt_file keyword in the Job Command File and the value

of the ckpt_dir keyword in the Job Command or Administration File to ensure

they resolve to the directory and file name of the desired checkpoint file.

Note: When a job is enabled for checkpoint, it is important to ensure the name of

the checkpoint file is unique.

Why won’t my submit-only job run?

If a job you submitted from a submit-only machine does not run, verify that you

have defined the following statements in the machine stanza of the administration

file of the submit-only machine:

submit_only = true

schedd_host = false

central_manager = false

Verify that another machine has set schedd_host = true and schedd_runs_here =

true.

Why won’t my job run on a cluster with both AIX and Linux

machines?

The default shell on Linux (in both Red Hat Enterprise Linux and SUSE Linux

Enterprise Server) is bash and bash may not be available on AIX. If a job step

contains a bash script it will be rejected if it is run on an AIX node. The ksh is

available on both AIX and Linux. You can specify which shell to use in the

keyword shell in your job command file:

@shell = /bin/ksh

Also, AIX and Linux are not binary compatible so jobs written in compiled

languages such as C or Fortran must be compiled for the environment they will

run on.

Why does a job stay in the Pending (or Starting) state?

If a job appears to stay in the Pending or Starting state, it is possible the job is

continually being dispatched and rejected. Check the setting of the

MAX_JOB_REJECT keyword. If it is set to -1 the job will be rejected an unlimited

number of times. Try resetting this keyword to a small number, such as 10. Also,

check the setting of the ACTION_ON_MAX_REJECT keyword. These keywords

are described in Chapter 11, “Configuration file reference,” on page 211.

Troubleshooting

Appendix. Troubleshooting 533

What happens to running jobs when a machine goes down?

Both the startd daemon and the schedd daemon maintain persistent states of all

jobs. Both daemons use a specific protocol to ensure that the state of all jobs is

consistent across LoadLeveler. In the event of a failure, the state can be recovered.

Neither the schedd nor the startd daemon discard the job state information until it

is passed onto and accepted by another daemon in the process.

 If Then

The network goes down

but the machines are

still running

If the network goes down but the machines are still running,

when LoadLeveler is restarted, it looks for all jobs that were

marked running when it went down. On the machine where the

job is running, the startd daemon searches for the job and if it can

verify that the job is still running, it continues to manage the job

through completion. On the machine where schedd is running,

schedd queues a transaction to the startd to reestablish the state of

the job. This transaction stays queued until the state is

established. Until that time, LoadLeveler assumes the state is the

same as when the system went down.

The network partitions

or goes down.

All transactions are left queued until the recipient has

acknowledged them. Critical transactions such as those between

the schedd and startd are recorded on disk. This ensures complete

delivery of messages and prevents incorrect decisions based on

incomplete state information.

The machine with startd

goes down.

Because job state is maintained on disk in startd, when

LoadLeveler is restarted it can forward correct status to the rest of

LoadLeveler. In the case of total machine failure, this is usually

″JOB VACATED″, which causes the job to be restarted elsewhere.

In the case that only LoadLeveler failed, it is often possible to

″find″ the job if it is still running and resume management of it.

In this case LoadLeveler sends JOB RUNNING to the schedd and

central manager, thereby permitting the job to run to completion.

The central manager

machine goes down.

All machines in the cluster send current status to the central

manager on a regular basis. When the central manager restarts, it

queries each machine that checks in, requesting the entire queue

from each machine. Over the period of a few minutes the central

manager restores itself to the state it was in before the failure.

Each schedd is responsible for maintaining the correct state of

each job as it progressed while the central manager is down.

Therefore, it is guaranteed that the central manager will correctly

rebuild itself.

All jobs started when the central manager was down will

continue to run and complete normally with no loss of

information. Users may continue to submit jobs. These new jobs

will be forwarded correctly when the central manager is restarted.

Troubleshooting

534 LoadLeveler: Using and Administering

If Then

The schedd machine

goes down

When schedd starts up again, it reads the queue of jobs and for

every job which was in some sort of active state (i.e. PENDING,

STARTING, RUNNING), it queries the machine where it is

marked active.

The running machine is required to return current status of the

job. If the job completed while schedd was down, JOB

COMPLETE is returned with exit status and accounting

information. If the job is running, JOB RUNNING is returned. If

the job was vacated, JOB VACATED is returned. Because these

messages are left queued until delivery is confirmed, no job will

be lost or incorrectly dispatched due to schedd failure.

During the time the schedd is down, the central manager will not

be able to start new jobs that were submitted to that schedd.

To recover the resources allocated to jobs scheduled by a schedd

machine, see “How do I recover resources allocated by a schedd

machine?” on page 537.

The llsubmit machine

goes down

schedd gets its own copy of the executable so it does not matter if

the llsubmit machine goes down.

Why does llstatus indicate that a machine is down when llq indicates a job is

running on the machine?: If a machine fails while a job is running on the

machine, the central manager does not change the status of any job on the

machine. When the machine comes back up the central manager will be updated.

What happens if the central manager isn’t operating?

In one of your machine stanzas specified in the administration file, you specified a

machine to serve as the central manager. It is possible for some problem to cause

this central manager to become unusable such as network communication or

software or hardware failures. In such cases, the other machines in the LoadLeveler

cluster believe that the central manager machine is no longer operating. If you

assigned one or more alternate central managers in the machine stanza, a new

central manager will take control. The alternate central manager is chosen based

upon the order in which its respective machine stanza appears in the

administration file.

Once an alternate central manager takes control, it starts up its negotiator daemon

and notifies all of the other machines in the LoadLeveler cluster that a new central

manager has been selected. The following diagram illustrates how a machine can

become the alternate central manager:

Troubleshooting

Appendix. Troubleshooting 535

The diagram illustrates that Machine Z is the primary central manager but

Machine A took control of the LoadLeveler cluster by becoming the alternate

central manager. Machine A remains in control as the alternate central manager

until either:

v The primary central manager, Machine Z, resumes operation. In this case,

Machine Z notifies Machine A that it is operating again and, therefore, Machine

A terminates its negotiator daemon.

v Machine A also loses contact with the remaining machines in the pool. In this

case, another machine authorized to serve as an alternate central manager takes

control. Note that Machine A may remain as its own central manager.

The following diagram illustrates how multiple central managers can function

within the same LoadLeveler pool:

 In this diagram, the primary central manager is serving Machines A and B. Due to

some network failure, Machines C, D, and E have lost contact with the primary

central manager machine and, therefore, Machine C which is authorized to serve as

an alternate central manager, assumes that role. Machine C remains as the alternate

central manager until either:

Figure 43. When the primary central manager is unavailable

Figure 44. Multiple central managers

Troubleshooting

536 LoadLeveler: Using and Administering

v The primary central manager is able to contact Machines C, D, and E. In this

case, the primary central manager notifies the alternate central managers that it

is operating again and, therefore, Machine C terminates its negotiator daemon.

The negotiator daemon running on the primary central manager machine is

refreshed to discard any old job status information and to pick up the new job

status information from the newly rejoined machines.

v Machine C loses contact with Machines D and E. In this case, if machine D or E

is authorized to act as an alternate central manager, it assumes that role.

Otherwise, there will be no central manager serving these machines. Note that

Machine C remains as its own central manager.

While LoadLeveler can handle this situation of two concurrent central managers

without any loss of integrity, some installations may find administering it

somewhat confusing. To avoid any confusion, you should specify all primary and

alternate central managers on the same LAN segment.

For information on selecting alternate central managers, refer to “Defining

machines” on page 78.

How do I recover resources allocated by a schedd machine?

If a node running the schedd daemon fails, resources allocated to jobs scheduled

by this schedd cannot be freed up until you restart the schedd. Administrators

must do the following to enable the recovery of schedd resources:

1. Recognize that a node running the schedd daemon is down and will be down

long enough such that it is necessary for you to recover the schedd resources.

2. Add the statement schedd_fenced=true to the machine stanza of the failed

node. This statement specifies that the central manager ignores connections

from the schedd daemon running on this machine, and prevents conflicts from

arising when a schedd machine is restarted while a purge (see below) is taking

place.

3. Reconfigure the central manager node so that it recognizes the “fenced” schedd

daemon. From the central manager machine issue llctl reconfig.

4. Issue llctl -h host purgeschedd to purge all jobs scheduled by the schedd on the

failed node.

5. Remove all files in the LoadLeveler spool directory of the failed node. Once the

failed node is working again, you can remove the schedd_fenced=true

statement.

Why can’t I find a core file on Linux?

On Linux, when a LoadLeveler daemon terminates abnormally a core file is not

generated. Why? Although a LoadLeveler daemon begins its existence as a root

process, it uses the system functions seteuid() and setegid() to switch to effective

user ID of loadl and effective group ID of loadl immediately after startup if the

file /etc/LoadL.cfg is not defined. If this file is defined, the user ID associated with

the LoadLUserid keyword and the group ID associated with the LoadLGroupid

keyword are used instead of the default loadl user and group IDs.

On Linux systems, unless the default kernel runtime behavior is modified, the

standard kernel action for a process that has successfully invoked seteuid() and

setegid() to have a different effective user ID and effective group ID is not to

dump a core file. So, if you want Linux to create a core file when a LoadLeveler

daemon terminates abnormally you must use the file /etc/LoadL.cfg to set both

LoadLUserid and LoadLGroupid to root.

Troubleshooting

Appendix. Troubleshooting 537

On Red Hat Enterprise Linux 3.3 systems, the command sysctl -w

kernel.core_setuid_ok=1 can be used to change the default kernel core file creation

behavior of setuid programs. If the core_setuid_ok option is enabled, the values of

LoadLUserid and LoadLGroupid in the /etc/LoadL.cfg file do not have to be root

for the successful creation of LoadLeveler core files.

Other questions

Why do I have to setuid = 0?: The master daemon starts the startd daemon and

the startd daemon starts the starter process. The starter process runs the job. The

job needs to be run by the userid of the submitter. You either have to have a

separate master daemon running for every ID on the system or the master daemon

has to be able to su to every userid and the only user ID that can su any other

userid is root.

Why doesn’t LoadLeveler execute my .profile or .login script?: When you submit

a batch job to LoadLeveler, the operating system will execute your .profile script

before executing the batch job if your login shell is the Korn shell. On the other

hand, if your login shell is the Bourne shell, on most operating systems (including

AIX), the .profile script is not executed. Similarly, if your login shell is the C shell

then AIX will execute your .login script before executing your LoadLeveler batch

job but some other variants of UNIX may not invoke this script.

The reason for this discrepancy is due to the interactions of the shells and the

operating system. To understand the nature of the problem, examine the following

C program that attempts to open a login Korn shell and execute the ″ls″ command:

#include <stdio.h>

main()

{

execl("/bin/ksh","-","-c","ls",NULL);

}

UNIX documentations in general (SunOS, HP-UX, AIX, IRIX) give the impression

that if the second argument is ″-″ then you get a login shell regardless of whether

the first argument is /bin/ksh or /bin/csh or /bin/sh. In practice, this is not the

case. Whether you get a login shell or not is implementation dependent and varies

depending upon the UNIX version you are using. On AIX you get a login shell for

/bin/ksh and /bin/csh but not the Bourne shell.

If your login shell is the Bourne shell and you would like the operating system to

execute your .profile script before starting your batch job, add the following

statement to your job command file:

@ shell = /bin/ksh

LoadLeveler will open a login Korn shell to start your batch job which may be a

shell script of any type (Bourne shell, C shell, or Korn shell) or just a simple

executable.

What happens when a mksysb is created when LoadLeveler is running jobs?:

 When you create a mksysb (an image of the currently installed operating system)

at a time when LoadLeveler is running jobs, the state of the jobs is saved as part of

the mksysb. When the mksysb is restored on a node, those jobs will appear to be

on the node, in the same state as when they were saved, even though the jobs are

not actually there. To delete these phantom jobs, you must remove all files from

the LoadLeveler spool and execute directories and then restart LoadLeveler.

Troubleshooting

538 LoadLeveler: Using and Administering

|

What can I do when a reserved node is down?: If the reservation has not started

yet, the node might become available before the reservation start time. If the node

is still not available when the reservation starts, a LoadLeveler administrator may

use the llchres command to remove the node and replace it with another.

Helpful hints

This section contains tips on running LoadLeveler, including some productivity

aids.

Scaling considerations

If you are running LoadLeveler on a large number of nodes (128 or more), network

traffic between LoadLeveler daemons can become excessive to the point of

overwhelming a receiving daemon. To reduce network traffic, consider the

following daemon, keyword, and command recommendations for large

installations.

v Set the POLLS_PER_UPDATE*POLLING_FREQUENCY interval to five minutes

or more. This limits the volume of machine updates the startd daemons send to

the negotiator. For example, set POLLS_PER_UPDATE to 10 and set

POLLING_FREQUENCY to 30 seconds.

v If your installation’s mix of jobs includes a high percentage of parallel jobs

requiring many nodes, specify schedd_host=yes in the machine stanza of each

schedd machine. The schedd daemons must communicate with hundreds of

startd daemons every time a job runs. You can distribute this communication by

activating many schedd daemons. You should activate as many schedd daemons

as there are jobs likely to be running at any one time. When you do this, each

schedd handles the dispatching of one parallel job.

v If your installation allows jobs to be submitted from machines running the

schedd daemon, you should consider avoiding “schedd affinity” by specifying

SCHEDD_SUBMIT_AFFINITY=FALSE in the LoadLeveler configuration file.

By default, the llsubmit command submits a job to the machine where the

command was invoked provided the schedd daemon is running on the machine.

(This is called schedd affinity.)

v You can decrease the amount of time the negotiator daemon spends running

negotiation loops by increasing the NEGOTIATOR_INTERVAL and the

NEGOTIATOR_CYCLE_DELAY. For example, set NEGOTIATOR_INTERVAL

to 600, and set NEGOTIATOR_CYCLE_DELAY to 30.

v Make sure the machine update interval is not too short by setting the

MACHINE_UPDATE_INTERVAL to a value larger than three times the polling

interval (POLLS_PER_UPDATE*POLLING_FREQUENCY). This prevents the

negotiator from prematurely marking a machine as “down” or prematurely

cancelling jobs.

v In a large LoadLeveler cluster, issuing the llctl command with the -g can take

minutes to complete. To speed this up, set up a working collective containing

the machines in the cluster and use the dsh command; for example, dsh llctl

reconfig. This command also allows you to limit your operation to a subset of

machines by defining other working collectives.

Hints for running jobs

Determining when your job started and stopped: By reading the notification

mail you receive after submitting a job, you can determine the time the job was

submitted, started, and stopped. Suppose you submit a job and receive the

following mail when the job finishes:

Troubleshooting

Appendix. Troubleshooting 539

|
|
|
|

Submitted at: Sun Apr 30 11:40:41 1996

Started at: Sun Apr 30 11:45:00 1996

Exited at: Sun Apr 30 12:49:10 1996

Real Time: 0 01:08:29

Job Step User Time: 0 00:30:15

Job Step System Time: 0 00:12:55

Total Job Step Time: 0 00:43:10

Starter User Time: 0 00:00:00

Starter System Time: 0 00:00:00

Total Starter Time: 0 00:00:00

This mail tells you the following:

Submitted at The time you issued the llsubmit command or the time you

submitted the job with the graphical user interface.

Started at The time the starter process executed the job.

Exited at The actual time your job completed.

Real Time The wall clock time from submit to completion.

Job Step User Time

The CPU time the job consumed executing in user space.

Job Step System Time

The CPU time the system (AIX) consumed on behalf of the job.

Total Job Step Time

The sum of the two fields above.

Starter User Time

The CPU time consumed by the LoadLeveler starter process for

this job, executing in user space. Time consumed by the starter

process is the only LoadLeveler overhead which can be directly

attributed to a user’s job.

Starter System Time

The CPU time the system (AIX) consumed on behalf of the

LoadLeveler starter process running for this job.

Total Starter Time

The sum of the two fields above.

You can also get the starting time by issuing llsummary -l -x and then issuing awk

/Date|Event/ against the resulting file. For this to work, you must have ACCT =

A_ON A_DETAIL set in the LoadL_config file.

Running jobs at a specific time of day: Using a machine’s local configuration

file, you can set up the machine to run jobs at a certain time of day (sometimes

called an execution window). The following coding in the local configuration file

runs jobs between 5:00 PM and 8:00 AM daily, and suspends jobs the rest of the

day:

START: (tm_hour >= 1700) || (tm_hour <= 0800)

SUSPEND: (tm_hour > 0800) && (tm_hour < 1700)

CONTINUE: (tm_hour >= 1700) || (tm_hour <= 0800)

Controlling the mix of idle and running jobs: Three keywords determine the

mix of idle and running jobs for a user. By a running job, we mean a job that is in

one of the following states: Checkpointing, Preempted, Preempt Pending, Resume

Troubleshooting

540 LoadLeveler: Using and Administering

|
|
|

Pending, Running, Pending, or Starting. These keywords, which are described in

detail in “Defining users” on page 87, are:

maxqueued

Controls the number of jobs in any of these states: Idle, Running, Pending, or

Starting.

maxjobs

Controls the number of jobs in any of these states: Running, Pending, or

Starting; thus it controls a subset of what maxqueued controls. maxjobs

effectively controls the number of jobs in the Running state, since Pending and

Starting are usually temporary states.

maxidle

Controls the number of jobs in any of these states: Idle, Pending, or Starting;

thus it controls a subset of what maxqueued controls. maxidle effectively

controls the number of jobs in the Idle state, since Pending and Starting are

usually temporary states.

What happens when you submit a job: For a user’s job to be allowed into the job

queue, the total of other jobs (in the Idle, Pending, Starting and Running states) for

that user must be less than the maxqueued value for that user. Also, the total idle

jobs (those in the Idle, Pending, and Starting states) must be less than the maxidle

value for the user. If either of these constraints are at the maximum, the job is

placed in the Not Queued state until one of the other jobs changes state. If the user

is at the maxqueued limit, a job must complete, be canceled, or be held before the

new job can enter the queue. If the user is at the maxidle limit, a job must start

running, be canceled, or be held before the new job can enter the queue.

Once a job is in the queue, the job is not taken out of queue unless the user places

a hold on the job, the job completes, or the job is canceled. (An exception to this,

when you are running the default LoadLeveler scheduler, is parallel jobs which do

not accumulate sufficient machines in a given time period. These jobs are moved to

the Deferred state, meaning they must vie for the queue when their Deferred

period expires.)

Once a job is in the queue, the job will run unless the maxjobs limit for the user is

at a maximum.

Note the following restrictions for using these keywords:

v If maxqueued is greater than (maxjobs + maxidle), the maxqueued value will

never be reached.

v If either maxjobs or maxidle is greater than maxqueued, then maxqueued will

be the only restriction in effect, since maxjobs and maxidle will never be

reached.

Sending output from several job steps to one output file: You can use

dependencies in your job command file to send the output from many job steps to

the same output file. For example:

@ step_name = step1

@ executable = ssba.job

@ output = ssba.tmp

@ ...

@ queue

@ step_name = append1

@ dependency = (step1 != CC_REMOVED)

@ executable = append.ksh

Troubleshooting

Appendix. Troubleshooting 541

@ output = /dev/null

@ queue

@

@ step_name = step2

@ dependency = (append1 == 0)

@ executable = ssba.job

@ output = ssba.tmp

@ ...

@ queue

@

@ step_name = append2

@ dependency = (step2 != CC_REMOVED)

@ executable = append.ksh

@ output = /dev/null

@ queue

...

Then, the file append.ksh could contain the line cat ssba.tmp >> ssba.log. All your

output will reside in ssba.log. (Your dependencies can look for different return

values, depending on what you need to accomplish.)

You can achieve the same result from within ssba.job by appending your output to

an output file rather than writing it to stdout. Then your output statement for each

step would be /dev/null and you wouldn’t need the append steps.

Hints for using machines

Setting up a single machine to have multiple job classes: You can define a

machine to have multiple job classes which are active at different times. For

example, suppose you want a machine to run jobs of Class A any time, and you

want the same machine to run Class B jobs between 6 p.m. and 8 a.m.

You can combine the Class keyword with a user-defined macro (called Off_shift in

this example).

For example:

Off_Shift = ((tm_hour >= 18) || (tm_hour < 8))

Then define your START statement:

START : (Class == "A") || ((Class == "B") && $(Off_Shift))

Make sure you have the parenthesis around the Off_Shift macro, since the logical

OR has a lower precedence than the logical AND in the START statement.

Also, to take weekends into account, code the following statements. Remember

that Saturday is day 6 and Sunday is day 0.

Off_Shift = ((tm_wday == 6) || (tm_wday == 0) || (tm_hour >=18) \

|| (tm_hour < 8))

Prime_Shift = ((tm_wday != 6) && (tm_wday != 0) && (tm_hour >= 8) \

&& (tm_hour < 18))

Reporting the load average on machines: You can use the /usr/bin/rup command

to report the load average on a machine. The rup machine_name command gives

you a report that looks similar to the following:

localhost up 23 days, 10:25, load average: 1.72, 1.05, 1.17

Troubleshooting

542 LoadLeveler: Using and Administering

You can use this command to report the load average of your local machine or of

remote machines. Another command, /usr/bin/uptime, returns the load average

information for only your local host.

History files and schedd

The schedd daemon writes to the spool/history file only when a job is completed

or removed. Therefore, you can delete the history file and restart schedd even

when some jobs are scheduled to run on other hosts.

However, you should clean up the spool/job_queue.dir and spool/job_queue.pag

files only when no jobs are being scheduled on the machine.

You should not delete these files if there are any jobs in the job queue that are

being scheduled from this machine (for example, jobs with names such as

thismachine.clusterno.jobno).

Getting help from IBM

Should you require help from IBM in resolving a LoadLeveler problem, you can

get assistance by calling IBM Support. Before you call, be sure you have the

following information:

1. Your access code (customer number).

2. The LoadLeveler product number.

3. The name and version of the operating system you are using.

4. A telephone number where you can be reached.

In addition, issue the following command:

 llctl version

This command will provide you with code level information. Provide this

information to the IBM representative.

The number for IBM support in the United States is 1-800-IBM-4YOU (426-4968).

The Facsimile number is 800-2IBM-FAX (2426-329).

Troubleshooting

Appendix. Troubleshooting 543

544 LoadLeveler: Using and Administering

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

 545

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Intellectual Property Law

2455 South Road, P386

Poughkeepsie, New York 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly-available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

546 LoadLeveler: Using and Administering

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States, other countries, or both:

 AFS

AIX

AIX 5L

Blade Center

DFS

Eserver

IBM

IBMLink

LoadLeveler

Micro Channel

POWER

pSeries

RS/6000

SP

xSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Red Hat, the Red Hat ″Shadow Man″ logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

LoadLeveler incorporates Condor, which was developed at the University of

Wisconsin-Madison, and uses it with the permission of its authors.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 547

548 LoadLeveler: Using and Administering

Glossary

A

AFS. A distributed file system that provides

authentication services.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical

computing applications, including high function

graphics and floating point computations.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

Berkeley Load Average. The average number of

processes on the operating system’s ready to run

queue.

C

C. A general purpose programming language. It was

formalized by ANSI standards committee for the C

language (X3J11) in 1984 and by Uniforum in 1983.

client. (1) A function that requests services from a

server, and makes them available to the user. (2) An

address space in MVS™ that is using TCP/IP services.

(3) A term used in an environment to identify a

machine that uses the resources of the network.

cluster. (1) A group of processors interconnected

through a high speed network that can be used for

high performance computing. (2) A group of jobs

submitted from the same job command file. (3) A set of

machines with something in common between them.

This commonality could be that they are all backed up

by one machine or they are all in the LoadLeveler

administration file.

Cluster 1600. See IBM Eserver Cluster 1600.

cluster security services. A component of RSCT that is

used by RSCT applications and other RSCT

components to perform authentication within peer

domains.

CtSec. Cluster security services.

D

daemon. A process, not associated with a particular

user, that performs system-wide functions such as

administration and control of networks, execution of

time-dependent activities, line printer spooling, and so

on.

datagram. A protocol known as the User Datagram

Protocol (UDP). It is an internet standard protocol that

allows an application program on one machine to send

a datagram to an application program on another

machine. UDP uses the Internet Protocol to deliver

datagrams. Conceptually, the important difference

between UDP and IP is that UDP messages include a

protocol port number, allowing the sender to

distinguish among multiple destinations (application

programs) on the remote machines. In practice, UDP

also includes a checksum over the data being sent.

DCE. Distributed Computing Environment.

default. An alternative value, attribute, or option that

is assumed when none has been specified.

DFS. Distributed File System. A subset of the IBM

Distributed Computing Environment.

H

host. A computer connected to a network, and

providing an access method to that network. A host

provides end-user services.

I

IBM Eserver Cluster 1600. An IBM Eserver Cluster

1600 is any PSSP or CSM-managed cluster comprised of

POWER microprocessor based systems (including

RS/6000 SMPs, RS/6000 SP nodes, and pSeries SMPs).

IBM Eserver 325 and 326 servers. LoadLeveler for

Linux supports the IBM Eserver 325 and 326 servers

with 64-bit AMD Opteron processors. The supported

Linux distributions are RHEL 3, RHEL 4, or SLES 9.

M

menu. A display of a list of available functions for

selection by the user.

Motif. The UNIX industry’s standard user interface,

originally developed by the Open Systems Foundation.

 549

|
|

 |
 |
 |
 |

Motif is based on the X-Window system and is a

Presentation Manager look-alike. Motif is available for

all IBM AIX workstations.

MPICH. A portable implementation of the full

Message-Passing Interface (MPI) standard. MPICH was

developed by Argonne National Laboratory to be

highly portable and is used by a large number of

providers of MPI implementations.

MPICH-GM. A port of MPICH on top of Myrinet GM

code. Myrinet-GM is a low level message-passing

system for Myrinet networks.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit

data to and receive data from other systems and users.

NFS. Network File System.

node. In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network.

NQS. Network Queueing System.

O

OSI. Operating System Instance. In the LoadLeveler

documentation, OSI and node are used interchangeably.

P

parameter. (1) A variable that is given a constant value

for a specified application and that may denote the

application. (2) An item in a menu for which the

operator specifies a value or for which the system

provides a value when the menu is interpreted. (3) A

name in a procedure that is used to refer to an

argument that is passed to the procedure. (4) A

particular piece of information that a system or

application program needs to process a request.

process. (1) A unique, finite course of events defined

by its purpose or by its effect, achieved under defined

conditions. (2) Any operation or combination of

operations on data. (3) A function being performed or

waiting to be performed. (4) A program in operation.

For example, a daemon is a system process that is

always running on the system.

peer domain. A set of nodes configured for high

availability by the configuration resource manager.

Such a domain has no distinguished or master node.

All nodes are aware of all other nodes, and

administrative commands can be issued from any node

in the domain. All nodes also have a consistent view of

the domain membership.

R

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

SDR. Abbreviation for System Data Repository. A

repository of system information describing SP

hardware and operating characteristics.

server. (1) A function that provides services for users.

A machine may run client and server processes at the

same time. (2) A machine that provides resources to the

network. It provides a network service, such as disk

storage and file transfer, or a program that uses such a

service.

shell. The shell is the primary user interface for the

UNIX operating system. It serves as command

language interpreter, programming language, and

allows foreground and background processing. Some

widely used implementations of the shell concept

include Bourne, Bourne Again, C, and Korn.

stream. An internet standard transport level protocol

that provides the reliable, full duplex, stream service on

which many application protocols depend. TCP allows

a process on one machine to send a stream of data to a

process on another. It is connection-oriented in the

sense that before transmitting data, participants must

establish a connection. Software implementing TCP

usually resides in the operating system and uses the IP

protocol to transmit information across the Internet. It

is possible to terminate (shut down) one direction of

flow across a TCP connection, leaving a one-way

(simplex) connection. The Internet protocol suite is

often referred to as TCP/IP because TCP is one of the

two most fundamental protocols.

System Administrator. The user who is responsible

for setting up, modifying, and maintaining

LoadLeveler.

U

user. Anyone who is using LoadLeveler.

W

working directory. All files without a fully qualified

path name are relative to this directory.

550 LoadLeveler: Using and Administering

 |
 |
 |
 |
 |
 |

workstation. (1) A configuration of input/output

equipment at which an operator works. (2) A terminal

or microcomputer, usually one that is connected to a

mainframe or to a network, at which a user can

perform applications.

Glossary 551

552 LoadLeveler: Using and Administering

Index

Special characters
!var 303

!var specification
on environment keyword 303

/etc/LoadL.cfg file 33, 65

/etc/services file 42

.llrc script 8

$var specification
on environment keyword 303

Numerics
64-bit

keywords supported
administration file 265

configuration file 212

job command file 291

support for accounting functions 61

support for GUI 330

support for LoadLeveler APIs 439

A
account keyword

detailed description 267

account number, modify 203

account_no keyword
detailed description 295

accounting
API 440

collecting data 57

based on events 58

based on machines 58, 122

based on user accounts 59

for serial or parallel jobs 57

correlating AIX and LoadLeveler

records 60

in job command file 295

keywords
ACCT 57

ACCT_VALIDATION 57

GLOBAL_HISTORY 57

HISTORY_PERMISSION 57

JOB_ACCT_Q_POLICY 57

JOB_LIMIT_POLICY 57

llacctmrg command 337

llacctval program 57

producing reports 60

storing data 59

using llsummary command 425

accounting functions
64-bit support 61

accounting, job setup 61

ACCT keyword
detailed description 212

ACCT_VALIDATION 440

ACCT_VALIDATION keyword
detailed description 213

ACTION_ON_MAX_REJECT keyword
detailed description 213

ACTION_ON_SWITCH_TABLE_ERROR

keyword
detailed description 213

adapter
dedicated 310

shared 310

specifying in job command file 308,

314

adapter information
extracting from SDR

using llextSDR command 365

adapter stanza keywords
adapter_name 267

adapter_type 267

css_type 271

device_driver_name 274

interface_address 277

interface_name 277

logical_id 277

multilink_address 282

multilink_list 282

network_id 282

network_type 282

switch_node_number 287

type 288

adapter stanzas
examples 82

format 81

adapter_name keyword
detailed description 267

adapter_stanzas keyword
detailed description 267

adapter_type keyword
detailed description 267

admin keyword
detailed description 268

ADMIN_FILE 38

administering LoadLeveler
customizing the administration

file 77

LoadL_admin file 263

stanzas 77

administration file
account keyword 267

adapter_name keyword 267

adapter_stanzas keyword 267

adapter_type keyword 267

admin keyword 268

alias keyword 268

central_manager keyword 269

ckpt_dir keyword 269

ckpt_time_limit keyword 270

class_comment keyword 270

core_limit keyword 270

cpu_limit keyword 271

cpu_speed_scale keyword 271

css_type keyword 271

customizing 77

data_limit keyword 272

dce_host_name keyword 272

default_class keyword 272

administration file (continued)
default_group keyword 273

default_interactive_class

keyword 273

default_resources keyword 273

device_driver_name keyword 274

env_copy keyword 274

exclude_groups keyword 275

exclude_users keyword 275

file_limit keyword 275

include_groups keyword 276

include_users keyword 276

interface_address keyword 277

interface_name keyword 277

job_cpu_limit keyword 277

keyword descriptions 267

logical_id keyword 277

machine_mode keyword 277

master_node_exclusive keyword 278

master_node_requirement

keyword 278

max_jobs_scheduled keyword 278

max_node keyword 278

max_processors keyword 279

max_protocol_instances keyword 279

max_reservation_duration

keyword 279

max_reservations keyword 279

max_total_tasks keyword 280

maxidle keyword 280

maxjobs keyword 281

maxqueued keyword 281

multilink_address keyword 282

multilink_list keyword 282

multiple statements 115

name_server keyword 282

network_id keyword 282

network_type keyword 282

nice keyword 283

NQS_class keyword 283

NQS_query keyword 283

NQS_submit keyword 284

pool_list keyword 284

priority keyword 284

reservation_permitted keyword 284

resources keyword 285

rss_limit keyword 285

schedd_fenced keyword 286

schedd_host keyword 286

spacct_excluse_enable keyword 286

speed keyword 287

stack_limit keyword 287

structure and syntax 263

submit_only keyword 287

switch_node_number keyword 287

total_tasks keyword 287

type keyword 288

wall_clock_limit keyword 288

administrative actions
GUI 137

administrators 32

 553

AFS authentication 214

AFS authentication user exit 69

AFS_GETNEWTOKEN keyword
detailed description 214

AGGREGATE_ADAPTERS keyword 36

detailed description 214

AIX accounting
correlating AIX and LoadLeveler

records 60

alias keyword
detailed description 268

API scheduler 36

APIs
ll_ckpt 444

ll_init_ckpt 443

ll_set_ckpt_callbacks 446

ll_unset_ckpt_callbacks 447

application programming interface (API)
summary 437

application programming interfaces
accessing LoadLeveler objects 448

accounting 440

checkpointing serial jobs 442

job control 509

ll_error 487

ll_reservation 496

querying jobs and machines 493

running parallel jobs 488

scheduling 509

submitting jobs 507

workload management 509

application support 98

Arch
requirement in job command file 314

ARCH keyword
detailed description 214

Arch variable
detailed description 256

arguments keyword
detailed description 295

attributes
of job steps

changing 379

authentication process, DCE 68

authentication programs 68

B
backfill scheduler

advantages of using 35

backfill scheduling
avoiding circular preemption 113

implied START_CLASS values 113

releasing resources of preemptable

jobs 115

selecting a preemption method 114

BackgroundLoad keyword 255

basics, LoadLeveler 4

batch parallel jobs
naming files for checkpointing 130

BIN 38

BIN keyword
detailed description 214

blocking 159

blocking factor 159

blocking keyword
detailed description 295

building a job
using the GUI 189

building jobs
using a job command file 145

bulk data transfer
configuring 56

specifying for jobs 152

bulkxfer keyword
detailed description 296

C
Canceled job state

abbreviations 18

detailed description 18

cancelling jobs
using llcancel 188

using the GUI 203

capture data
GUI 140

central manager 6, 205, 535

controlling scheduling cycle
example 66

specifying an alternate 37

central_manager keyword
detailed description 269

CENTRAL_MANAGER_HEARTBEAT_

INTERVAL keyword
detailed description 214

CENTRAL_MANAGER_TIMEOUT

keyword
detailed description 215

changing attributes of job steps
using llmodify command 379

changing job priority
example 187

using llprio command 384

using the GUI 202

changing scheduler types
example 111

reconfiguring 111

checklist
Gang scheduler 532

parallel jobs 532

checkpoint
file naming 127

limitations 127

removing old files 130

restarting a job 533

checkpoint and restart limitations 127

checkpoint files, removing 130

checkpoint keyword
detailed description 296

checkpoint keywords
summary 125

checkpoint, take 203

checkpointing
API 442

how to checkpoint a job 184

naming files for interactive parallel

jobs 130

naming serial and batch files 130

planning considerations 126

system-initiated 125, 296

user-initiated 125, 296

checkpointing a job step
using llckpt command 347

Checkpointing job state
abbreviations 18

detailed description 18

choice button 193

circular preemption
avoiding 113

ckpt (subroutine) 443

CKPT_CLEANUP_PROGRAM keyword
detailed description 215

ckpt_dir keyword
detailed description 269, 297

ckpt_execute_dir keyword
detailed description 297

CKPT_EXECUTE_DIR keyword
detailed description 215

ckpt_file keyword
detailed description 298

ckpt_time_limit keyword
detailed description 270, 298

class
multiple job classes 542

querying class information
using llclass command 349

Class
defining for a machine 216

keyword 216

class keyword
detailed description 299

CLASS keyword
detailed description 215

class stanza keywords
admin 268

ckpt_dir 269

class_comment 270

core_limit 270

cpu_limit 271

data_limit 272

default_resources 273

env_copy_name 274

exclude_groups 275

exclude_users 275

file_limit 275

include_groups 276

include_users 276

job_cpu_limit 277

master_node_requirement 278

max_node 278

max_processors 279

max_protocol_instances 279

max_total_tasks 280

maxjobs 281

nice 283

NQS_class 283

NQS_query 283

NQS_submit 284

priority 284

rss_limit 285

stack_limit 287

total_tasks 287

type 288

wall_clock_limit 288

class stanzas
examples 86

format 89

class_comment keyword
detailed description 270

class, modify 203

554 LoadLeveler: Using and Administering

ClassSysprio variable
detailed description 256

use on SYSPRIO keyword 250

CLIENT_TIMEOUT keyword
detailed description 216

cluster
definition 3

querying multiple clusters 65

submitting jobs to multiple

clusters 65

various levels of POE 158

cluster with both AIX and Linux

machines
troubleshooting 533

CM_COLLECTOR_PORT keyword
detailed description 217

coexistence
POE software levels 158

collect account data
GUI 140

collect reservation data
GUI 140

COMM keyword
detailed description 217

command
summary 335

command description
llacctmrg 337

llcancel 341

llckpt 347

llclass 349

llctl 353

lldcegrpmaint 359

llextRPD 362

llextSDR 365

llfavorjob 369

llfavoruser 371

llhold 372

llinit 374

llmodify 379

llpreempt 382

llprio 384

llq 386

llstatus 412

llsubmit 423

llsummary 425

command line interface
overview 335

commands
llacctmrg 123

llbind 176, 177, 339

llchres 178, 343

lldbconvert 358

llmkres 174, 376

llq 177, 178

llqres 176, 177, 178, 406

llrmres 178, 409

llrunscheduler 411

llsubmit 177

comment keyword
detailed description 299

common name space 79

communication level 308

Complete Pending job state
abbreviations 18

detailed description 18

Completed job state
abbreviations 18

detailed description 18

configuration file
ACCT keyword 212

ACCT_VALIDATION keyword 213

ACTION_ON_MAX_REJECT

keyword 213

ACTION_ON_SWITCH_TABLE_ERROR

keyword 213

AFS_GETNEWTOKEN keyword 214

AGGREGATE_ADAPTERS

keyword 214

ARCH keyword 214

BIN keyword 214

CENTRAL_MANAGER_HEARTBEAT_

INTERVAL keyword 214

CENTRAL_MANAGER_TIMEOUT

keyword 215

CKPT_CLEANUP_PROGRAM

keyword 215

ckpt_execute_dir keyword 297

CKPT_EXECUTE_DIR keyword 215

CLASS keyword 215

CLIENT_TIMEOUT keyword 216

CM_COLLECTOR_PORT

keyword 217

COMM keyword 217

CONTINUE expression 217

CUSTOM_METRIC keyword 217

CUSTOM_METRIC_COMMAND

keyword 217

customizing 31

DCE_ADMIN_GROUP keyword 218

DCE_AUTHENTICATION_PAIR

keyword 218

DCE_ENABLEMENT keyword 218

DCE_SERVICES_GROUP

keyword 218

DEFAULT_PREEMPT_METHOD

keyword 219

defaults 31

DRAIN_ON_SWITCH_TABLE_ERROR

keyword 219

ENFORCE_RESOURCE_MEMORY

keyword 220

ENFORCE_RESOURCE_POLICY

keyword 220

ENFORCE_RESOURCE_USAGE

keyword 220

EXECUTE keyword 221

FEATURE keyword 221

FLOATING_RESOURCES

keyword 221

FS_INTERVAL keyword 222

FS_NOTIFY keyword 222

FS_SUSPEND keyword 222

FS_TERMINATE keyword 223

GLOBAL_HISTORY keyword 223

GSMONITOR keyword 223

GSMONITOR_COREDUMP_DIR

keyword 224

GSMONITOR_DOMAIN

keyword 224

GSMONITOR_RUNS_HERE

keyword 224

HISTORY keyword 224

configuration file (continued)
HISTORY_PERMISSION

keyword 224

INODE_NOTIFY keyword 225

INODE_SUSPEND keyword 225

INODE_TERMINATE keyword 225

JOB_ACCT_Q_POLICY keyword 226

JOB_EPILOG keyword 226

JOB_LIMIT_POLICY keyword 226

JOB_PROLOG keyword 226

JOB_USER_EPILOG keyword 227

JOB_USER_PROLOG keyword 227

KBDD keyword 227

KBDD_COREDUMP_DIR

keyword 227

keyword descriptions 212

KILL expression 227

LIB keyword 227

LOADL_ADMIN keyword 228

LOCAL_CONFIG keyword 228

LOG keyword 228

MACHINE_AUTHENTICATE

keyword 229

MACHINE_UPDATE_INTERVAL

keyword 229

MACHPRIO keyword 229

MAIL keyword 231

MASTER keyword 231

MASTER_COREDUMP_DIR

keyword 231

MASTER_DGRAM_PORT

keyword 231

MASTER_STREAM_PORT

keyword 232

MAX_CKPT_INTERVAL

keyword 232

MAX_JOB_REJECT keyword 232

MAX_RESERVATIONS keyword 232

MAX_STARTERS keyword 232

MIN_CKPT_INTERVAL

keyword 233

multiple statements 115

NEGOTIATOR keyword 233

NEGOTIATOR_COREDUMP_DIR

keyword 233

NEGOTIATOR_CYCLE_DELAY

keyword 233

NEGOTIATOR_CYCLE_TIME_LIMIT

keyword 234

NEGOTIATOR_INTERVAL

keyword 234

NEGOTIATOR_LOADAVG_INCREMENT

keyword 234

NEGOTIATOR_PARALLEL_DEFER

keyword 234

NEGOTIATOR_PARALLEL_HOLD

keyword 235

NEGOTIATOR_RECALCULATE_SYSPRIO_

INTERVAL keyword 235

NEGOTIATOR_REJECT_DEFER

keyword 235

NEGOTIATOR_REMOVE_COMPLETED

keyword 235

NEGOTIATOR_RESCAN_QUEUE

keyword 236

NEGOTIATOR_STREAM_PORT

keyword 236

Index 555

configuration file (continued)
NQS_DIR keyword 236

OBITUARY_LOG_LENGTH

keyword 236

POLLING_FREQUENCY

keyword 236

POLLS_PER_UPDATE keyword 237

PREEMPT_CLASS keyword 237

PREEMPTION_SUPPORT

keyword 239

PRESTARTED_STARTERS

keyword 237

PROCESS_TRACKING keyword 239

PROCESS_TRACKING_EXTENSION

keyword 239

PUBLISH_OBITUARIES

keyword 240

REJECT_ON_RESTRICTED_LOGIN

keyword 240

RELEASEDIR keyword 240

RESERVATION_CAN_BE_EXCEEDED

keyword 240

RESERVATION_HISTORY

keyword 241

RESERVATION_MIN_ADVANCE_TIME

keyword 241

RESERVATION_PRIORITY

keyword 241

RESERVATION_SETUP_TIME

keyword 241

RESTARTS_PER_HOUR

keyword 242

RESUME_ON_SWITCH_TABLE_

ERROR_CLEAR keyword 242

SAVELOGS keyword 242

SCHEDD keyword 242

SCHEDD_COREDUMP_DIR

keyword 243

SCHEDD_INTERVAL keyword 243

SCHEDD_RUNS_HERE

keyword 243

SCHEDD_STATUS_PORT

keyword 244

SCHEDD_STREAM_PORT

keyword 244

SCHEDD_SUBMIT_AFFINITY

keyword 243

SCHEDULE_BY_RESOURCES

keyword 244

SCHEDULER_TYPE keyword 244

SEC_ADMIN_GROUP keyword 245

SEC_ENABLEMENT keyword 245

SEC_IMPOSED_MECHS

keyword 246

SEC_SERVICES_GROUP

keyword 246

SPOOL keyword 246

START expression 246

START_CLASS keyword 247

START_DAEMONS keyword 248

STARTD keyword 248

STARTD_COREDUMP_DIR

keyword 248

STARTD_DGRAM_PORT

keyword 248

STARTD_RUNS_HERE keyword 249

configuration file (continued)
STARTD_STREAM_PORT

keyword 249

STARTER keyword 249

STARTER_COREDUMP_DIR

keyword 249

structure and syntax 211

SUBMIT_FILTER keyword 249

SUSPEND expression 250

syntax 211

SYSPRIO keyword 250

SYSPRIO_THRESHOLD_TO_

IGNORE_STEP keyword 251

TRUNC_GSMONITOR_LOG_

ON_OPEN keyword 251

TRUNC_KBDD_LOG_ON_OPEN

keyword 251

TRUNC_MASTER_LOG_ON_OPEN

keyword 251

TRUNC_NEGOTIATOR_LOG_

ON_OPEN keyword 252

TRUNC_SCHEDD_LOG_ON_OPEN

keyword 252

TRUNC_STARTD_LOG_ON_OPEN

keyword 252

TRUNC_STARTER_LOG_ON_OPEN

keyword 252

UPDATE_ON_POLL_INTERVAL_ONLY

keyword 252

user-defined keywords 254

VACATE expression 253

VM_IMAGE_ALGORITHM

keyword 253

WALLCLOCK_ENFORCE

keyword 254

X_RUNS_HERE keyword 254

configuration file keyword
LOADL_ADMIN 34

configuration files
global and local 31

configuration tasks
GUI 139

configuration wizard
lltg 139

configuring
cluster security services 52

DCE 46

security service 45

Connectivity
requirement in job command file 314

Connectivity variable
detailed description 256

use on MACHPRIO keyword 229

considerations
checkpointing 126

parallel jobs 92

POE 93

POE software levels 158

consumable CPUs, modify 203

consumable memory, modify 203

consumable resources 56

introduction 20

job scheduling 20

Workload Manager 21

ConsumableCpus variable
detailed description 256

use on MACHPRIO keyword 229

ConsumableMemory variable
detailed description 256

use on MACHPRIO keyword 229

ConsumableVirtualMemory variable
detailed description 256

use on MACHPRIO keyword 229

CONTINUE expression
detailed description 217

control functions 62

copy 265, 291

COPY_ALL specification
on environment keyword 302

core file on Linux
troubleshooting 537

core_limit keyword
detailed description 270, 299

CPU_Busy keyword 255

CPU_Idle keyword 255

cpu_limit keyword
detailed description 271, 299

cpu_speed_scale keyword
detailed description 271

Cpus variable
detailed description 257

use on MACHPRIO keyword 229

CPUs, modify consumable 203

create account report
GUI 140

css_type keyword
detailed description 271

CtSec services 52

CurrentTime variable
detailed description 257

CUSTOM_METRIC keyword
detailed description 217

CUSTOM_METRIC_COMMAND

keyword
detailed description 217

customizing
administration file 77

configuration file 31, 211

CustomMetric variable
detailed description 257

use on MACHPRIO keyword 229

D
daemon

control using llctl command 353

master 8

overview 7

daemons
gsmonitor 13

kbdd 13

negotiator 12

schedd 9

startd 10

data access
API 448

data_limit keyword
detailed description 272, 300

DCE
authentication process 68

authentication programs 68

handling security credentials 67

DCE (Distributed Computing

Environment) 46

556 LoadLeveler: Using and Administering

DCE authentication 218

DCE group
generating

using lldcegrpmaint

command 359

maintaining
using lldcegrpmaint

command 359

DCE_ADMIN_GROUP keyword
detailed description 218

usage 46

DCE_AUTHENTICATION_PAIR

keyword
detailed description 218

usage 46

DCE_ENABLEMENT keyword
detailed description 218

usage 46

dce_host_name keyword
detailed description 272

DCE_SERVICES_GROUP keyword
detailed description 218

usage 46

debugging
controlling output 41

dedicated adapters 308

default scheduler
advantages of using 35

default_class keyword
detailed description 272

default_group keyword
detailed description 273

default_interactive_class keyword
detailed description 273

DEFAULT_PREEMPT_METHOD

keyword
detailed description 219

default_resources keyword
detailed description 273

Deferred job state
abbreviations 18

detailed description 18

dependency 541

dependency keyword
detailed description 300

details
API scheduler 36

device_driver_name keyword
detailed description 274

diagnosing problems 529

directories
naming for checkpointing 129

Disk
requirement in job command file 315

Disk variable
detailed description 257

use on MACHPRIO keyword 229

displaying job status
using the command llq 187

using the GUI 200

displaying machine status
adapter details 204

details 204

floating resources 204

machine resources 204

public submit machines 205

scheduler in use 205

displaying machine status (continued)
using llstatus 188

using the GUI 203

Distributed Computing Environment

(DCE) 46

domain variable
detailed description 257

drain
GUI 139

DRAIN_ON_SWITCH_TABLE_ERROR

keyword
detailed description 219

dsh command (in PSSP) 539

E
editing jobs 151, 199

ENFORCE_RESOURCE_MEMORY

keyword
detailed description 220

ENFORCE_RESOURCE_POLICY

keyword
detailed description 220

ENFORCE_RESOURCE_USAGE keyword
detailed description 220

EnteredCurrentState variable
detailed description 257

env_copy keyword
detailed description 274, 302

environment keyword
detailed description 302

specifications
!var 303

$var 303

COPY_ALL 302

var=value 303

environment variable
MALLOCTYPE 33, 355, 511

environment variables
LOADL_JOB_CPU_LIMIT 69

LOADL_PROCESSOR_LIST 170

LOADL_STEP_CLASS 69

LOADL_STEP_COMMAND 69

LOADL_STEP_ID 69

LOADL_STEP_OWNER 69

LOADL_WALL_LIMIT 69

epilog programs 70

error keyword
detailed description 303

exclude_groups keyword
detailed description 275

exclude_users keyword
detailed description 275

executable 146

job command file 149

specified in a job command file 145

executable keyword
detailed description 303

EXECUTE 38

EXECUTE keyword
detailed description 221

executing machine 6

execution window for jobs 540

exit status 312, 423

prolog program 73

expressions
CONTINUE 62

expressions (continued)
KILL 62

START 62

SUSPEND 62

VACATE 62

external scheduler 509

F
favor jobs 136

llfavorjob command 369

favor users 135

llfavoruser command 371

feature
requirement in job command file 315

FEATURE keyword
detailed description 221

file
customizing administration file 77

customizing configuration file 31

file structure and syntax
administration file 263

file system monitoring 43

file_limit keyword
detailed description 275, 304

files 129

naming checkpoint files 127

naming checkpointing files for

interactive parallel jobs 130

naming checkpointing files for serial

and batch jobs 130

filtering a job script 70

FLOATING_RESOURCES keyword
detailed description 221

flush
GUI 139

FreeRealMemory variable
detailed description 257

use on MACHPRIO keyword 229

FS_INTERVAL keyword
detailed description 222

FS_NOTIFY keyword
detailed description 222

FS_SUSPEND keyword
detailed description 222

FS_TERMINATE keyword
detailed description 223

G
Gang scheduler

advantages of using 36

checklist 532

gang scheduling
application support 98

avoiding circular preemption 113

implied START_CLASS values 113

keywords 98

overview 97

releasing resources of preemptable

jobs 115

restrictions 115

sample administration file 100

sample configuration file 99

supported hardware 97

GetHistory (subroutine) 441

Index 557

global configuration file
configuring 31

GLOBAL_HISTORY keyword
detailed description 223

graphical user interface
See ″GUI″ 189

group
default 273

UNIX 273

group keyword
detailed description 304

group stanza keywords
env_copy_name 274

exclude_users 275

include_users 276

max_node 278

max_processors 279

max_reservation_duration 279

max_reservations 279

max_total_tasks 280

maxidle 280

priority 284

total_tasks 287

type 288

group stanzas
examples 89

format 87

GroupQueuedJobs variable
detailed description 257

use on SYSPRIO keyword 250

GroupRunningJobs variable
detailed description 257

use on SYSPRIO keyword 250

GroupSysprio variable
detailed description 257

use on SYSPRIO keyword 250

GroupTotalJobs variable
detailed description 258

use on SYSPRIO keyword 250

gsmonitor daemon 13

GSMONITOR keyword
detailed description 223

GSMONITOR_COREDUMP_DIR

keyword
detailed description 224

GSMONITOR_DOMAIN keyword
detailed description 224

GSMONITOR_RUNS_HERE keyword
detailed description 224

GUI
64-bit support 330

configuration tasks 139

machine administration 137

capture data 140

collect account data 140

collect reservation data 140

configuration tasks 139

create account report 140

drain 139

flush 139

purge 139

reconfig 138

recycle 138

resume 139

start all 138

start Drained 138

start LoadLeveler 138

GUI (continued)
machine administration (continued)

stop all 138

stop LoadLeveler 138

version 141

GUI (graphical user interface)
customizing 327

customizing for the GUI 330

help 329

menu bar 327

overview 327

pull-down menus 328

starting 327

tasks
summary 189

typographic conventions 329

Xloadl file 330

Xloadl_so file 330

GUI (see graphical user interface) 135

H
hardware, supported 97

help
calling IBM 543

in the GUI 329

HighLoad keyword 255

hints for running LoadLeveler 539

HISTORY 38

history file
troubleshooting 543

HISTORY keyword
detailed description 224

HISTORY_PERMISSION keyword
detailed description 224

hold keyword
detailed description 304

holding jobs
using llhold 184, 188

using the GUI 202

host variable
detailed description 258

hostname variable
detailed description 258

HOUR keyword 255

how to checkpoint a job 184

I
Idle job state

abbreviations 18

detailed description 18

idle-like job states 381

image_size keyword
detailed description 305

implied START_CLASS values 113

include_groups keyword
detailed description 276

include_users keyword
detailed description 276

initialdir keyword
detailed description 305

initiators 232

INODE_NOTIFY keyword
detailed description 225

INODE_SUSPEND keyword
detailed description 225

INODE_TERMINATE keyword
detailed description 225

input keyword
detailed description 305

instances 161

integer blocking 159

integrating LoadLeveler with WLM 123

interactive jobs
planning considerations 93

interactive parallel jobs
naming files for checkpointing 130

interface
application programming (API)

summary 437

command line
overview 335

interface_address keyword
detailed description 277

interface_name keyword
detailed description 277

J
job

accounting 57

based on events 58

based on machines 58, 122

based on user accounts 59

for serial or parallel jobs 57

storing data 59

batch 5

building a job command file 145

building using the GUI 189

canceling 184

using llcancel command 341

cancelling 203

change priority
using llprio command 384

change step attributes
using llmodify command 379

class name 299

definition 5

diagnosing problems with 529, 532,

533

editing 151, 199

environment variables 156

exit status 312, 423

filter 70

hold or release
using llhold command 372

holding 184, 202

interactive 93

parallel 157, 532

preempt a step
using llpreempt command 382

priority 183, 202, 284

query status
using llq command 386

releasing a hold 202

return resource information
using llsummary command 425

running 539

samples 187

serial 145, 181

status 181, 200, 390

558 LoadLeveler: Using and Administering

job (continued)
submit

using llsubmit command 423

submit-only 533

submitting 145, 156, 181, 200

system priority 36

job accounting setup procedure 61

job command file
account_no keyword 295

arguments keyword 295

blocking keyword 295

building 145

bulkxfer keyword 296

checkpoint keyword 296

ckpt_dir keyword 297

ckpt_file keyword 298

ckpt_time_limit keyword 298

class keyword 299

comment keyword 299

core_limit keyword 299

cpu_limit keyword 299

data_limit keyword 300

dependency keyword 300

env_copy keyword 302

environment keyword 302

error keyword 303

example 146, 147, 148, 289

executable example 149

executable keyword 303

file_limit keyword 304

group keyword 304

hold keyword 304

image_size keyword 305

initialdir keyword 305

input keyword 305

job_cpu_limit keyword 306

job_name keyword 306

job_type keyword 307

keyword descriptions 294

large_page keyword 307

LoadLeveler variables 324

max_processors keyword 307

min_processors keyword 307

network keyword 308

node keyword 311

node_usage keyword 311

notification keyword 312

notify_user keyword 312

output keyword 313

parallel 290

preferences keyword 313

queue keyword 313

requirements keyword 313

resources keyword 317

restart keyword 318

restart_from_ckpt keyword 318

restart_on_same_nodes keyword 319

rss_limit keyword 319

run-time environment variables 324

serial 289

shell keyword 320

stack_limit keyword 320

startdate keyword 320

step_name keyword 321

submitting 156

syntax 289

task_geometry keyword 321

job command file (continued)
tasks_per_node keyword 322

total_tasks keyword 322

user_priority keyword 323

wall_clock_limit keyword 323

job files
naming for checkpointing 130

naming for checkpointing interactive

parallel jobs 130

job object 9, 448

job queue
definition 6

job routing procedure, NQS 132

job scheduling
consumable resources 20

job state
abbreviations 18

descriptions 18

job step
checkpointing

using llckpt command 347

JOB_ACCT_Q_POLICY keyword
detailed description 226

job_cpu_limit keyword
detailed description 277, 306

JOB_EPILOG keyword
detailed description 226

JOB_LIMIT_POLICY keyword
detailed description 226

job_name keyword
detailed description 306

JOB_PROLOG keyword
detailed description 226

job_type keyword
detailed description 307

JOB_USER_EPILOG keyword
detailed description 227

JOB_USER_PROLOG keyword
detailed description 227

JobLoad keyword 255

K
kbdd daemon 13

KBDD keyword
detailed description 227

KBDD_COREDUMP_DIR keyword
detailed description 227

KeyboardBusy keyword 255

KeyboardIdle variable
detailed description 258

keywords
administration file 78, 267

64-bit support 265

checkpoint 125

configuration file 37, 211, 212

64-bit support 212

LoadLeveler variables 256

user-defined 254

for gang scheduling 98

job command file 294

64-bit support 291

user-defined 254, 256

KILL expression
detailed description 227

L
LAPI 308

large_page keyword
detailed description 307

LargePageMemory
requirement in job command file 315

LIB 38

LIB keyword
detailed description 227

libllapi.a library 437

libllapi.so library 437

limitations
checkpoint and restart 127

limits 83

ll_bind (subroutine) 503

ll_change_reservation (subroutine) 500

using 178

ll_ckpt 444

ll_control (subroutine) 510

ll_deallocate (subroutine) 479

ll_error 487

ll_free_jobs (subroutine) 494

ll_free_nodes (subroutine) 496

ll_free_objs (subroutine) 479

ll_get_data (subroutine) 458

ll_get_hostlist (subroutine) 489

ll_get_jobs (subroutine) 493

ll_get_nodes (subroutine) 495

ll_get_objs (subroutine) 455

ll_init_ckpt 443

ll_init_reservation_param

(subroutine) 499

ll_make_reservation (subroutine) 496

using 175

ll_modify (subroutine) 514

ll_modify subroutine
using 66

ll_next_obj (subroutine) 478

ll_preempt (subroutine) 517

ll_preempt_jobs (subroutine) 518

ll_query (subroutine) 451

ll_remove_reservation (subroutine) 505

using 178

ll_reservation 496

ll_reset_request (subroutine) 455

ll_run_scheduler (subroutine) 520

ll_run_scheduler subroutine
using 66

ll_set_ckpt_callbacks 446

ll_set_request (subroutine) 451

ll_start_host (subroutine) 491

ll_start_job (subroutine) 521

ll_start_job_ext 522

ll_terminate_job (subroutine) 526

ll_unset_ckpt_callbacks 447

LL_Version
requirement in job command file 315

llacctmrg command 337

using for reservations 123

llacctval (user exit) 440

llapi.h header file 437

llbind command 339

using to remove a bound job 177

using to submit a job 176

llcancel command 341

llchres command 343

using 178

Index 559

llckpt command 347

llclass command 349

llctl command 353

lldbconvert command 358

lldcegrpmaint command 359

llextRPD command 362

llextSDR command 365

llfavorjob command 369

llfavoruser command 371

llfree_job_info (subroutine) 508

llhold command 372

llinit command 374

llmkres command 376

using 174

llmodify command 379

using 66

llpreempt command 382

llprio command 384

llq command 386

using for reservations 177, 178

llqres command 406

using 176, 177, 178

llrmres command 409

using 178

llrunscheduler command 411

using 66

llstatus command 412

llsubmit (subroutine) 507

llsubmit command 423

using for reservations 177

llsummary command 425

lltg, configuration wizard 139

load average 542

LoadAvg variable
detailed description 258

use on MACHPRIO keyword 229

loadl user ID 31, 32

LoadL_admin file 263

LOADL_ADMIN keyword 34

detailed description 228

LOADL_CONFIG 65

LoadL_config file 31

LoadL_config.local file 31

LOADL_INTERACTIVE_CLASS

variable 273

LOADL_JOB_CPU_LIMIT
environment variable 69

LOADL_PROCESSOR_LIST
environment variable 170

LOADL_STEP_CLASS
environment variable 69

LOADL_STEP_COMMAND
environment variable 69

LOADL_STEP_ID
environment variable 69

LOADL_STEP_OWNER
environment variable 69

LOADL_WALL_LIMIT
environment variable 69

LoadLeveler
job states 18

steps for integrating with WLM 123

LoadLeveler APIs
64-bit support 439

LoadLeveler basics 4

LoadLeveler cluster
initialize machines

using llinit command 374

LoadLeveler commands
llacctmrg 337

llcancel 341

llckpt 347

llclass 349

llctl 353

lldcegrpmaint 359

llextRPD 362

llextSDR 365

llfavorjob 369

llfavoruser 371

llhold 372

llinit 374

llmodify 379

llpreempt 382

llprio 384

llq 386

llstatus 412

llsubmit 423

llsummary 425

summary 335

LoadLeveler daemon
overview 7

LoadLeveler daemons
control using llctl command 353

LoadLeveler interfaces
application programming (API)

summary 437

command line
overview 335

LoadLeveler job-command option
mapped to NQS option 292

LoadLeveler user ID 32

LoadLeveler variables 256

Arch 256

ClassSysprio 256

Connectivity 256

ConsumableCpus 256

ConsumableMemory 256

ConsumableVirtualMemory 256

Cpus 257

CurrentTime 257

CustomMetric 257

Disk 257

domain 257

EnteredCurrentState 257

for setting dates
tm_mday 260

tm_mon 260

tm_wday 260

tm_yday 260

tm_year 260

tm4_year 260

usage 260

for setting time
tm_isdst 261

tm_min 261

tm_sec 261

tm4_year 260

usage 260

FreeRealMemory 257

GroupQueuedJobs 257

GroupRunningJobs 257

GroupSysprio 257

LoadLeveler variables (continued)
GroupTotalJobs 258

host 258

hostname 258

in a job command file 324

KeyboardIdle 258

LoadAvg 258

Machine 258

MasterMachPriority 258

Memory 258

OpSys 258

PagesFreed 259

PagesScanned 259

QDate 259

Speed 259

state 259

tilde 259

UserPrio 259

UserQueuedJobs 259

UserRunningJobs 259

UserSysprio 259

UserTotalJobs 260

VirtualMemory 260

local configuration file
configuring 31

LOCAL_CONFIG 38

LOCAL_CONFIG keyword
detailed description 228

LOG 38

log files 38

LOG keyword
detailed description 228

logical_id keyword
detailed description 277

LookAt message retrieval tool xiii

LowLoad keyword 255

M
machine

administrative actions 137

collect history files
using llacctmrg command 337

GUI 137

initialize in LoadLeveler cluster
using llinit command 374

public scheduling 286

query status
using llstatus command 412

scheduling 6

Machine
requirement in job command file 315

machine stanza keywords
adapter_stanzas 267

alias 268

central_manager 269

cpu_speed_scale 271

dce_host_name 272

machine_mode 277

master_node_exclusive 278

max_jobs_scheduled 278

name_server 282

pool_list 284

reservation_permitted 284

resources 285

schedd_fenced 286

schedd_host 286

560 LoadLeveler: Using and Administering

machine stanza keywords (continued)
spacct_excluse_enable 286

speed 287

submit_only 287

type 288

machine stanzas
examples 80

format 78

Machine variable
detailed description 258

MACHINE_AUTHENTICATE keyword
detailed description 229

machine_mode keyword
detailed description 277

MACHINE_UPDATE_INTERVAL 539

MACHINE_UPDATE_INTERVAL

keyword
detailed description 229

MACHPRIO 36

MACHPRIO keyword
detailed description 229

mail keyword 255

MAIL keyword
detailed description 231

mail program 75

MALLOCTYPE 33, 355, 511

master daemon 8

MASTER keyword
detailed description 231

master node 95

MASTER_COREDUMP_DIR keyword
detailed description 231

MASTER_DGRAM_PORT keyword
detailed description 231

master_node_exclusive keyword
detailed description 278

master_node_requirement keyword
detailed description 278

MASTER_STREAM_PORT keyword
detailed description 232

MasterMachPriority variable
detailed description 258

use on MACHPRIO keyword 229

MAX_CKPT_INTERVAL 154

MAX_CKPT_INTERVAL keyword
detailed description 232

MAX_JOB_REJECT keyword
detailed description 232

max_jobs_scheduled keyword
detailed description 278

max_node keyword
detailed description 278

max_processors keyword
detailed description 279, 307

max_protocol_instances 164

max_protocol_instances keyword
detailed description 279

max_reservation_duration keyword
detailed description 279

max_reservations keyword
detailed description 279

MAX_RESERVATIONS keyword
detailed description 232

MAX_STARTERS
limits set by 45

MAX_STARTERS keyword
detailed description 232

max_total_tasks keyword
detailed description 280

maxidle 540

maxidle keyword
detailed description 280

maxjobs 540

maxjobs keyword
detailed description 281

maxqueued 540

maxqueued keyword
detailed description 281

Memory
requirement in job command file 315

Memory variable
detailed description 258

use on MACHPRIO keyword 229

memory, modify consumable 203

message retrieval tool, LookAt xiii

messages 207

MIN_CKPT_INTERVAL 154

MIN_CKPT_INTERVAL keyword
detailed description 233

min_processors keyword
detailed description 307

MINUTE keyword 255

modify consumable CPUs, consumable

memory, class, and account

number 203

monitor_program 508

monitoring programs 508

monitoring, file system 43

MPI 308

MPICH
job command file 168

running jobs 165

MPICH-GM
job command file 169

running jobs 165

multilink_address keyword
detailed description 282

multilink_list keyword
detailed description 282

multiple statements
in administration file 115

in configuration file 115

N
name_server keyword

detailed description 282

naming
checkpoint files 127

checkpointing files and

directories 129

checkpointing files for interactive

parallel jobs 130

checkpointing files serial and

batch 130

naming for checkpointing 129

negotiator daemon 12

job states 18

NEGOTIATOR keyword
detailed description 233

NEGOTIATOR_COREDUMP_DIR

keyword
detailed description 233

NEGOTIATOR_CYCLE_DELAY keyword
detailed description 233

NEGOTIATOR_CYCLE_TIME_LIMIT

keyword
detailed description 234

NEGOTIATOR_INTERVAL 539

NEGOTIATOR_INTERVAL keyword
detailed description 234

using 66

NEGOTIATOR_LOADAVG_INCREMENT

keyword
detailed description 234

NEGOTIATOR_PARALLEL_DEFER

keyword
detailed description 234

NEGOTIATOR_PARALLEL_HOLD

keyword
detailed description 235

NEGOTIATOR_RECALCULATE_SYSPRIO_

INTERVAL keyword
detailed description 235

NEGOTIATOR_REJECT_DEFER keyword
detailed description 235

NEGOTIATOR_REMOVE_COMPLETED

keyword
detailed description 235

NEGOTIATOR_RESCAN_QUEUE

keyword
detailed description 236

NEGOTIATOR_STREAM_PORT keyword
detailed description 236

network keyword
detailed description 308

network_id keyword
detailed description 282

network_type keyword
detailed description 282

nice keyword
detailed description 283

node availability 79

node keyword 159

detailed description 311

node_usage keyword
detailed description 311

Not Run job state
abbreviations 18

detailed description 18

notification keyword
detailed description 312

notify_user keyword
detailed description 312

NotQueued job state
abbreviations 18

detailed description 18

NQS
routing jobs to NQS machines 131,

179

scripts 292

submitting 179

NQS jobs
canceling 184

obtaining status 181

NQS machine job routing procedure 132

NQS option
mapped to LoadLeveler option 292

NQS_class keyword
detailed description 283

Index 561

NQS_DIR 38

NQS_DIR keyword
detailed description 236

NQS_query keyword
detailed description 283

NQS_submit keyword
detailed description 284

O
OBITUARY_LOG_LENGTH keyword

detailed description 236

obtaining status, parallel jobs 170

operators 212

OpSys
requirement in job command file 316

OpSys variable
detailed description 258

output 541

debugging 41

output keyword
detailed description 313

overview, gang scheduling 97

P
PagesFreed variable

detailed description 259

use on MACHPRIO keyword 229

PagesScanned variable
detailed description 259

use on MACHPRIO keyword 229

parallel job command files 290

parallel jobs
administration 92

API 488

checklist 532

Class keyword 94

class stanza 94

interactive, naming files for

checkpointing 130

job command file examples 166

master node 95

obtaining status 170

scheduling considerations 92

supported keywords 92

parallel jobs, batch
naming files for checkpointing 130

pending job state 533

Pending job state
abbreviations 18

detailed description 18

planning
checkpointing 126

POE 93

POE
environment variables 165

job command file 167

planning considerations 93

software levels 158

POLLING_FREQUENCY keyword
detailed description 236

POLLS_PER_UPDATE keyword
detailed description 237

Pool
requirement in job command file 316

pool_list keyword
detailed description 284

port numbers 42

preempt
job step

using llpreempt command 382

Preempt Pending job state
abbreviations 18

detailed description 18

PREEMPT_CLASS keyword
detailed description 237

Preempted job state
abbreviations 18

detailed description 18

preemption
avoiding 113

releasing job resources 115

restrictions under gang

scheduling 115

selecting a method 114

two types 112

preemption method
selecting 114

PREEMPTION_SUPPORT keyword
detailed description 239

preferences keyword
detailed description 313

PRESTARTED_STARTERS keyword
detailed description 237

priority
of jobs

user priority 384

priority (of jobs)
setting or changing 183

system priority 183

setting or changing 36, 66

user priority 183

priority keyword
detailed description 284

procedure
job accounting setup 61

NQS machine job routing 132

process
starter 12

PROCESS_TRACKING 64

PROCESS_TRACKING keyword
detailed description 239

PROCESS_TRACKING_EXTENSION 64

PROCESS_TRACKING_EXTENSION

keyword
detailed description 239

productivity aids 539

prolog programs 70

public scheduling machine 286

public scheduling machines 6, 182

PUBLISH_OBITUARIES keyword
detailed description 240

pull-down menus
creating 331

purge
GUI 139

Q
QDate variable

detailed description 259

use on SYSPRIO keyword 250

query a job
using llq command 386

using the GUI 201

query API 493

querying class information
using llclass command 349

querying multiple clusters 65

questions and answers 529

queue keyword
detailed description 313

queue, see job queue 6

R
RDMA

configuring 56

specifying for jobs 152

reconfig
GUI 138

reconfiguration
changing scheduler types 111

recycle
GUI 138

Reject Pending job state
abbreviations 18

detailed description 18

REJECT_ON_RESTRICTED_LOGIN

keyword
detailed description 240

Rejected job state
abbreviations 18

detailed description 18

release from hold 136

RELEASEDIR 38

RELEASEDIR keyword
detailed description 240

remote direct-memory access (RDMA)
configuring 56

specifying for jobs 152

Remove Pending job state
abbreviations 18

detailed description 18

Removed job state
abbreviations 18

detailed description 18

requirements keyword
detailed description 313

RESERVATION_CAN_BE_EXCEEDED

keyword
detailed description 240

RESERVATION_HISTORY keyword
detailed description 241

RESERVATION_MIN_ADVANCE_TIME

keyword
detailed description 241

reservation_permitted keyword
detailed description 284

RESERVATION_PRIORITY keyword
detailed description 241

RESERVATION_SETUP_TIME keyword
detailed description 241

reservations
canceling 178

modifying attributes 178

owner tasks 174, 178

querying 177

removing bound jobs 177

562 LoadLeveler: Using and Administering

reservations (continued)
steps for configuring 117

submitting jobs 175

troubleshooting 529

resources
held by preemptable jobs 115

resources keyword
detailed description 285, 317

RESOURCES keyword
detailed description 242

resources, consumable
job scheduling 20

Workload Manager 21

restart
limitations 127

restarting a checkpointed job 533

restart keyword
detailed description 318

restart_from_ckpt keyword
detailed description 318

restart_on_same_nodes keyword
detailed description 319

restrictions
checkpoint and restart 127

checkpointing 126

gang scheduling and preemption 115

resume
GUI 139

Resume Pending job state
abbreviations 18

detailed description 18

RESUME_ON_SWITCH_TABLE_

ERROR_CLEAR keyword
detailed description 242

rlim_infinity 265, 291

routing jobs, NQS machines 132

RSCT peer domain
extracting data from

using llextRPD command 362

rss_limit keyword
detailed description 285, 319

run-time environment variables
in a job command file 324

Running job state
abbreviations 18

detailed description 18

running jobs at a specific time of

day 540

running-like job states 381

S
SAVELOGS keyword 42

detailed description 242

scaling considerations 539

schedd
troubleshooting 543

schedd daemon 9, 534

recovery 537

SCHEDD keyword
detailed description 242

SCHEDD_COREDUMP_DIR keyword
detailed description 243

schedd_fenced keyword
detailed description 286

schedd_host 539

schedd_host keyword
detailed description 286

SCHEDD_INTERVAL keyword
detailed description 243

SCHEDD_RUNS_HERE keyword
detailed description 243

SCHEDD_STATUS_PORT keyword
detailed description 244

SCHEDD_STREAM_PORT keyword
detailed description 244

SCHEDD_SUBMIT_AFFINITY 539

SCHEDD_SUBMIT_AFFINITY keyword
detailed description 243

SCHEDULE_BY_RESOURCES keyword
detailed description 244

SCHEDULER_TYPE keyword
detailed description 244

schedulers
API 35, 509

backfill 35

choosing 35

Default 35

external 35, 509

Gang 35

supported keywords 157

scheduling
avoiding circular preemption 113

backfill
implied START_CLASS

values 113

releasing resources of preemptable

jobs 115

selecting a preemption

method 114

gang
implied START_CLASS

values 113

releasing resources of preemptable

jobs 115

restrictions 115

gang keywords 98

parallel jobs 92

reconfiguration 111

scheduling cycle
controlling

example 66

scheduling machine 6

public 286

scheduling, job
consumable resources 20

script not executing
troubleshooting 538

SDR
extracting information from 365

SEC_ADMIN_GROUP keyword
detailed description 245

SEC_ENABLEMENT keyword
detailed description 245

SEC_IMPOSED_MECHS keyword
detailed description 246

SEC_SERVICES_GROUP keyword
detailed description 246

security
configuring cluster security

services 52

configuring DCE 46

security credentials
DCE 67

security service
configuring 45

serial checkpointing
ckpt subroutine 443

serial job command files 289

serial jobs
naming files for checkpointing 130

service numbers 42

service_class 308

shell 193

shell keyword
detailed description 320

signals 489

spacct_excluse_enable keyword
detailed description 286

speed keyword
detailed description 287

Speed variable
detailed description 259

use on MACHPRIO keyword 229

SPOOL
log 38

SPOOL keyword
detailed description 246

stack_limit keyword
detailed description 287, 320

stanzas
adapter 81

class 89

default 264

label 264

machine 78

type 264

user 77

start all
GUI 138

start Drained
GUI 138

START expression
detailed description 246

start failure
MALLOCTYPE 33, 355, 511

start LoadLeveler
GUI 138

START_CLASS keyword
detailed description 247

implied values 113

START_DAEMONS keyword
detailed description 248

startd daemon 10, 539

STARTD keyword
detailed description 248

STARTD_COREDUMP_DIR keyword
detailed description 248

STARTD_DGRAM_PORT keyword
detailed description 248

STARTD_RUNS_HERE keyword
detailed description 249

STARTD_STREAM_PORT keyword
detailed description 249

startdate keyword
detailed description 320

STARTER keyword
detailed description 249

starter process 12

Index 563

STARTER_COREDUMP_DIR keyword
detailed description 249

Starting job state
abbreviations 18

detailed description 18

State variable
detailed description 259

StateTimer keyword 255

status 423

query for machines
using llstatus command 412

status, obtaining
parallel jobs 170

step_name keyword
detailed description 321

stop all
GUI 138

stop LoadLeveler
GUI 138

striping
definition of 161

over multiple networks 163

submitting jobs 161

Striping
examples of requesting striping in

network statement 164

Understanding over a single

network 164

structure
administration file 263

SUBMIT_FILTER 70

SUBMIT_FILTER keyword
detailed description 249

submit_only keyword
detailed description 287

submit-only machine
canceling jobs 184

definition 3

keywords 287

master daemon interaction 8

querying jobs from 182

querying multiple clusters 65

schedd daemon interaction 9

submitting jobs from 157

troubleshooting 533

types 6

submitting jobs
across multiple clusters 65

using a job command file 156

using an API 507

using llsubmit 187

using llsubmit command 423

using the GUI 200

subroutines
ckpt 443

GetHistory 441

ll_bind 503

ll_change_reservation 178, 500

ll_control 510

ll_deallocate 479

ll_free_jobs 494

ll_free_nodes 496

ll_free_objs 479

ll_get_data 458

ll_get_hostlist 489

ll_get_jobs 493

ll_get_nodes 495

subroutines (continued)
ll_get_objs 455

ll_init_reservation_param 499

ll_make_reservation 175, 496

ll_modify 514

ll_next_obj 478

ll_preempt 517

ll_preempt_jobs 518

ll_query 451

ll_remove_reservation 178, 505

ll_reset_request 455

ll_run_scheduler 520

ll_set_request 451

ll_start_host 491

ll_start_job 521

ll_start_job_ext 522

ll_terminate_job 526

llacctval (user exit) 440

llfree_job_info 508

llsubmit 507

summary
of LoadLeveler commands 335

support services 543

support, 64-bit keywords 212, 265, 291

support, application 98

SUSPEND expression
detailed description 250

switch_node_number keyword
detailed description 287

syntax
administration file 263

sys/wait.h 73

syshold 136

SYSPRIO keyword 36, 183

detailed description 250

SYSPRIO_THRESHOLD_TO_

IGNORE_STEP keyword
detailed description 251

System Hold job state
abbreviations 18

detailed description 18

system priority
definition 183

setting or changing 36, 66, 183

system queue
reorder by job

using llfavorjob command 369

reorder by user
using llfavoruser command 371

system-initiated checkpointing 125, 296

T
take checkpoint 203

task assignment 159

task_geometry 159

task_geometry keyword
detailed description 321

tasks
administration file, modifying

steps 77

configuration file, modifying
steps 33

Configuring and managing the

LoadLeveler environment
roadmap 29

tasks (continued)
jobs, building

roadmap 145, 181

jobs, preempting
roadmap 112

jobs, routing to NQS machines
steps 132

jobs, submitting
roadmap 145, 181

LoadLeveler interfaces, using
roadmap 209

parallel jobs, launching
steps for reducing overhead 92

Providing additional job-processing

controls
roadmap 66

reservations
removing bound jobs 177

submitting jobs 175

reservations, configuring
roadmap 117

steps 117

reservations, creating
administrators only 174

owners only 174

reservations, managing
owners only 178

querying 177

resources, reserving
roadmap 117

scheduler, configure for preemption
steps 115

tasks_per_node keyword 159

detailed description 322

TCP/IP service and port numbers 42

Terminated job state
abbreviations 18

detailed description 18

tilde variable
detailed description 259

tm_isdst variable 261

tm_mday variable 260

tm_min variable 261

tm_mon variable 260

tm_sec variable 261

tm_wday variable 260

tm_yday variable 260

tm_year variable 260

tm4_year variable 260

total_tasks keyword 159

detailed description 287, 322

TotalMemory
requirement in job command file 316

trademarks 547

troubleshooting 529

.login script not executing 538

.profile script not executing 538

central manager isn’t operating 535

checkpointed job won’t restart 533

core file on Linux 537

Gang scheduler checklist 532

history file and schedd 543

job stays in pending or starting

state 533

job won’t run 529

job won’t run on cluster with both

AIX and Linux machines 533

564 LoadLeveler: Using and Administering

troubleshooting (continued)
llstatus does not agree with llq 535

mksysb created when running

jobs 538

parallel job won’t run 532

recovering resources 537

reservations 529

reserved node is down 539

running jobs when a machine goes

down 534

set up problems with parallel

jobs 532

setuid = 0 538

submit-only job won’t run 533

TRUNC_GSMONITOR_LOG_ ON_OPEN

keyword
detailed description 251

usage 40

TRUNC_KBDD_LOG_ON_OPEN

keyword
detailed description 251

usage 40

TRUNC_MASTER_LOG_ON_OPEN

keyword
detailed description 251

usage 40

TRUNC_NEGOTIATOR_LOG_

ON_OPEN keyword
detailed description 252

usage 40

TRUNC_SCHEDD_LOG_ON_OPEN

keyword
detailed description 252

usage 40

TRUNC_STARTD_LOG_ON_OPEN

keyword
detailed description 252

usage 40

TRUNC_STARTER_LOG_ON_OPEN

keyword
detailed description 252

usage 40

type keyword
detailed description 288

U
Understanding striping over a single

network 164

understanding striping over multiple

networks 163

unfavor jobs 136

unfavor users 135

UNIX group 273

unlimited blocking 159, 295

UPDATE_ON_POLL_INTERVAL_ONLY

keyword
detailed description 252

User and System Hold job state
abbreviations 18

detailed description 18

user exit
llacctval 440

user exits
monitoring programs 508

User Hold job state
abbreviations 18

User Hold job state (continued)
detailed description 18

user name 79

user priority
definition 183

setting or changing 183

user space jobs
configuring bulk data transfer 56

using bulk data transfer 152

user stanza keywords
account 267

default_class 272

default_group 273

default_interactive_class 273

env_copy_name 274

max_node 278

max_processors 279

max_reservation_duration 279

max_reservations 279

max_total_tasks 280

maxidle 280

maxjobs 281

maxqueued 281

total_tasks 287

type 288

user stanzas
examples 88

format 77

user_priority keyword
detailed description 323

user-defined keywords 254

BackgroundLoad 255

CPU_Busy 255

CPU_Idle 255

HighLoad 255

HOUR 255

JobLoad 255

KeyboardBusy 255

LowLoad 255

mail 255

MINUTE 255

StateTimer 255

user-initiated checkpointing 125, 296

UserPrio variable
detailed description 259

use on SYSPRIO keyword 250

UserQueuedJobs variable
detailed description 259

use on SYSPRIO keyword 250

UserRunningJobs variable
detailed description 259

use on SYSPRIO keyword 250

UserSysprio variable
detailed description 259

use on SYSPRIO keyword 250

UserTotalJobs variable
detailed description 260

use on SYSPRIO keyword 250

V
VACATE expression

detailed description 253

Vacate Pending job state
abbreviations 18

detailed description 18

Vacated job state
abbreviations 18

detailed description 18

var=value specification
on environment keyword 303

variables
LoadLeveler 324

run-time environment 324

version
GUI 141

VirtualMemory variable
detailed description 260

use on MACHPRIO keyword 229

VM_IMAGE_ALGORITHM keyword
detailed description 253

W
wall_clock_limit keyword

detailed description 288, 323

WALLCLOCK_ENFORCE keyword
detailed description 254

WLM
consumable resources 21

steps for integrating with

LoadLeveler 123

workload manager
consumable resources 21

Workload Manager
steps for integrating with

LoadLeveler 123

X
X_RUNS_HERE keyword

detailed description 254

xloadl 327

Xloadl 330

Xloadl_so 330

Index 565

566 LoadLeveler: Using and Administering

Readers’ comments – We’d like to hear from you

IBM LoadLeveler for AIX 5L and Linux

Using and Administering

Version 3 Release 3

 Publication No. SA22-7881-03

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7881-03

SA22-7881-03

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-E69 and 5724-I23

Printed in USA

SA22-7881-03

	Contents
	Figures
	Tables
	About this book
	Who should use this book
	Conventions and terminology used in this book
	Prerequisite and related information
	Using LookAt to look up message explanations
	Accessibility information
	How to send your comments

	Summary of changes
	Part 1. Overview of LoadLeveler concepts and operation
	Chapter 1. What is LoadLeveler?
	LoadLeveler basics
	LoadLeveler: A network job management and scheduling system
	Job definition
	Machine definition
	Roles of machines
	Machine availability

	How LoadLeveler schedules jobs
	How LoadLeveler daemons process jobs
	The master daemon
	The schedd daemon
	The startd daemon
	The starter process

	The negotiator daemon
	The kbdd daemon
	The gsmonitor daemon

	The LoadLeveler job cycle
	LoadLeveler job states

	Consumable resources
	Consumable resources and AIX Workload Manager

	Overview of reservations

	Chapter 2. What operating systems are supported by LoadLeveler?
	AIX and Linux compatibility
	Restrictions for LoadLeveler for Linux
	Features not supported in Linux
	Restrictions for LoadLeveler AIX and Linux mixed clusters

	Part 2. Configuring and managing the LoadLeveler environment
	Chapter 3. Configuring the LoadLeveler environment
	Getting a quick start using the default configuration
	Modifying a configuration file
	Defining LoadLeveler administrators
	Defining a LoadLeveler cluster
	Choosing a scheduler
	Setting negotiator characteristics and policies
	Specifying alternate central managers
	Defining network characteristics
	Specifying file and directory locations
	Configuring recording activity and log files
	Controlling debugging output
	Saving log files

	Setting up file system monitoring

	Defining LoadLeveler machine characteristics
	Defining job classes that a LoadLeveler machine will accept
	Specifying how many jobs a machine can run

	Defining security mechanisms
	Configuring LoadLeveler to use DCE security services
	Steps for using SMIT and the lldcegrpmaint command to configure DCE security
	Steps for manually configuring DCE security
	Usage notes

	Configuring LoadLeveler to use cluster security services
	Steps for enabling CtSec services
	Limiting which security mechanisms LoadLeveler can use

	Defining usage policies for consumable resources
	Enabling support for bulk data transfer
	Gathering job accounting data
	Collecting job resource data on serial and parallel jobs
	Collecting job resource data based on machines
	Collecting job resource data based on events
	Collecting job resource information based on user accounts
	Collecting the accounting information and storing it into files
	Producing accounting reports
	Correlating AIX and LoadLeveler accounting records
	64-bit support for accounting functions
	Example: Setting up job accounting files

	Managing job status through control expressions
	How control expressions affect jobs

	Tracking job processes
	Querying multiple LoadLeveler clusters
	Handling switch-table errors
	Providing additional job-processing controls through user exits
	Controlling the central manager scheduling cycle
	Handling DCE security credentials
	Using the default program pair: lldelegate and llimpersonate
	Using the alternative program pair: llgetdce and llsetdce
	Forwarding DCE credentials

	Handling an AFS token
	Filtering a job script
	Writing prolog and epilog programs
	Coding conventions for prolog programs
	Coding conventions for epilog programs

	Using your own mail program

	Chapter 4. Defining LoadLeveler resources to administer
	Steps for modifying an administration file
	Defining machines
	Planning considerations for defining machines
	Machine stanza format and keyword summary
	Examples: Machine stanzas

	Defining adapters
	Configuring dynamic adapters
	Adapter stanza format and keyword summary
	Examples: Adapter stanzas

	Defining classes
	Using limit keywords
	Enforcing limits

	Allowing users to use a class
	Class stanza format and keyword summary
	Examples: Class stanzas

	Defining users
	User stanza format and keyword summary
	Examples: User stanzas

	Defining groups
	Group stanza format and keyword summary
	Examples: Group stanzas

	Chapter 5. Performing additional administrator tasks
	Setting up the environment for parallel jobs
	Scheduling considerations for parallel jobs
	Steps for reducing job launch overhead for parallel jobs
	Steps for allowing users to submit interactive POE jobs
	Setting up a class for parallel jobs
	Setting up a parallel master node
	Configuring LoadLeveler to support MPICH-GM jobs

	Using the backfill scheduler
	Tips for using the backfill scheduler
	Example: Backfill scheduling

	Using the gang scheduler
	Setting keywords for gang scheduling
	Example: Configuration file for gang scheduling
	Example: Administration file for gang scheduling

	Using an external scheduler
	Replacing the default LoadLeveler scheduling algorithm with an external scheduler
	Customizing the configuration file to define an external scheduler
	Steps for getting information about the LoadLeveler cluster, its machines, and jobs
	Example: Retrieving specific information about machines
	Example: Retrieving information about jobs

	Assigning resources and dispatching jobs

	Example: Changing scheduler types
	Preempting and resuming jobs
	Overview of preemption
	Planning to preempt jobs
	Steps for configuring a scheduler to preempt jobs

	Configuring LoadLeveler to support reservations
	Steps for configuring reservations in a LoadLeveler cluster
	Examples: Reservation keyword combinations in the administration file

	Collecting accounting data for reservations

	Steps for integrating LoadLeveler with AIX Workload Manager
	Checkpointing jobs
	Checkpoint keyword summary
	Planning considerations for checkpointing jobs
	Checkpoint and restart limitations
	Naming checkpoint files and directories
	Naming checkpoint files for serial and batch parallel jobs
	Naming checkpointing files for interactive parallel jobs

	Removing old checkpoint files

	Routing jobs to NQS machines
	Setting up the NQS environment
	Steps for designating machines to which jobs will be routed
	Steps for routing jobs to NQS machines

	Chapter 6. Using LoadLeveler's GUI to perform administrator tasks
	Job-related administrative actions
	Machine-related administrative actions

	Part 3. Submitting and managing LoadLeveler jobs
	Chapter 7. Building and submitting jobs
	Building a job command file
	Using multiple steps in a job command file
	Examples: Job command files

	Editing job command files
	Defining resources for a job step
	Using bulk data transfer
	Preparing a job for checkpoint/restart
	Preparing a job for preemption
	Submitting a job command file
	Submitting a job using a submit-only machine

	Working with parallel jobs
	Scheduler support for parallel jobs
	Step for controlling whether LoadLeveler copies environment variables to all executing nodes
	Ensuring that parallel jobs in a cluster run on the correct levels of PE and LoadLeveler software
	Task-assignment considerations
	node and total_tasks
	node and tasks_per_node
	blocking
	unlimited blocking
	task_geometry

	Submitting jobs that use striping
	Understanding striping over multiple networks
	Understanding striping over a single network
	Examples: Requesting striping in network statements

	Running interactive POE jobs
	Running MPICH and MPICH-GM jobs
	Examples: Building parallel job command files
	POE
	MPICH
	MPICH-GM

	Obtaining status of parallel jobs
	Obtaining allocated host names

	Working with reservations
	Understanding the reservation life cycle
	Creating new reservations
	Submitting jobs to run under a reservation
	Removing bound jobs from the reservation
	Querying existing reservations
	Modifying existing reservations
	Canceling existing reservations

	Steps for submitting a job to be routed to an NQS machine

	Chapter 8. Managing submitted jobs
	Querying the status of a job
	Working with machines
	Displaying currently available resources
	Setting and changing the priority of a job
	Example: How does a job's priority affect dispatching order?

	Placing and releasing a hold on a job
	Canceling a job
	Checkpointing a job

	Chapter 9. Example: Using commands to build, submit, and manage jobs
	Chapter 10. Using LoadLeveler's GUI to build, submit, and manage jobs
	Building jobs
	Editing the job command file
	Submitting a job command file
	Displaying and refreshing job status
	Sorting the Jobs window
	Changing the priority of jobs in a queue
	Placing a job on hold
	Releasing the hold on a job
	Canceling a job
	Modifying consumable resources and other job attributes
	Taking a checkpoint
	Displaying and refreshing machine status
	Sorting the Machines window
	Finding the location of the central manager
	Finding the location of the public scheduling machines
	Finding the type of scheduler in use
	Specifying which jobs appear in the Jobs window
	Specifying which machines appear in Machines window
	Saving LoadLeveler messages in a file

	Part 4. LoadLeveler interfaces reference
	Chapter 11. Configuration file reference
	Configuration file syntax
	Numerical and alphabetical constants
	Mathematical operators
	64-bit support for configuration file keywords and expressions

	Configuration file keyword descriptions
	User-defined keywords
	LoadLeveler variables
	Variables to use for setting dates
	Variables to use for setting times

	Chapter 12. Administration file reference
	Administration file structure and syntax
	Stanza characteristics
	Syntax for limit keywords
	64-bit support for administration file keywords
	64-bit limits on Linux systems

	Administration file keyword descriptions

	Chapter 13. Job command file reference
	Job command file syntax
	Serial job command file
	Parallel job command file
	Syntax for limit keywords
	64-bit support for job command file keywords
	Mapping NQS script options to LoadLeveler job command file options

	Job command file keyword descriptions
	Job command file variables
	Run-time environment variables
	Example 1
	Example 2

	Chapter 14. Graphical user interface (GUI) reference
	Starting the GUI
	Specifying GUI options
	The LoadLeveler main window
	Getting help using the GUI
	Differences between LoadLeveler's GUI and other graphical user interfaces
	GUI typographic conventions
	64-bit support for the GUI

	Customizing the GUI
	Syntax of an Xloadl file
	Modifying windows and buttons
	Creating your own pull-down menus
	Example – creating a new pull-down

	Customizing fields on the Jobs window and the Machines window
	Modifying help panels

	Chapter 15. Commands
	llacctmrg - Collect machine history files
	llbind - Bind job steps to a reservation
	llcancel - Cancel a submitted job
	llchres - Change attributes of a reservation
	llckpt - Checkpoint a running job step
	llclass - Query class information
	llctl - Control LoadLeveler daemons
	lldbconvert - Job migration utility
	lldcegrpmaint - LoadLeveler DCE group maintenance utility
	llextRPD - Extract data from an RSCT peer domain
	llextSDR - Extract adapter information from the SDR
	llfavorjob - Reorder system queue by job
	llfavoruser - Reorder system queue by user
	llhold - Hold or release a submitted job
	llinit - Initialize machines in the LoadLeveler cluster
	llmkres - Make a reservation
	llmodify - Change attributes of a submitted job step
	llpreempt - Preempt a submitted job step
	llprio - Change the user priority of submitted job steps
	llq - Query job status
	llqres - Query a reservation
	llrmres - Cancel a reservation
	llrunscheduler - Run the central manager's scheduling algorithm
	llstatus - Query machine status
	llsubmit - Submit a job
	llsummary - Return job resource information for accounting

	Chapter 16. Application programming interfaces (APIs)
	64-bit support for the LoadLeveler APIs
	AIX
	Linux

	Accounting API
	Account validation user exit
	Purpose
	Syntax
	Parameters
	Description
	Return values

	Report generation subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples

	Checkpointing API
	ckpt subroutine
	Purpose
	C++ syntax
	C syntax
	FORTRAN syntax

	ll_init_ckpt
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values

	ll_ckpt
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values

	ll_set_ckpt_callbacks
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values

	ll_unset_ckpt_callbacks
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values

	Data Access API
	Using the data access API
	Understanding the LoadLeveler job object model
	ll_query subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_set_request subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_reset_request subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_get_objs subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_get_data subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_next_obj subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_free_objs subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	ll_deallocate subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Related information

	Examples of using the Data Access API

	Error Handling API
	ll_error subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values

	Parallel Job API
	Interaction between LoadLeveler and the parallel API
	Termination paths

	ll_get_hostlist subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values

	ll_start_host subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values

	Examples

	Query API
	ll_get_jobs subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	ll_free_jobs subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	ll_get_nodes subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	ll_free_nodes subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	Reservation API
	ll_make_reservation subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information

	ll_init_reservation_param subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information

	ll_change_reservation subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information

	ll_bind subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information

	ll_remove_reservation subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information

	Submit API
	llsubmit subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return values
	Error values

	llfree_job_info subroutine
	Purpose
	Syntax
	Parameters

	Monitoring programs
	Purpose
	Syntax
	Parameters

	Workload Management API
	ll_control subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information

	ll_modify subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Related information
	Example

	ll_preempt subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values

	ll_preempt_jobs subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values

	ll_run_scheduler subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values

	ll_start_job subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	ll_start_job_ext subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	ll_terminate_job subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return values
	Error values
	Examples
	Related information

	Appendix. Troubleshooting
	Troubleshooting LoadLeveler
	Frequently asked questions
	Why won't my job run?
	Why won't my parallel job run?
	Why won't my checkpointed job restart?
	Why won't my submit-only job run?
	Why won't my job run on a cluster with both AIX and Linux machines?
	Why does a job stay in the Pending (or Starting) state?
	What happens to running jobs when a machine goes down?
	What happens if the central manager isn't operating?
	How do I recover resources allocated by a schedd machine?
	Why can't I find a core file on Linux?
	Other questions

	Helpful hints
	Scaling considerations
	Hints for running jobs
	Hints for using machines
	History files and schedd

	Getting help from IBM

	Notices
	Trademarks

	Glossary
	Index
	Readers' comments – We'd like to hear from you

